X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;ds=sidebyside;f=lib%2FSupport%2FAPFloat.cpp;h=f2388944929bf097ddfddb1bc11c437079a6110e;hb=91bbe237167bf84ce41d01eff3c028ff2b10be26;hp=4f1b85431ccb768c692d45a2261ccf8ab5adb57b;hpb=e12b73816b50bbe2cc54b8005d86c95413b4f465;p=oota-llvm.git diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp index 4f1b85431cc..f2388944929 100644 --- a/lib/Support/APFloat.cpp +++ b/lib/Support/APFloat.cpp @@ -13,6 +13,7 @@ //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APSInt.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Support/ErrorHandling.h" @@ -65,7 +66,7 @@ namespace llvm { pow(5, power) is power * 815 / (351 * integerPartWidth) + 1 - + However, whilst the result may require only this many parts, because we are multiplying two values to get it, the multiplication may require an extra part with the excess part @@ -100,15 +101,15 @@ hexDigitValue(unsigned int c) unsigned int r; r = c - '0'; - if(r <= 9) + if (r <= 9) return r; r = c - 'A'; - if(r <= 5) + if (r <= 5) return r + 10; r = c - 'a'; - if(r <= 5) + if (r <= 5) return r + 10; return -1U; @@ -116,8 +117,8 @@ hexDigitValue(unsigned int c) static inline void assertArithmeticOK(const llvm::fltSemantics &semantics) { - assert(semantics.arithmeticOK - && "Compile-time arithmetic does not support these semantics"); + assert(semantics.arithmeticOK && + "Compile-time arithmetic does not support these semantics"); } /* Return the value of a decimal exponent of the form @@ -153,6 +154,7 @@ readExponent(StringRef::iterator begin, StringRef::iterator end) value += absExponent * 10; if (absExponent >= overlargeExponent) { absExponent = overlargeExponent; + p = end; /* outwit assert below */ break; } absExponent = value; @@ -174,43 +176,43 @@ totalExponent(StringRef::iterator p, StringRef::iterator end, { int unsignedExponent; bool negative, overflow; - int exponent; + int exponent = 0; assert(p != end && "Exponent has no digits"); negative = *p == '-'; - if(*p == '-' || *p == '+') { + if (*p == '-' || *p == '+') { p++; assert(p != end && "Exponent has no digits"); } unsignedExponent = 0; overflow = false; - for(; p != end; ++p) { + for (; p != end; ++p) { unsigned int value; value = decDigitValue(*p); assert(value < 10U && "Invalid character in exponent"); unsignedExponent = unsignedExponent * 10 + value; - if(unsignedExponent > 65535) + if (unsignedExponent > 32767) overflow = true; } - if(exponentAdjustment > 65535 || exponentAdjustment < -65536) + if (exponentAdjustment > 32767 || exponentAdjustment < -32768) overflow = true; - if(!overflow) { + if (!overflow) { exponent = unsignedExponent; - if(negative) + if (negative) exponent = -exponent; exponent += exponentAdjustment; - if(exponent > 65535 || exponent < -65536) + if (exponent > 32767 || exponent < -32768) overflow = true; } - if(overflow) - exponent = negative ? -65536: 65535; + if (overflow) + exponent = negative ? -32768: 32767; return exponent; } @@ -221,15 +223,15 @@ skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, { StringRef::iterator p = begin; *dot = end; - while(*p == '0' && p != end) + while (*p == '0' && p != end) p++; - if(*p == '.') { + if (*p == '.') { *dot = p++; assert(end - begin != 1 && "Significand has no digits"); - while(*p == '0' && p != end) + while (*p == '0' && p != end) p++; } @@ -323,13 +325,13 @@ trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, /* If the first trailing digit isn't 0 or 8 we can work out the fraction immediately. */ - if(digitValue > 8) + if (digitValue > 8) return lfMoreThanHalf; - else if(digitValue < 8 && digitValue > 0) + else if (digitValue < 8 && digitValue > 0) return lfLessThanHalf; /* Otherwise we need to find the first non-zero digit. */ - while(*p == '0') + while (*p == '0') p++; assert(p != end && "Invalid trailing hexadecimal fraction!"); @@ -338,7 +340,7 @@ trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, /* If we ran off the end it is exactly zero or one-half, otherwise a little more. */ - if(hexDigit == -1U) + if (hexDigit == -1U) return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; else return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; @@ -356,12 +358,12 @@ lostFractionThroughTruncation(const integerPart *parts, lsb = APInt::tcLSB(parts, partCount); /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ - if(bits <= lsb) + if (bits <= lsb) return lfExactlyZero; - if(bits == lsb + 1) + if (bits == lsb + 1) return lfExactlyHalf; - if(bits <= partCount * integerPartWidth - && APInt::tcExtractBit(parts, bits - 1)) + if (bits <= partCount * integerPartWidth && + APInt::tcExtractBit(parts, bits - 1)) return lfMoreThanHalf; return lfLessThanHalf; @@ -385,10 +387,10 @@ static lostFraction combineLostFractions(lostFraction moreSignificant, lostFraction lessSignificant) { - if(lessSignificant != lfExactlyZero) { - if(moreSignificant == lfExactlyZero) + if (lessSignificant != lfExactlyZero) { + if (moreSignificant == lfExactlyZero) moreSignificant = lfLessThanHalf; - else if(moreSignificant == lfExactlyHalf) + else if (moreSignificant == lfExactlyHalf) moreSignificant = lfMoreThanHalf; } @@ -468,7 +470,7 @@ powerOf5(integerPart *dst, unsigned int power) 15625, 78125 }; integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; pow5s[0] = 78125 * 5; - + unsigned int partsCount[16] = { 1 }; integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; unsigned int result; @@ -588,14 +590,14 @@ APFloat::initialize(const fltSemantics *ourSemantics) semantics = ourSemantics; count = partCount(); - if(count > 1) + if (count > 1) significand.parts = new integerPart[count]; } void APFloat::freeSignificand() { - if(partCount() > 1) + if (partCount() > 1) delete [] significand.parts; } @@ -609,7 +611,7 @@ APFloat::assign(const APFloat &rhs) exponent = rhs.exponent; sign2 = rhs.sign2; exponent2 = rhs.exponent2; - if(category == fcNormal || category == fcNaN) + if (category == fcNormal || category == fcNaN) copySignificand(rhs); } @@ -631,25 +633,46 @@ void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) category = fcNaN; sign = Negative; + integerPart *significand = significandParts(); + unsigned numParts = partCount(); + // Set the significand bits to the fill. - if (!fill || fill->getNumWords() < partCount()) - APInt::tcSet(significandParts(), 0, partCount()); - if (fill) - APInt::tcAssign(significandParts(), fill->getRawData(), partCount()); + if (!fill || fill->getNumWords() < numParts) + APInt::tcSet(significand, 0, numParts); + if (fill) { + APInt::tcAssign(significand, fill->getRawData(), + std::min(fill->getNumWords(), numParts)); + + // Zero out the excess bits of the significand. + unsigned bitsToPreserve = semantics->precision - 1; + unsigned part = bitsToPreserve / 64; + bitsToPreserve %= 64; + significand[part] &= ((1ULL << bitsToPreserve) - 1); + for (part++; part != numParts; ++part) + significand[part] = 0; + } + + unsigned QNaNBit = semantics->precision - 2; if (SNaN) { // We always have to clear the QNaN bit to make it an SNaN. - APInt::tcClearBit(significandParts(), semantics->precision - 2); + APInt::tcClearBit(significand, QNaNBit); // If there are no bits set in the payload, we have to set // *something* to make it a NaN instead of an infinity; // conventionally, this is the next bit down from the QNaN bit. - if (APInt::tcIsZero(significandParts(), partCount())) - APInt::tcSetBit(significandParts(), semantics->precision - 3); + if (APInt::tcIsZero(significand, numParts)) + APInt::tcSetBit(significand, QNaNBit - 1); } else { // We always have to set the QNaN bit to make it a QNaN. - APInt::tcSetBit(significandParts(), semantics->precision - 2); + APInt::tcSetBit(significand, QNaNBit); } + + // For x87 extended precision, we want to make a NaN, not a + // pseudo-NaN. Maybe we should expose the ability to make + // pseudo-NaNs? + if (semantics == &APFloat::x87DoubleExtended) + APInt::tcSetBit(significand, QNaNBit + 1); } APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, @@ -662,8 +685,8 @@ APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, APFloat & APFloat::operator=(const APFloat &rhs) { - if(this != &rhs) { - if(semantics != rhs.semantics) { + if (this != &rhs) { + if (semantics != rhs.semantics) { freeSignificand(); initialize(rhs.semantics); } @@ -704,7 +727,7 @@ APFloat::bitwiseIsEqual(const APFloat &rhs) const { } APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) -{ + : exponent2(0), sign2(0) { assertArithmeticOK(ourSemantics); initialize(&ourSemantics); sign = 0; @@ -714,14 +737,15 @@ APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) normalize(rmNearestTiesToEven, lfExactlyZero); } -APFloat::APFloat(const fltSemantics &ourSemantics) { +APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) { assertArithmeticOK(ourSemantics); initialize(&ourSemantics); category = fcZero; sign = false; } -APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) { +APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) + : exponent2(0), sign2(0) { assertArithmeticOK(ourSemantics); // Allocates storage if necessary but does not initialize it. initialize(&ourSemantics); @@ -729,7 +753,7 @@ APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) { APFloat::APFloat(const fltSemantics &ourSemantics, fltCategory ourCategory, bool negative) -{ + : exponent2(0), sign2(0) { assertArithmeticOK(ourSemantics); initialize(&ourSemantics); category = ourCategory; @@ -740,15 +764,14 @@ APFloat::APFloat(const fltSemantics &ourSemantics, makeNaN(); } -APFloat::APFloat(const fltSemantics &ourSemantics, const StringRef& text) -{ +APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) + : exponent2(0), sign2(0) { assertArithmeticOK(ourSemantics); initialize(&ourSemantics); convertFromString(text, rmNearestTiesToEven); } -APFloat::APFloat(const APFloat &rhs) -{ +APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) { initialize(rhs.semantics); assign(rhs); } @@ -809,6 +832,7 @@ APFloat::incrementSignificand() /* Our callers should never cause us to overflow. */ assert(carry == 0); + (void)carry; } /* Add the significand of the RHS. Returns the carry flag. */ @@ -860,7 +884,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) precision = semantics->precision; newPartsCount = partCountForBits(precision * 2); - if(newPartsCount > 4) + if (newPartsCount > 4) fullSignificand = new integerPart[newPartsCount]; else fullSignificand = scratch; @@ -875,7 +899,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; exponent += rhs.exponent; - if(addend) { + if (addend) { Significand savedSignificand = significand; const fltSemantics *savedSemantics = semantics; fltSemantics extendedSemantics; @@ -884,18 +908,17 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) /* Normalize our MSB. */ extendedPrecision = precision + precision - 1; - if(omsb != extendedPrecision) - { - APInt::tcShiftLeft(fullSignificand, newPartsCount, - extendedPrecision - omsb); - exponent -= extendedPrecision - omsb; - } + if (omsb != extendedPrecision) { + APInt::tcShiftLeft(fullSignificand, newPartsCount, + extendedPrecision - omsb); + exponent -= extendedPrecision - omsb; + } /* Create new semantics. */ extendedSemantics = *semantics; extendedSemantics.precision = extendedPrecision; - if(newPartsCount == 1) + if (newPartsCount == 1) significand.part = fullSignificand[0]; else significand.parts = fullSignificand; @@ -904,10 +927,11 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) APFloat extendedAddend(*addend); status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); assert(status == opOK); + (void)status; lost_fraction = addOrSubtractSignificand(extendedAddend, false); /* Restore our state. */ - if(newPartsCount == 1) + if (newPartsCount == 1) fullSignificand[0] = significand.part; significand = savedSignificand; semantics = savedSemantics; @@ -917,7 +941,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) exponent -= (precision - 1); - if(omsb > precision) { + if (omsb > precision) { unsigned int bits, significantParts; lostFraction lf; @@ -930,7 +954,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); - if(newPartsCount > 4) + if (newPartsCount > 4) delete [] fullSignificand; return lost_fraction; @@ -952,7 +976,7 @@ APFloat::divideSignificand(const APFloat &rhs) rhsSignificand = rhs.significandParts(); partsCount = partCount(); - if(partsCount > 2) + if (partsCount > 2) dividend = new integerPart[partsCount * 2]; else dividend = scratch; @@ -960,7 +984,7 @@ APFloat::divideSignificand(const APFloat &rhs) divisor = dividend + partsCount; /* Copy the dividend and divisor as they will be modified in-place. */ - for(i = 0; i < partsCount; i++) { + for (i = 0; i < partsCount; i++) { dividend[i] = lhsSignificand[i]; divisor[i] = rhsSignificand[i]; lhsSignificand[i] = 0; @@ -972,14 +996,14 @@ APFloat::divideSignificand(const APFloat &rhs) /* Normalize the divisor. */ bit = precision - APInt::tcMSB(divisor, partsCount) - 1; - if(bit) { + if (bit) { exponent += bit; APInt::tcShiftLeft(divisor, partsCount, bit); } /* Normalize the dividend. */ bit = precision - APInt::tcMSB(dividend, partsCount) - 1; - if(bit) { + if (bit) { exponent -= bit; APInt::tcShiftLeft(dividend, partsCount, bit); } @@ -987,15 +1011,15 @@ APFloat::divideSignificand(const APFloat &rhs) /* Ensure the dividend >= divisor initially for the loop below. Incidentally, this means that the division loop below is guaranteed to set the integer bit to one. */ - if(APInt::tcCompare(dividend, divisor, partsCount) < 0) { + if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { exponent--; APInt::tcShiftLeft(dividend, partsCount, 1); assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); } /* Long division. */ - for(bit = precision; bit; bit -= 1) { - if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) { + for (bit = precision; bit; bit -= 1) { + if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { APInt::tcSubtract(dividend, divisor, 0, partsCount); APInt::tcSetBit(lhsSignificand, bit - 1); } @@ -1006,16 +1030,16 @@ APFloat::divideSignificand(const APFloat &rhs) /* Figure out the lost fraction. */ int cmp = APInt::tcCompare(dividend, divisor, partsCount); - if(cmp > 0) + if (cmp > 0) lost_fraction = lfMoreThanHalf; - else if(cmp == 0) + else if (cmp == 0) lost_fraction = lfExactlyHalf; - else if(APInt::tcIsZero(dividend, partsCount)) + else if (APInt::tcIsZero(dividend, partsCount)) lost_fraction = lfExactlyZero; else lost_fraction = lfLessThanHalf; - if(partsCount > 2) + if (partsCount > 2) delete [] dividend; return lost_fraction; @@ -1051,7 +1075,7 @@ APFloat::shiftSignificandLeft(unsigned int bits) { assert(bits < semantics->precision); - if(bits) { + if (bits) { unsigned int partsCount = partCount(); APInt::tcShiftLeft(significandParts(), partsCount, bits); @@ -1074,13 +1098,13 @@ APFloat::compareAbsoluteValue(const APFloat &rhs) const /* If exponents are equal, do an unsigned bignum comparison of the significands. */ - if(compare == 0) + if (compare == 0) compare = APInt::tcCompare(significandParts(), rhs.significandParts(), partCount()); - if(compare > 0) + if (compare > 0) return cmpGreaterThan; - else if(compare < 0) + else if (compare < 0) return cmpLessThan; else return cmpEqual; @@ -1092,14 +1116,13 @@ APFloat::opStatus APFloat::handleOverflow(roundingMode rounding_mode) { /* Infinity? */ - if(rounding_mode == rmNearestTiesToEven - || rounding_mode == rmNearestTiesToAway - || (rounding_mode == rmTowardPositive && !sign) - || (rounding_mode == rmTowardNegative && sign)) - { - category = fcInfinity; - return (opStatus) (opOverflow | opInexact); - } + if (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway || + (rounding_mode == rmTowardPositive && !sign) || + (rounding_mode == rmTowardNegative && sign)) { + category = fcInfinity; + return (opStatus) (opOverflow | opInexact); + } /* Otherwise we become the largest finite number. */ category = fcNormal; @@ -1134,11 +1157,11 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode, return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; case rmNearestTiesToEven: - if(lost_fraction == lfMoreThanHalf) + if (lost_fraction == lfMoreThanHalf) return true; /* Our zeroes don't have a significand to test. */ - if(lost_fraction == lfExactlyHalf && category != fcZero) + if (lost_fraction == lfExactlyHalf && category != fcZero) return APInt::tcExtractBit(significandParts(), bit); return false; @@ -1161,30 +1184,30 @@ APFloat::normalize(roundingMode rounding_mode, unsigned int omsb; /* One, not zero, based MSB. */ int exponentChange; - if(category != fcNormal) + if (category != fcNormal) return opOK; /* Before rounding normalize the exponent of fcNormal numbers. */ omsb = significandMSB() + 1; - if(omsb) { + if (omsb) { /* OMSB is numbered from 1. We want to place it in the integer - bit numbered PRECISON if possible, with a compensating change in + bit numbered PRECISION if possible, with a compensating change in the exponent. */ exponentChange = omsb - semantics->precision; /* If the resulting exponent is too high, overflow according to the rounding mode. */ - if(exponent + exponentChange > semantics->maxExponent) + if (exponent + exponentChange > semantics->maxExponent) return handleOverflow(rounding_mode); /* Subnormal numbers have exponent minExponent, and their MSB is forced based on that. */ - if(exponent + exponentChange < semantics->minExponent) + if (exponent + exponentChange < semantics->minExponent) exponentChange = semantics->minExponent - exponent; /* Shifting left is easy as we don't lose precision. */ - if(exponentChange < 0) { + if (exponentChange < 0) { assert(lost_fraction == lfExactlyZero); shiftSignificandLeft(-exponentChange); @@ -1192,7 +1215,7 @@ APFloat::normalize(roundingMode rounding_mode, return opOK; } - if(exponentChange > 0) { + if (exponentChange > 0) { lostFraction lf; /* Shift right and capture any new lost fraction. */ @@ -1201,7 +1224,7 @@ APFloat::normalize(roundingMode rounding_mode, lost_fraction = combineLostFractions(lf, lost_fraction); /* Keep OMSB up-to-date. */ - if(omsb > (unsigned) exponentChange) + if (omsb > (unsigned) exponentChange) omsb -= exponentChange; else omsb = 0; @@ -1213,28 +1236,28 @@ APFloat::normalize(roundingMode rounding_mode, /* As specified in IEEE 754, since we do not trap we do not report underflow for exact results. */ - if(lost_fraction == lfExactlyZero) { + if (lost_fraction == lfExactlyZero) { /* Canonicalize zeroes. */ - if(omsb == 0) + if (omsb == 0) category = fcZero; return opOK; } /* Increment the significand if we're rounding away from zero. */ - if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) { - if(omsb == 0) + if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { + if (omsb == 0) exponent = semantics->minExponent; incrementSignificand(); omsb = significandMSB() + 1; /* Did the significand increment overflow? */ - if(omsb == (unsigned) semantics->precision + 1) { + if (omsb == (unsigned) semantics->precision + 1) { /* Renormalize by incrementing the exponent and shifting our significand right one. However if we already have the maximum exponent we overflow to infinity. */ - if(exponent == semantics->maxExponent) { + if (exponent == semantics->maxExponent) { category = fcInfinity; return (opStatus) (opOverflow | opInexact); @@ -1248,14 +1271,14 @@ APFloat::normalize(roundingMode rounding_mode, /* The normal case - we were and are not denormal, and any significand increment above didn't overflow. */ - if(omsb == semantics->precision) + if (omsb == semantics->precision) return opInexact; /* We have a non-zero denormal. */ assert(omsb < semantics->precision); /* Canonicalize zeroes. */ - if(omsb == 0) + if (omsb == 0) category = fcZero; /* The fcZero case is a denormal that underflowed to zero. */ @@ -1303,7 +1326,7 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) case convolve(fcInfinity, fcInfinity): /* Differently signed infinities can only be validly subtracted. */ - if(((sign ^ rhs.sign)!=0) != subtract) { + if (((sign ^ rhs.sign)!=0) != subtract) { makeNaN(); return opInvalidOp; } @@ -1331,7 +1354,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) bits = exponent - rhs.exponent; /* Subtraction is more subtle than one might naively expect. */ - if(subtract) { + if (subtract) { APFloat temp_rhs(rhs); bool reverse; @@ -1360,16 +1383,17 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) /* Invert the lost fraction - it was on the RHS and subtracted. */ - if(lost_fraction == lfLessThanHalf) + if (lost_fraction == lfLessThanHalf) lost_fraction = lfMoreThanHalf; - else if(lost_fraction == lfMoreThanHalf) + else if (lost_fraction == lfMoreThanHalf) lost_fraction = lfLessThanHalf; /* The code above is intended to ensure that no borrow is necessary. */ assert(!carry); + (void)carry; } else { - if(bits > 0) { + if (bits > 0) { APFloat temp_rhs(rhs); lost_fraction = temp_rhs.shiftSignificandRight(bits); @@ -1381,6 +1405,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) /* We have a guard bit; generating a carry cannot happen. */ assert(!carry); + (void)carry; } return lost_fraction; @@ -1540,7 +1565,7 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, fs = addOrSubtractSpecials(rhs, subtract); /* This return code means it was not a simple case. */ - if(fs == opDivByZero) { + if (fs == opDivByZero) { lostFraction lost_fraction; lost_fraction = addOrSubtractSignificand(rhs, subtract); @@ -1553,8 +1578,8 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a positive zero unless rounding to minus infinity, except that adding two like-signed zeroes gives that zero. */ - if(category == fcZero) { - if(rhs.category != fcZero || (sign == rhs.sign) == subtract) + if (category == fcZero) { + if (rhs.category != fcZero || (sign == rhs.sign) == subtract) sign = (rounding_mode == rmTowardNegative); } @@ -1585,10 +1610,10 @@ APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) sign ^= rhs.sign; fs = multiplySpecials(rhs); - if(category == fcNormal) { + if (category == fcNormal) { lostFraction lost_fraction = multiplySignificand(rhs, 0); fs = normalize(rounding_mode, lost_fraction); - if(lost_fraction != lfExactlyZero) + if (lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); } @@ -1605,10 +1630,10 @@ APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) sign ^= rhs.sign; fs = divideSpecials(rhs); - if(category == fcNormal) { + if (category == fcNormal) { lostFraction lost_fraction = divideSignificand(rhs); fs = normalize(rounding_mode, lost_fraction); - if(lost_fraction != lfExactlyZero) + if (lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); } @@ -1652,7 +1677,7 @@ APFloat::remainder(const APFloat &rhs) return fs; } -/* Normalized llvm frem (C fmod). +/* Normalized llvm frem (C fmod). This is not currently correct in all cases. */ APFloat::opStatus APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) @@ -1709,20 +1734,20 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand, /* If and only if all arguments are normal do we need to do an extended-precision calculation. */ - if(category == fcNormal - && multiplicand.category == fcNormal - && addend.category == fcNormal) { + if (category == fcNormal && + multiplicand.category == fcNormal && + addend.category == fcNormal) { lostFraction lost_fraction; lost_fraction = multiplySignificand(multiplicand, &addend); fs = normalize(rounding_mode, lost_fraction); - if(lost_fraction != lfExactlyZero) + if (lost_fraction != lfExactlyZero) fs = (opStatus) (fs | opInexact); /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a positive zero unless rounding to minus infinity, except that adding two like-signed zeroes gives that zero. */ - if(category == fcZero && sign != addend.sign) + if (category == fcZero && sign != addend.sign) sign = (rounding_mode == rmTowardNegative); } else { fs = multiplySpecials(multiplicand); @@ -1734,7 +1759,7 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand, If we need to do the addition we can do so with normal precision. */ - if(fs == opOK) + if (fs == opOK) fs = addOrSubtract(addend, rounding_mode, false); } @@ -1766,7 +1791,7 @@ APFloat::compare(const APFloat &rhs) const case convolve(fcInfinity, fcNormal): case convolve(fcInfinity, fcZero): case convolve(fcNormal, fcZero): - if(sign) + if (sign) return cmpLessThan; else return cmpGreaterThan; @@ -1774,15 +1799,15 @@ APFloat::compare(const APFloat &rhs) const case convolve(fcNormal, fcInfinity): case convolve(fcZero, fcInfinity): case convolve(fcZero, fcNormal): - if(rhs.sign) + if (rhs.sign) return cmpGreaterThan; else return cmpLessThan; case convolve(fcInfinity, fcInfinity): - if(sign == rhs.sign) + if (sign == rhs.sign) return cmpEqual; - else if(sign) + else if (sign) return cmpLessThan; else return cmpGreaterThan; @@ -1795,8 +1820,8 @@ APFloat::compare(const APFloat &rhs) const } /* Two normal numbers. Do they have the same sign? */ - if(sign != rhs.sign) { - if(sign) + if (sign != rhs.sign) { + if (sign) result = cmpLessThan; else result = cmpGreaterThan; @@ -1804,10 +1829,10 @@ APFloat::compare(const APFloat &rhs) const /* Compare absolute values; invert result if negative. */ result = compareAbsoluteValue(rhs); - if(sign) { - if(result == cmpLessThan) + if (sign) { + if (result == cmpLessThan) result = cmpGreaterThan; - else if(result == cmpGreaterThan) + else if (result == cmpGreaterThan) result = cmpLessThan; } } @@ -1865,7 +1890,7 @@ APFloat::convert(const fltSemantics &toSemantics, } } - if(category == fcNormal) { + if (category == fcNormal) { /* Re-interpret our bit-pattern. */ exponent += toSemantics.precision - semantics->precision; semantics = &toSemantics; @@ -1890,7 +1915,7 @@ APFloat::convert(const fltSemantics &toSemantics, // x87 long double). if (APInt::tcLSB(significandParts(), newPartCount) < ushift) *losesInfo = true; - if (oldSemantics == &APFloat::x87DoubleExtended && + if (oldSemantics == &APFloat::x87DoubleExtended && (!(*significandParts() & 0x8000000000000000ULL) || !(*significandParts() & 0x4000000000000000ULL))) *losesInfo = true; @@ -1935,12 +1960,12 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, *isExact = false; /* Handle the three special cases first. */ - if(category == fcInfinity || category == fcNaN) + if (category == fcInfinity || category == fcNaN) return opInvalidOp; dstPartsCount = partCountForBits(width); - if(category == fcZero) { + if (category == fcZero) { APInt::tcSet(parts, 0, dstPartsCount); // Negative zero can't be represented as an int. *isExact = !sign; @@ -1983,8 +2008,8 @@ APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, if (truncatedBits) { lost_fraction = lostFractionThroughTruncation(src, partCount(), truncatedBits); - if (lost_fraction != lfExactlyZero - && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { + if (lost_fraction != lfExactlyZero && + roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { if (APInt::tcIncrement(parts, dstPartsCount)) return opInvalidOp; /* Overflow. */ } @@ -2041,7 +2066,7 @@ APFloat::convertToInteger(integerPart *parts, unsigned int width, { opStatus fs; - fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, + fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, isExact); if (fs == opInvalidOp) { @@ -2064,6 +2089,23 @@ APFloat::convertToInteger(integerPart *parts, unsigned int width, return fs; } +/* Same as convertToInteger(integerPart*, ...), except the result is returned in + an APSInt, whose initial bit-width and signed-ness are used to determine the + precision of the conversion. + */ +APFloat::opStatus +APFloat::convertToInteger(APSInt &result, + roundingMode rounding_mode, bool *isExact) const +{ + unsigned bitWidth = result.getBitWidth(); + SmallVector parts(result.getNumWords()); + opStatus status = convertToInteger( + parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact); + // Keeps the original signed-ness. + result = APInt(bitWidth, parts); + return status; +} + /* Convert an unsigned integer SRC to a floating point number, rounding according to ROUNDING_MODE. The sign of the floating point number is not modified. */ @@ -2083,7 +2125,7 @@ APFloat::convertFromUnsignedParts(const integerPart *src, dstCount = partCount(); precision = semantics->precision; - /* We want the most significant PRECISON bits of SRC. There may not + /* We want the most significant PRECISION bits of SRC. There may not be that many; extract what we can. */ if (precision <= omsb) { exponent = omsb - 1; @@ -2128,8 +2170,8 @@ APFloat::convertFromSignExtendedInteger(const integerPart *src, opStatus status; assertArithmeticOK(*semantics); - if (isSigned - && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { + if (isSigned && + APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { integerPart *copy; /* If we're signed and negative negate a copy. */ @@ -2154,10 +2196,10 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts, roundingMode rounding_mode) { unsigned int partCount = partCountForBits(width); - APInt api = APInt(width, partCount, parts); + APInt api = APInt(width, makeArrayRef(parts, partCount)); sign = false; - if(isSigned && APInt::tcExtractBit(parts, width - 1)) { + if (isSigned && APInt::tcExtractBit(parts, width - 1)) { sign = true; api = -api; } @@ -2166,8 +2208,7 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts, } APFloat::opStatus -APFloat::convertFromHexadecimalString(const StringRef &s, - roundingMode rounding_mode) +APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode) { lostFraction lost_fraction = lfExactlyZero; integerPart *significand; @@ -2188,10 +2229,10 @@ APFloat::convertFromHexadecimalString(const StringRef &s, StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); firstSignificantDigit = p; - for(; p != end;) { + for (; p != end;) { integerPart hex_value; - if(*p == '.') { + if (*p == '.') { assert(dot == end && "String contains multiple dots"); dot = p++; if (p == end) { @@ -2200,7 +2241,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s, } hex_value = hexDigitValue(*p); - if(hex_value == -1U) { + if (hex_value == -1U) { break; } @@ -2210,13 +2251,13 @@ APFloat::convertFromHexadecimalString(const StringRef &s, break; } else { /* Store the number whilst 4-bit nibbles remain. */ - if(bitPos) { + if (bitPos) { bitPos -= 4; hex_value <<= bitPos % integerPartWidth; significand[bitPos / integerPartWidth] |= hex_value; } else { lost_fraction = trailingHexadecimalFraction(p, end, hex_value); - while(p != end && hexDigitValue(*p) != -1U) + while (p != end && hexDigitValue(*p) != -1U) p++; break; } @@ -2230,7 +2271,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s, assert((dot == end || p - begin != 1) && "Significand has no digits"); /* Ignore the exponent if we are zero. */ - if(p != firstSignificantDigit) { + if (p != firstSignificantDigit) { int expAdjustment; /* Implicit hexadecimal point? */ @@ -2240,7 +2281,7 @@ APFloat::convertFromHexadecimalString(const StringRef &s, /* Calculate the exponent adjustment implicit in the number of significant digits. */ expAdjustment = static_cast(dot - firstSignificantDigit); - if(expAdjustment < 0) + if (expAdjustment < 0) expAdjustment++; expAdjustment = expAdjustment * 4 - 1; @@ -2266,8 +2307,8 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts, integerPart pow5Parts[maxPowerOfFiveParts]; bool isNearest; - isNearest = (rounding_mode == rmNearestTiesToEven - || rounding_mode == rmNearestTiesToAway); + isNearest = (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway); parts = partCountForBits(semantics->precision + 11); @@ -2342,7 +2383,7 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts, } APFloat::opStatus -APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mode) +APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { decimalInfo D; opStatus fs; @@ -2452,7 +2493,7 @@ APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mo } APFloat::opStatus -APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode) +APFloat::convertFromString(StringRef str, roundingMode rounding_mode) { assertArithmeticOK(*semantics); assert(!str.empty() && "Invalid string length"); @@ -2461,13 +2502,13 @@ APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode) StringRef::iterator p = str.begin(); size_t slen = str.size(); sign = *p == '-' ? 1 : 0; - if(*p == '-' || *p == '+') { + if (*p == '-' || *p == '+') { p++; slen--; assert(slen && "String has no digits"); } - if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { + if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { assert(slen - 2 && "Invalid string"); return convertFromHexadecimalString(StringRef(p + 2, slen - 2), rounding_mode); @@ -2709,7 +2750,7 @@ APFloat::convertF80LongDoubleAPFloatToAPInt() const words[0] = mysignificand; words[1] = ((uint64_t)(sign & 1) << 15) | (myexponent & 0x7fffLL); - return APInt(80, 2, words); + return APInt(80, words); } APInt @@ -2754,7 +2795,7 @@ APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const words[1] = ((uint64_t)(sign2 & 1) << 63) | ((myexponent2 & 0x7ff) << 52) | (mysignificand2 & 0xfffffffffffffLL); - return APInt(128, 2, words); + return APInt(128, words); } APInt @@ -2790,7 +2831,7 @@ APFloat::convertQuadrupleAPFloatToAPInt() const ((myexponent & 0x7fff) << 48) | (mysignificand2 & 0xffffffffffffLL); - return APInt(128, 2, words); + return APInt(128, words); } APInt @@ -2992,7 +3033,7 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) // exponent2 and significand2 are required to be 0; we don't check category = fcInfinity; } else if (myexponent==0x7ff && mysignificand!=0) { - // exponent meaningless. So is the whole second word, but keep it + // exponent meaningless. So is the whole second word, but keep it // for determinism. category = fcNaN; exponent2 = myexponent2; @@ -3010,7 +3051,7 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) exponent = -1022; else significandParts()[0] |= 0x10000000000000LL; // integer bit - if (myexponent2==0) + if (myexponent2==0) exponent2 = -1022; else significandParts()[1] |= 0x10000000000000LL; // integer bit @@ -3178,6 +3219,12 @@ APFloat::initFromAPInt(const APInt& api, bool isIEEE) llvm_unreachable(0); } +APFloat +APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) +{ + return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE); +} + APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { APFloat Val(Sem, fcNormal, Negative); @@ -3196,8 +3243,9 @@ APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { significand[i] = ~((integerPart) 0); // ...and then clear the top bits for internal consistency. - significand[N-1] - &= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1; + if (Sem.precision % integerPartWidth != 0) + significand[N-1] &= + (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1; return Val; } @@ -3226,27 +3274,22 @@ APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { Val.exponent = Sem.minExponent; Val.zeroSignificand(); - Val.significandParts()[partCountForBits(Sem.precision)-1] - |= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)); + Val.significandParts()[partCountForBits(Sem.precision)-1] |= + (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth)); return Val; } -APFloat::APFloat(const APInt& api, bool isIEEE) -{ +APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) { initFromAPInt(api, isIEEE); } -APFloat::APFloat(float f) -{ - APInt api = APInt(32, 0); - initFromAPInt(api.floatToBits(f)); +APFloat::APFloat(float f) : exponent2(0), sign2(0) { + initFromAPInt(APInt::floatToBits(f)); } -APFloat::APFloat(double d) -{ - APInt api = APInt(64, 0); - initFromAPInt(api.doubleToBits(d)); +APFloat::APFloat(double d) : exponent2(0), sign2(0) { + initFromAPInt(APInt::doubleToBits(d)); } namespace { @@ -3293,7 +3336,7 @@ namespace { // Truncate the significand down to its active bit count, but // don't try to drop below 32. unsigned newPrecision = std::max(32U, significand.getActiveBits()); - significand.trunc(newPrecision); + significand = significand.trunc(newPrecision); } @@ -3345,7 +3388,7 @@ namespace { void APFloat::toString(SmallVectorImpl &Str, unsigned FormatPrecision, - unsigned FormatMaxPadding) { + unsigned FormatMaxPadding) const { switch (category) { case fcInfinity: if (isNegative()) @@ -3375,8 +3418,8 @@ void APFloat::toString(SmallVectorImpl &Str, // Decompose the number into an APInt and an exponent. int exp = exponent - ((int) semantics->precision - 1); APInt significand(semantics->precision, - partCountForBits(semantics->precision), - significandParts()); + makeArrayRef(significandParts(), + partCountForBits(semantics->precision))); // Set FormatPrecision if zero. We want to do this before we // truncate trailing zeros, as those are part of the precision. @@ -3398,7 +3441,7 @@ void APFloat::toString(SmallVectorImpl &Str, // Nothing to do. } else if (exp > 0) { // Just shift left. - significand.zext(semantics->precision + exp); + significand = significand.zext(semantics->precision + exp); significand <<= exp; exp = 0; } else { /* exp < 0 */ @@ -3412,16 +3455,16 @@ void APFloat::toString(SmallVectorImpl &Str, // log2(N * 5^e) == log2(N) + e * log2(5) // <= semantics->precision + e * 137 / 59 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) - - unsigned precision = semantics->precision + 137 * texp / 59; + + unsigned precision = semantics->precision + (137 * texp + 136) / 59; // Multiply significand by 5^e. // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) - significand.zext(precision); + significand = significand.zext(precision); APInt five_to_the_i(precision, 5); while (true) { if (texp & 1) significand *= five_to_the_i; - + texp >>= 1; if (!texp) break; five_to_the_i *= five_to_the_i; @@ -3542,3 +3585,37 @@ void APFloat::toString(SmallVectorImpl &Str, for (; I != NDigits; ++I) Str.push_back(buffer[NDigits-I-1]); } + +bool APFloat::getExactInverse(APFloat *inv) const { + // We can only guarantee the existence of an exact inverse for IEEE floats. + if (semantics != &IEEEhalf && semantics != &IEEEsingle && + semantics != &IEEEdouble && semantics != &IEEEquad) + return false; + + // Special floats and denormals have no exact inverse. + if (category != fcNormal) + return false; + + // Check that the number is a power of two by making sure that only the + // integer bit is set in the significand. + if (significandLSB() != semantics->precision - 1) + return false; + + // Get the inverse. + APFloat reciprocal(*semantics, 1ULL); + if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) + return false; + + // Avoid multiplication with a denormal, it is not safe on all platforms and + // may be slower than a normal division. + if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision) + return false; + + assert(reciprocal.category == fcNormal && + reciprocal.significandLSB() == reciprocal.semantics->precision - 1); + + if (inv) + *inv = reciprocal; + + return true; +}