X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;ds=sidebyside;f=lib%2FTransforms%2FScalar%2FGVNPRE.cpp;h=44846cb0df40612ad843fab0099610a15f9c0690;hb=36a07daabd1919d6c12b8f55b101d54c3d7171cd;hp=db8e7f0634ffeb811fc88bcc2e4a739709cbe5f0;hpb=900997ba3b832b9f0f47371ced3822d1793edc7c;p=oota-llvm.git diff --git a/lib/Transforms/Scalar/GVNPRE.cpp b/lib/Transforms/Scalar/GVNPRE.cpp index db8e7f0634f..44846cb0df4 100644 --- a/lib/Transforms/Scalar/GVNPRE.cpp +++ b/lib/Transforms/Scalar/GVNPRE.cpp @@ -13,7 +13,7 @@ // the optimization. It replaces redundant values with uses of earlier // occurences of the same value. While this is beneficial in that it eliminates // unneeded computation, it also increases register pressure by creating large -// live ranges, and should be used with caution on platforms that a very +// live ranges, and should be used with caution on platforms that are very // sensitive to register pressure. // //===----------------------------------------------------------------------===// @@ -23,10 +23,15 @@ #include "llvm/Transforms/Scalar.h" #include "llvm/Instructions.h" #include "llvm/Function.h" +#include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" -#include "llvm/Analysis/PostDominators.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" @@ -37,22 +42,513 @@ #include using namespace llvm; -struct ExprLT { - bool operator()(Value* left, Value* right) { - if (!isa(left) || !isa(right)) - return left < right; +//===----------------------------------------------------------------------===// +// ValueTable Class +//===----------------------------------------------------------------------===// + +/// This class holds the mapping between values and value numbers. It is used +/// as an efficient mechanism to determine the expression-wise equivalence of +/// two values. + +namespace { + class VISIBILITY_HIDDEN ValueTable { + public: + struct Expression { + enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, + FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, + ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, + ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, + FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, + FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, + FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, + SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, + FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, + PTRTOINT, INTTOPTR, BITCAST, GEP}; - BinaryOperator* BO1 = cast(left); - BinaryOperator* BO2 = cast(right); + ExpressionOpcode opcode; + const Type* type; + uint32_t firstVN; + uint32_t secondVN; + uint32_t thirdVN; + std::vector varargs; + + bool operator< (const Expression& other) const { + if (opcode < other.opcode) + return true; + else if (opcode > other.opcode) + return false; + else if (type < other.type) + return true; + else if (type > other.type) + return false; + else if (firstVN < other.firstVN) + return true; + else if (firstVN > other.firstVN) + return false; + else if (secondVN < other.secondVN) + return true; + else if (secondVN > other.secondVN) + return false; + else if (thirdVN < other.thirdVN) + return true; + else if (thirdVN > other.thirdVN) + return false; + else { + if (varargs.size() < other.varargs.size()) + return true; + else if (varargs.size() > other.varargs.size()) + return false; + + for (size_t i = 0; i < varargs.size(); ++i) + if (varargs[i] < other.varargs[i]) + return true; + else if (varargs[i] > other.varargs[i]) + return false; + + return false; + } + } + }; - if ((*this)(BO1->getOperand(0), BO2->getOperand(0))) - return true; - else if ((*this)(BO2->getOperand(0), BO1->getOperand(0))) - return false; - else - return (*this)(BO1->getOperand(1), BO2->getOperand(1)); + private: + DenseMap valueNumbering; + std::map expressionNumbering; + + uint32_t nextValueNumber; + + Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); + Expression::ExpressionOpcode getOpcode(CmpInst* C); + Expression::ExpressionOpcode getOpcode(CastInst* C); + Expression create_expression(BinaryOperator* BO); + Expression create_expression(CmpInst* C); + Expression create_expression(ShuffleVectorInst* V); + Expression create_expression(ExtractElementInst* C); + Expression create_expression(InsertElementInst* V); + Expression create_expression(SelectInst* V); + Expression create_expression(CastInst* C); + Expression create_expression(GetElementPtrInst* G); + public: + ValueTable() { nextValueNumber = 1; } + uint32_t lookup_or_add(Value* V); + uint32_t lookup(Value* V) const; + void add(Value* V, uint32_t num); + void clear(); + void erase(Value* v); + unsigned size(); + }; +} + +//===----------------------------------------------------------------------===// +// ValueTable Internal Functions +//===----------------------------------------------------------------------===// +ValueTable::Expression::ExpressionOpcode + ValueTable::getOpcode(BinaryOperator* BO) { + switch(BO->getOpcode()) { + case Instruction::Add: + return Expression::ADD; + case Instruction::Sub: + return Expression::SUB; + case Instruction::Mul: + return Expression::MUL; + case Instruction::UDiv: + return Expression::UDIV; + case Instruction::SDiv: + return Expression::SDIV; + case Instruction::FDiv: + return Expression::FDIV; + case Instruction::URem: + return Expression::UREM; + case Instruction::SRem: + return Expression::SREM; + case Instruction::FRem: + return Expression::FREM; + case Instruction::Shl: + return Expression::SHL; + case Instruction::LShr: + return Expression::LSHR; + case Instruction::AShr: + return Expression::ASHR; + case Instruction::And: + return Expression::AND; + case Instruction::Or: + return Expression::OR; + case Instruction::Xor: + return Expression::XOR; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Binary operator with unknown opcode?"); + return Expression::ADD; } -}; +} + +ValueTable::Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { + if (C->getOpcode() == Instruction::ICmp) { + switch (C->getPredicate()) { + case ICmpInst::ICMP_EQ: + return Expression::ICMPEQ; + case ICmpInst::ICMP_NE: + return Expression::ICMPNE; + case ICmpInst::ICMP_UGT: + return Expression::ICMPUGT; + case ICmpInst::ICMP_UGE: + return Expression::ICMPUGE; + case ICmpInst::ICMP_ULT: + return Expression::ICMPULT; + case ICmpInst::ICMP_ULE: + return Expression::ICMPULE; + case ICmpInst::ICMP_SGT: + return Expression::ICMPSGT; + case ICmpInst::ICMP_SGE: + return Expression::ICMPSGE; + case ICmpInst::ICMP_SLT: + return Expression::ICMPSLT; + case ICmpInst::ICMP_SLE: + return Expression::ICMPSLE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::ICMPEQ; + } + } else { + switch (C->getPredicate()) { + case FCmpInst::FCMP_OEQ: + return Expression::FCMPOEQ; + case FCmpInst::FCMP_OGT: + return Expression::FCMPOGT; + case FCmpInst::FCMP_OGE: + return Expression::FCMPOGE; + case FCmpInst::FCMP_OLT: + return Expression::FCMPOLT; + case FCmpInst::FCMP_OLE: + return Expression::FCMPOLE; + case FCmpInst::FCMP_ONE: + return Expression::FCMPONE; + case FCmpInst::FCMP_ORD: + return Expression::FCMPORD; + case FCmpInst::FCMP_UNO: + return Expression::FCMPUNO; + case FCmpInst::FCMP_UEQ: + return Expression::FCMPUEQ; + case FCmpInst::FCMP_UGT: + return Expression::FCMPUGT; + case FCmpInst::FCMP_UGE: + return Expression::FCMPUGE; + case FCmpInst::FCMP_ULT: + return Expression::FCMPULT; + case FCmpInst::FCMP_ULE: + return Expression::FCMPULE; + case FCmpInst::FCMP_UNE: + return Expression::FCMPUNE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::FCMPOEQ; + } + } +} + +ValueTable::Expression::ExpressionOpcode + ValueTable::getOpcode(CastInst* C) { + switch(C->getOpcode()) { + case Instruction::Trunc: + return Expression::TRUNC; + case Instruction::ZExt: + return Expression::ZEXT; + case Instruction::SExt: + return Expression::SEXT; + case Instruction::FPToUI: + return Expression::FPTOUI; + case Instruction::FPToSI: + return Expression::FPTOSI; + case Instruction::UIToFP: + return Expression::UITOFP; + case Instruction::SIToFP: + return Expression::SITOFP; + case Instruction::FPTrunc: + return Expression::FPTRUNC; + case Instruction::FPExt: + return Expression::FPEXT; + case Instruction::PtrToInt: + return Expression::PTRTOINT; + case Instruction::IntToPtr: + return Expression::INTTOPTR; + case Instruction::BitCast: + return Expression::BITCAST; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Cast operator with unknown opcode?"); + return Expression::BITCAST; + } +} + +ValueTable::Expression ValueTable::create_expression(BinaryOperator* BO) { + Expression e; + + e.firstVN = lookup_or_add(BO->getOperand(0)); + e.secondVN = lookup_or_add(BO->getOperand(1)); + e.thirdVN = 0; + e.type = BO->getType(); + e.opcode = getOpcode(BO); + + return e; +} + +ValueTable::Expression ValueTable::create_expression(CmpInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = lookup_or_add(C->getOperand(1)); + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +ValueTable::Expression ValueTable::create_expression(CastInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = 0; + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +ValueTable::Expression ValueTable::create_expression(ShuffleVectorInst* S) { + Expression e; + + e.firstVN = lookup_or_add(S->getOperand(0)); + e.secondVN = lookup_or_add(S->getOperand(1)); + e.thirdVN = lookup_or_add(S->getOperand(2)); + e.type = S->getType(); + e.opcode = Expression::SHUFFLE; + + return e; +} + +ValueTable::Expression ValueTable::create_expression(ExtractElementInst* E) { + Expression e; + + e.firstVN = lookup_or_add(E->getOperand(0)); + e.secondVN = lookup_or_add(E->getOperand(1)); + e.thirdVN = 0; + e.type = E->getType(); + e.opcode = Expression::EXTRACT; + + return e; +} + +ValueTable::Expression ValueTable::create_expression(InsertElementInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getOperand(0)); + e.secondVN = lookup_or_add(I->getOperand(1)); + e.thirdVN = lookup_or_add(I->getOperand(2)); + e.type = I->getType(); + e.opcode = Expression::INSERT; + + return e; +} + +ValueTable::Expression ValueTable::create_expression(SelectInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getCondition()); + e.secondVN = lookup_or_add(I->getTrueValue()); + e.thirdVN = lookup_or_add(I->getFalseValue()); + e.type = I->getType(); + e.opcode = Expression::SELECT; + + return e; +} + +ValueTable::Expression ValueTable::create_expression(GetElementPtrInst* G) { + Expression e; + + e.firstVN = lookup_or_add(G->getPointerOperand()); + e.secondVN = 0; + e.thirdVN = 0; + e.type = G->getType(); + e.opcode = Expression::SELECT; + + for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); + I != E; ++I) + e.varargs.push_back(lookup_or_add(*I)); + + return e; +} + +//===----------------------------------------------------------------------===// +// ValueTable External Functions +//===----------------------------------------------------------------------===// + +/// lookup_or_add - Returns the value number for the specified value, assigning +/// it a new number if it did not have one before. +uint32_t ValueTable::lookup_or_add(Value* V) { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + + + if (BinaryOperator* BO = dyn_cast(V)) { + Expression e = create_expression(BO); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CmpInst* C = dyn_cast(V)) { + Expression e = create_expression(C); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ShuffleVectorInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ExtractElementInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (InsertElementInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (SelectInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CastInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (GetElementPtrInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + std::map::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else { + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + return nextValueNumber++; + } +} + +/// lookup - Returns the value number of the specified value. Fails if +/// the value has not yet been numbered. +uint32_t ValueTable::lookup(Value* V) const { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + else + assert(0 && "Value not numbered?"); + + return 0; +} + +/// add - Add the specified value with the given value number, removing +/// its old number, if any +void ValueTable::add(Value* V, uint32_t num) { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + valueNumbering.erase(VI); + valueNumbering.insert(std::make_pair(V, num)); +} + +/// clear - Remove all entries from the ValueTable +void ValueTable::clear() { + valueNumbering.clear(); + expressionNumbering.clear(); + nextValueNumber = 1; +} + +/// erase - Remove a value from the value numbering +void ValueTable::erase(Value* V) { + valueNumbering.erase(V); +} + +/// size - Return the number of assigned value numbers +unsigned ValueTable::size() { + // NOTE: zero is never assigned + return nextValueNumber; +} + +//===----------------------------------------------------------------------===// +// GVNPRE Pass +//===----------------------------------------------------------------------===// namespace { @@ -60,45 +556,67 @@ namespace { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid - GVNPRE() : FunctionPass((intptr_t)&ID) { nextValueNumber = 0; } + GVNPRE() : FunctionPass((intptr_t)&ID) { } private: - uint32_t nextValueNumber; - typedef std::map ValueTable; ValueTable VN; - std::set MS; - std::set createdExpressions; + std::vector createdExpressions; + std::map > availableOut; + std::map > anticipatedIn; + std::map > generatedPhis; + + // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); + AU.addRequiredID(BreakCriticalEdgesID); + AU.addRequired(); AU.addRequired(); - AU.addRequired(); } // Helper fuctions // FIXME: eliminate or document these better - void dump(const std::set& s) const; - void dump_unique(const std::set& s) const; - void clean(std::set& set); - bool add(Value* V, uint32_t number); - Value* find_leader(std::set& vals, - Value* v); - Value* phi_translate(std::set& set, - Value* V, BasicBlock* pred); - void phi_translate_set(std::set& anticIn, BasicBlock* B, - std::set& out); - - void topo_sort(std::set& set, + void dump(const SmallPtrSet& s) const; + void clean(SmallPtrSet& set, BitVector& presentInSet); + Value* find_leader(SmallPtrSet& vals, + uint32_t v); + Value* phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ); + void phi_translate_set(SmallPtrSet& anticIn, BasicBlock* pred, + BasicBlock* succ, SmallPtrSet& out); + + void topo_sort(SmallPtrSet& set, std::vector& vec); - // For a given block, calculate the generated expressions, temporaries, - // and the AVAIL_OUT set - void CalculateAvailOut(DomTreeNode* DI, - std::set& currExps, - std::set& currPhis, - std::set& currTemps, - std::set& currAvail, - std::map > availOut); + void cleanup(); + bool elimination(); + + void val_insert(SmallPtrSet& s, Value* v); + void val_replace(SmallPtrSet& s, Value* v); + bool dependsOnInvoke(Value* V); + void buildsets_availout(BasicBlock::iterator I, + SmallPtrSet& currAvail, + SmallPtrSet& currPhis, + SmallPtrSet& currExps, + SmallPtrSet& currTemps, + BitVector& availNumbers, + BitVector& expNumbers); + bool buildsets_anticout(BasicBlock* BB, + SmallPtrSet& anticOut, + std::set& visited); + unsigned buildsets_anticin(BasicBlock* BB, + SmallPtrSet& anticOut, + SmallPtrSet& currExps, + SmallPtrSet& currTemps, + std::set& visited); + void buildsets(Function& F); + + void insertion_pre(Value* e, BasicBlock* BB, + std::map& avail, + std::map >& new_set); + unsigned insertion_mergepoint(std::vector& workList, + df_iterator& D, + std::map >& new_set); + bool insertion(Function& F); }; @@ -106,251 +624,787 @@ namespace { } +// createGVNPREPass - The public interface to this file... FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); } RegisterPass X("gvnpre", "Global Value Numbering/Partial Redundancy Elimination"); +STATISTIC(NumInsertedVals, "Number of values inserted"); +STATISTIC(NumInsertedPhis, "Number of PHI nodes inserted"); +STATISTIC(NumEliminated, "Number of redundant instructions eliminated"); -bool GVNPRE::add(Value* V, uint32_t number) { - std::pair ret = VN.insert(std::make_pair(V, number)); - if (isa(V) || isa(V)) - MS.insert(V); - return ret.second; -} - -Value* GVNPRE::find_leader(std::set& vals, Value* v) { - for (std::set::iterator I = vals.begin(), E = vals.end(); - I != E; ++I) { - assert(VN.find(v) != VN.end() && "Value not numbered?"); - assert(VN.find(*I) != VN.end() && "Value not numbered?"); - if (VN[v] == VN[*I]) +/// find_leader - Given a set and a value number, return the first +/// element of the set with that value number, or 0 if no such element +/// is present +Value* GVNPRE::find_leader(SmallPtrSet& vals, uint32_t v) { + for (SmallPtrSet::iterator I = vals.begin(), E = vals.end(); + I != E; ++I) + if (v == VN.lookup(*I)) return *I; - } return 0; } -Value* GVNPRE::phi_translate(std::set& set, - Value* V, BasicBlock* pred) { +/// val_insert - Insert a value into a set only if there is not a value +/// with the same value number already in the set +void GVNPRE::val_insert(SmallPtrSet& s, Value* v) { + uint32_t num = VN.lookup(v); + Value* leader = find_leader(s, num); + if (leader == 0) + s.insert(v); +} + +/// val_replace - Insert a value into a set, replacing any values already in +/// the set that have the same value number +void GVNPRE::val_replace(SmallPtrSet& s, Value* v) { + uint32_t num = VN.lookup(v); + Value* leader = find_leader(s, num); + while (leader != 0) { + s.erase(leader); + leader = find_leader(s, num); + } + s.insert(v); +} + +/// phi_translate - Given a value, its parent block, and a predecessor of its +/// parent, translate the value into legal for the predecessor block. This +/// means translating its operands (and recursively, their operands) through +/// any phi nodes in the parent into values available in the predecessor +Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) { if (V == 0) return 0; - if (BinaryOperator* BO = dyn_cast(V)) { - Value* newOp1 = isa(BO->getOperand(0)) - ? phi_translate(set, - find_leader(set, BO->getOperand(0)), - pred) - : BO->getOperand(0); + // Unary Operations + if (CastInst* U = dyn_cast(V)) { + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + if (newOp1 != U->getOperand(0)) { + Instruction* newVal = 0; + if (CastInst* C = dyn_cast(U)) + newVal = CastInst::create(C->getOpcode(), + newOp1, C->getType(), + C->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Binary Operations + } if (isa(V) || isa(V) || + isa(V)) { + User* U = cast(V); + + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + if (newOp1 == 0) return 0; - Value* newOp2 = isa(BO->getOperand(1)) - ? phi_translate(set, - find_leader(set, BO->getOperand(1)), - pred) - : BO->getOperand(1); + Value* newOp2 = 0; + if (isa(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + if (newOp2 == 0) return 0; - if (newOp1 != BO->getOperand(0) || newOp2 != BO->getOperand(1)) { - Instruction* newVal = BinaryOperator::create(BO->getOpcode(), - newOp1, newOp2, - BO->getName()+".gvnpre"); - if (add(newVal, nextValueNumber)) - nextValueNumber++; - if (!find_leader(set, newVal)) { - DOUT << "Creating value: " << std::hex << newVal << std::dec << "\n"; - createdExpressions.insert(newVal); + if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1)) { + Instruction* newVal = 0; + if (BinaryOperator* BO = dyn_cast(U)) + newVal = BinaryOperator::create(BO->getOpcode(), + newOp1, newOp2, + BO->getName()+".expr"); + else if (CmpInst* C = dyn_cast(U)) + newVal = CmpInst::create(C->getOpcode(), + C->getPredicate(), + newOp1, newOp2, + C->getName()+".expr"); + else if (ExtractElementInst* E = dyn_cast(U)) + newVal = new ExtractElementInst(newOp1, newOp2, E->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Ternary Operations + } else if (isa(V) || isa(V) || + isa(V)) { + User* U = cast(V); + + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + Value* newOp2 = 0; + if (isa(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + + if (newOp2 == 0) + return 0; + + Value* newOp3 = 0; + if (isa(U->getOperand(2))) + newOp3 = phi_translate(U->getOperand(2), pred, succ); + else + newOp3 = U->getOperand(2); + + if (newOp3 == 0) + return 0; + + if (newOp1 != U->getOperand(0) || + newOp2 != U->getOperand(1) || + newOp3 != U->getOperand(2)) { + Instruction* newVal = 0; + if (ShuffleVectorInst* S = dyn_cast(U)) + newVal = new ShuffleVectorInst(newOp1, newOp2, newOp3, + S->getName()+".expr"); + else if (InsertElementInst* I = dyn_cast(U)) + newVal = new InsertElementInst(newOp1, newOp2, newOp3, + I->getName()+".expr"); + else if (SelectInst* I = dyn_cast(U)) + newVal = new SelectInst(newOp1, newOp2, newOp3, I->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); return newVal; } else { + VN.erase(newVal); delete newVal; - return 0; + return leader; } } + + // Varargs operators + } else if (GetElementPtrInst* U = dyn_cast(V)) { + Value* newOp1 = 0; + if (isa(U->getPointerOperand())) + newOp1 = phi_translate(U->getPointerOperand(), pred, succ); + else + newOp1 = U->getPointerOperand(); + + if (newOp1 == 0) + return 0; + + bool changed_idx = false; + std::vector newIdx; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); + I != E; ++I) + if (isa(*I)) { + Value* newVal = phi_translate(*I, pred, succ); + newIdx.push_back(newVal); + if (newVal != *I) + changed_idx = true; + } else { + newIdx.push_back(*I); + } + + if (newOp1 != U->getPointerOperand() || changed_idx) { + Instruction* newVal = new GetElementPtrInst(newOp1, + &newIdx[0], newIdx.size(), + U->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // PHI Nodes } else if (PHINode* P = dyn_cast(V)) { - if (P->getParent() == pred->getTerminator()->getSuccessor(0)) + if (P->getParent() == succ) return P->getIncomingValueForBlock(pred); } return V; } -void GVNPRE::phi_translate_set(std::set& anticIn, BasicBlock* B, - std::set& out) { - for (std::set::iterator I = anticIn.begin(), +/// phi_translate_set - Perform phi translation on every element of a set +void GVNPRE::phi_translate_set(SmallPtrSet& anticIn, + BasicBlock* pred, BasicBlock* succ, + SmallPtrSet& out) { + for (SmallPtrSet::iterator I = anticIn.begin(), E = anticIn.end(); I != E; ++I) { - Value* V = phi_translate(anticIn, *I, B); + Value* V = phi_translate(*I, pred, succ); if (V != 0) out.insert(V); } } -// Remove all expressions whose operands are not themselves in the set -void GVNPRE::clean(std::set& set) { +/// dependsOnInvoke - Test if a value has an phi node as an operand, any of +/// whose inputs is an invoke instruction. If this is true, we cannot safely +/// PRE the instruction or anything that depends on it. +bool GVNPRE::dependsOnInvoke(Value* V) { + if (PHINode* p = dyn_cast(V)) { + for (PHINode::op_iterator I = p->op_begin(), E = p->op_end(); I != E; ++I) + if (isa(*I)) + return true; + return false; + } else { + return false; + } +} + +/// clean - Remove all non-opaque values from the set whose operands are not +/// themselves in the set, as well as all values that depend on invokes (see +/// above) +void GVNPRE::clean(SmallPtrSet& set, BitVector& presentInSet) { std::vector worklist; + worklist.reserve(set.size()); topo_sort(set, worklist); for (unsigned i = 0; i < worklist.size(); ++i) { Value* v = worklist[i]; - if (BinaryOperator* BO = dyn_cast(v)) { - bool lhsValid = !isa(BO->getOperand(0)); - if (!lhsValid) - for (std::set::iterator I = set.begin(), E = set.end(); - I != E; ++I) - if (VN[*I] == VN[BO->getOperand(0)]) { - lhsValid = true; - break; - } + // Handle unary ops + if (CastInst* U = dyn_cast(v)) { + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= presentInSet.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + if (!lhsValid) { + set.erase(U); + presentInSet.flip(VN.lookup(U)); + } + + // Handle binary ops + } else if (isa(v) || isa(v) || + isa(v)) { + User* U = cast(v); + + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= presentInSet.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); - bool rhsValid = !isa(BO->getOperand(1)); - if (!rhsValid) - for (std::set::iterator I = set.begin(), E = set.end(); + bool rhsValid = !isa(U->getOperand(1)); + rhsValid |= presentInSet.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); + + if (!lhsValid || !rhsValid) { + set.erase(U); + presentInSet.flip(VN.lookup(U)); + } + + // Handle ternary ops + } else if (isa(v) || isa(v) || + isa(v)) { + User* U = cast(v); + + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= presentInSet.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + bool rhsValid = !isa(U->getOperand(1)); + rhsValid |= presentInSet.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); + + bool thirdValid = !isa(U->getOperand(2)); + thirdValid |= presentInSet.test(VN.lookup(U->getOperand(2))); + if (thirdValid) + thirdValid = !dependsOnInvoke(U->getOperand(2)); + + if (!lhsValid || !rhsValid || !thirdValid) { + set.erase(U); + presentInSet.flip(VN.lookup(U)); + } + + // Handle varargs ops + } else if (GetElementPtrInst* U = dyn_cast(v)) { + bool ptrValid = !isa(U->getPointerOperand()); + ptrValid |= presentInSet.test(VN.lookup(U->getPointerOperand())); + if (ptrValid) + ptrValid = !dependsOnInvoke(U->getPointerOperand()); + + bool varValid = true; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); I != E; ++I) - if (VN[*I] == VN[BO->getOperand(1)]) { - rhsValid = true; - break; + if (varValid) { + varValid &= !isa(*I) || presentInSet.test(VN.lookup(*I)); + varValid &= !dependsOnInvoke(*I); } - - if (!lhsValid || !rhsValid) - set.erase(BO); + + if (!ptrValid || !varValid) { + set.erase(U); + presentInSet.flip(VN.lookup(U)); + } } } } -void GVNPRE::topo_sort(std::set& set, - std::vector& vec) { - std::set toErase; - for (std::set::iterator I = set.begin(), E = set.end(); +/// topo_sort - Given a set of values, sort them by topological +/// order into the provided vector. +void GVNPRE::topo_sort(SmallPtrSet& set, std::vector& vec) { + SmallPtrSet visited; + std::vector stack; + for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) { - if (BinaryOperator* BO = dyn_cast(*I)) - for (std::set::iterator SI = set.begin(); SI != E; ++SI) { - if (VN[BO->getOperand(0)] == VN[*SI] || - VN[BO->getOperand(1)] == VN[*SI]) { - toErase.insert(*SI); + if (visited.count(*I) == 0) + stack.push_back(*I); + + while (!stack.empty()) { + Value* e = stack.back(); + + // Handle unary ops + if (CastInst* U = dyn_cast(e)) { + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); } - } - } - - std::vector Q; - for (std::set::iterator I = set.begin(), E = set.end(); - I != E; ++I) { - if (toErase.find(*I) == toErase.end()) - Q.push_back(*I); - } - - std::set visited; - while (!Q.empty()) { - Value* e = Q.back(); - - if (BinaryOperator* BO = dyn_cast(e)) { - Value* l = find_leader(set, BO->getOperand(0)); - Value* r = find_leader(set, BO->getOperand(1)); - - if (l != 0 && isa(l) && - visited.find(l) == visited.end()) - Q.push_back(l); - else if (r != 0 && isa(r) && - visited.find(r) == visited.end()) - Q.push_back(r); - else { - vec.push_back(e); + + // Handle binary ops + } else if (isa(e) || isa(e) || + isa(e)) { + User* U = cast(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa(r) && + visited.count(r) == 0) + stack.push_back(r); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle ternary ops + } else if (isa(e) || isa(e) || + isa(e)) { + User* U = cast(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + Value* m = find_leader(set, VN.lookup(U->getOperand(2))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa(r) && + visited.count(r) == 0) + stack.push_back(r); + else if (m != 0 && isa(m) && + visited.count(m) == 0) + stack.push_back(m); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast(e)) { + Value* p = find_leader(set, VN.lookup(U->getPointerOperand())); + + if (p != 0 && isa(p) && + visited.count(p) == 0) + stack.push_back(p); + else { + bool push_va = false; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), + E = U->idx_end(); I != E; ++I) { + Value * v = find_leader(set, VN.lookup(*I)); + if (v != 0 && isa(v) && visited.count(v) == 0) { + stack.push_back(v); + push_va = true; + } + } + + if (!push_va) { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + } + + // Handle opaque ops + } else { visited.insert(e); - Q.pop_back(); + vec.push_back(e); + stack.pop_back(); } - } else { - visited.insert(e); - vec.push_back(e); - Q.pop_back(); } + + stack.clear(); } } - -void GVNPRE::dump(const std::set& s) const { +/// dump - Dump a set of values to standard error +void GVNPRE::dump(const SmallPtrSet& s) const { DOUT << "{ "; - for (std::set::iterator I = s.begin(), E = s.end(); + for (SmallPtrSet::iterator I = s.begin(), E = s.end(); I != E; ++I) { + DOUT << "" << VN.lookup(*I) << ": "; DEBUG((*I)->dump()); } DOUT << "}\n\n"; } -void GVNPRE::dump_unique(const std::set& s) const { - DOUT << "{ "; - for (std::set::iterator I = s.begin(), E = s.end(); - I != E; ++I) { - DEBUG((*I)->dump()); +/// elimination - Phase 3 of the main algorithm. Perform full redundancy +/// elimination by walking the dominator tree and removing any instruction that +/// is dominated by another instruction with the same value number. +bool GVNPRE::elimination() { + DOUT << "\n\nPhase 3: Elimination\n\n"; + + bool changed_function = false; + + std::vector > replace; + std::vector erase; + + DominatorTree& DT = getAnalysis(); + + for (df_iterator DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + BasicBlock* BB = DI->getBlock(); + + //DOUT << "Block: " << BB->getName() << "\n"; + //dump(availableOut[BB]); + //DOUT << "\n\n"; + + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) { + + if (isa(BI) || isa(BI) || + isa(BI) || isa(BI) || + isa(BI) || isa(BI) || + isa(BI) || isa(BI)) { + Value *leader = find_leader(availableOut[BB], VN.lookup(BI)); + + if (leader != 0) + if (Instruction* Instr = dyn_cast(leader)) + if (Instr->getParent() != 0 && Instr != BI) { + replace.push_back(std::make_pair(BI, leader)); + erase.push_back(BI); + ++NumEliminated; + } + } + } } - DOUT << "}\n\n"; + + while (!replace.empty()) { + std::pair rep = replace.back(); + replace.pop_back(); + rep.first->replaceAllUsesWith(rep.second); + changed_function = true; + } + + for (std::vector::iterator I = erase.begin(), E = erase.end(); + I != E; ++I) + (*I)->eraseFromParent(); + + return changed_function; } -void GVNPRE::CalculateAvailOut(DomTreeNode* DI, - std::set& currExps, - std::set& currPhis, - std::set& currTemps, - std::set& currAvail, - std::map > availOut) { - - BasicBlock* BB = DI->getBlock(); +/// cleanup - Delete any extraneous values that were created to represent +/// expressions without leaders. +void GVNPRE::cleanup() { + while (!createdExpressions.empty()) { + Instruction* I = createdExpressions.back(); + createdExpressions.pop_back(); + + delete I; + } +} + +/// buildsets_availout - When calculating availability, handle an instruction +/// by inserting it into the appropriate sets +void GVNPRE::buildsets_availout(BasicBlock::iterator I, + SmallPtrSet& currAvail, + SmallPtrSet& currPhis, + SmallPtrSet& currExps, + SmallPtrSet& currTemps, + BitVector& availNumbers, + BitVector& expNumbers) { + // Handle PHI nodes + if (PHINode* p = dyn_cast(I)) { + VN.lookup_or_add(p); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); + + currPhis.insert(p); - // A block inherits AVAIL_OUT from its dominator - if (DI->getIDom() != 0) - currAvail.insert(availOut[DI->getIDom()->getBlock()].begin(), - availOut[DI->getIDom()->getBlock()].end()); + // Handle unary ops + } else if (CastInst* U = dyn_cast(I)) { + Value* leftValue = U->getOperand(0); + unsigned num = VN.lookup_or_add(U); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); + + if (isa(leftValue)) + if (!expNumbers.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + expNumbers.set(VN.lookup(leftValue)); + } - for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); - BI != BE; ++BI) { - - // Handle PHI nodes... - if (PHINode* p = dyn_cast(BI)) { - if (add(p, nextValueNumber)) - nextValueNumber++; - currPhis.insert(p); + if (!expNumbers.test(VN.lookup(U))) { + currExps.insert(U); + expNumbers.set(num); + } + + // Handle binary ops + } else if (isa(I) || isa(I) || + isa(I)) { + User* U = cast(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); - // Handle binary ops... - } else if (BinaryOperator* BO = dyn_cast(BI)) { - Value* leftValue = BO->getOperand(0); - Value* rightValue = BO->getOperand(1); + unsigned num = VN.lookup_or_add(U); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); - if (add(BO, nextValueNumber)) - nextValueNumber++; + if (isa(leftValue)) + if (!expNumbers.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + expNumbers.set(VN.lookup(leftValue)); + } + + if (isa(rightValue)) + if (!expNumbers.test(VN.lookup(rightValue))) { + currExps.insert(rightValue); + expNumbers.set(VN.lookup(rightValue)); + } + + if (!expNumbers.test(VN.lookup(U))) { + currExps.insert(U); + expNumbers.set(num); + } + + // Handle ternary ops + } else if (isa(I) || isa(I) || + isa(I)) { + User* U = cast(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); + Value* thirdValue = U->getOperand(2); - if (isa(leftValue)) + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); + + if (isa(leftValue)) + if (!expNumbers.test(VN.lookup(leftValue))) { currExps.insert(leftValue); - if (isa(rightValue)) + expNumbers.set(VN.lookup(leftValue)); + } + if (isa(rightValue)) + if (!expNumbers.test(VN.lookup(rightValue))) { currExps.insert(rightValue); - currExps.insert(BO); + expNumbers.set(VN.lookup(rightValue)); + } + if (isa(thirdValue)) + if (!expNumbers.test(VN.lookup(thirdValue))) { + currExps.insert(thirdValue); + expNumbers.set(VN.lookup(thirdValue)); + } + + if (!expNumbers.test(VN.lookup(U))) { + currExps.insert(U); + expNumbers.set(num); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast(I)) { + Value* ptrValue = U->getPointerOperand(); - // Handle unsupported ops - } else if (!BI->isTerminator()){ - if (add(BI, nextValueNumber)) - nextValueNumber++; - currTemps.insert(BI); + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); + + if (isa(ptrValue)) + if (!expNumbers.test(VN.lookup(ptrValue))) { + currExps.insert(ptrValue); + expNumbers.set(VN.lookup(ptrValue)); + } + + for (GetElementPtrInst::op_iterator OI = U->idx_begin(), OE = U->idx_end(); + OI != OE; ++OI) + if (isa(*OI) && !expNumbers.test(VN.lookup(*OI))) { + currExps.insert(*OI); + expNumbers.set(VN.lookup(*OI)); + } + + if (!expNumbers.test(VN.lookup(U))) { + currExps.insert(U); + expNumbers.set(num); } - if (!BI->isTerminator()) - currAvail.insert(BI); + // Handle opaque ops + } else if (!I->isTerminator()){ + VN.lookup_or_add(I); + expNumbers.resize(VN.size()); + availNumbers.resize(VN.size()); + + currTemps.insert(I); } + + if (!I->isTerminator()) + if (!availNumbers.test(VN.lookup(I))) { + currAvail.insert(I); + availNumbers.set(VN.lookup(I)); + } } -bool GVNPRE::runOnFunction(Function &F) { - VN.clear(); - MS.clear(); - createdExpressions.clear(); +/// buildsets_anticout - When walking the postdom tree, calculate the ANTIC_OUT +/// set as a function of the ANTIC_IN set of the block's predecessors +bool GVNPRE::buildsets_anticout(BasicBlock* BB, + SmallPtrSet& anticOut, + std::set& visited) { + if (BB->getTerminator()->getNumSuccessors() == 1) { + if (BB->getTerminator()->getSuccessor(0) != BB && + visited.count(BB->getTerminator()->getSuccessor(0)) == 0) { + DOUT << "DEFER: " << BB->getName() << "\n"; + return true; + } + else { + phi_translate_set(anticipatedIn[BB->getTerminator()->getSuccessor(0)], + BB, BB->getTerminator()->getSuccessor(0), anticOut); + } + } else if (BB->getTerminator()->getNumSuccessors() > 1) { + BasicBlock* first = BB->getTerminator()->getSuccessor(0); + anticOut.insert(anticipatedIn[first].begin(), anticipatedIn[first].end()); + + for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { + BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); + SmallPtrSet& succAnticIn = anticipatedIn[currSucc]; + + std::vector temp; + + for (SmallPtrSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) + if (find_leader(succAnticIn, VN.lookup(*I)) == 0) + temp.push_back(*I); + + for (std::vector::iterator I = temp.begin(), E = temp.end(); + I != E; ++I) + anticOut.erase(*I); + } + } + + return false; +} - std::map > generatedExpressions; - std::map > generatedPhis; - std::map > generatedTemporaries; - std::map > availableOut; - std::map > anticipatedIn; +/// buildsets_anticin - Walk the postdom tree, calculating ANTIC_OUT for +/// each block. ANTIC_IN is then a function of ANTIC_OUT and the GEN +/// sets populated in buildsets_availout +unsigned GVNPRE::buildsets_anticin(BasicBlock* BB, + SmallPtrSet& anticOut, + SmallPtrSet& currExps, + SmallPtrSet& currTemps, + std::set& visited) { + SmallPtrSet& anticIn = anticipatedIn[BB]; + unsigned old = anticIn.size(); + + bool defer = buildsets_anticout(BB, anticOut, visited); + if (defer) + return 0; - DominatorTree &DT = getAnalysis(); + anticIn.clear(); - // Phase 1: BuildSets + BitVector numbers(VN.size()); + for (SmallPtrSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) { + unsigned num = VN.lookup_or_add(*I); + numbers.resize(VN.size()); + + if (isa(*I) && !numbers.test(num)) { + anticIn.insert(*I); + numbers.set(num); + } + } + for (SmallPtrSet::iterator I = currExps.begin(), + E = currExps.end(); I != E; ++I) { + if (!numbers.test(VN.lookup_or_add(*I))) { + anticIn.insert(*I); + numbers.set(VN.lookup(*I)); + } + } + + for (SmallPtrSet::iterator I = currTemps.begin(), + E = currTemps.end(); I != E; ++I) { + anticIn.erase(*I); + numbers.flip(VN.lookup(*I)); + } + + clean(anticIn, numbers); + anticOut.clear(); + + if (old != anticIn.size()) + return 2; + else + return 1; +} + +/// buildsets - Phase 1 of the main algorithm. Construct the AVAIL_OUT +/// and the ANTIC_IN sets. +void GVNPRE::buildsets(Function& F) { + std::map > generatedExpressions; + std::map > generatedTemporaries; + + DominatorTree &DT = getAnalysis(); // Phase 1, Part 1: calculate AVAIL_OUT @@ -359,313 +1413,376 @@ bool GVNPRE::runOnFunction(Function &F) { E = df_end(DT.getRootNode()); DI != E; ++DI) { // Get the sets to update for this block - std::set& currExps = generatedExpressions[DI->getBlock()]; - std::set& currPhis = generatedPhis[DI->getBlock()]; - std::set& currTemps = generatedTemporaries[DI->getBlock()]; - std::set& currAvail = availableOut[DI->getBlock()]; + SmallPtrSet& currExps = generatedExpressions[DI->getBlock()]; + SmallPtrSet& currPhis = generatedPhis[DI->getBlock()]; + SmallPtrSet& currTemps = generatedTemporaries[DI->getBlock()]; + SmallPtrSet& currAvail = availableOut[DI->getBlock()]; - CalculateAvailOut(*DI, currExps, currPhis, - currTemps, currAvail, availableOut); - } - - DOUT << "Maximal Set: "; - dump_unique(MS); - DOUT << "\n"; - - PostDominatorTree &PDT = getAnalysis(); + BasicBlock* BB = DI->getBlock(); + // A block inherits AVAIL_OUT from its dominator + if (DI->getIDom() != 0) + currAvail.insert(availableOut[DI->getIDom()->getBlock()].begin(), + availableOut[DI->getIDom()->getBlock()].end()); + + BitVector availNumbers(VN.size()); + for (SmallPtrSet::iterator I = currAvail.begin(), + E = currAvail.end(); I != E; ++I) + availNumbers.set(VN.lookup(*I)); + + BitVector expNumbers(VN.size()); + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) + buildsets_availout(BI, currAvail, currPhis, currExps, + currTemps, availNumbers, expNumbers); + + } + // Phase 1, Part 2: calculate ANTIC_IN std::set visited; + SmallPtrSet block_changed; + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + block_changed.insert(FI); bool changed = true; unsigned iterations = 0; + while (changed) { changed = false; - std::set anticOut; - - // Top-down walk of the postdominator tree - for (df_iterator PDI = - df_begin(PDT.getRootNode()), E = df_end(PDT.getRootNode()); - PDI != E; ++PDI) { - BasicBlock* BB = PDI->getBlock(); - DOUT << "Block: " << BB->getName() << "\n"; - DOUT << "TMP_GEN: "; - dump(generatedTemporaries[BB]); - DOUT << "\n"; - - DOUT << "EXP_GEN: "; - dump_unique(generatedExpressions[BB]); - visited.insert(BB); - - std::set& anticIn = anticipatedIn[BB]; - std::set old (anticIn.begin(), anticIn.end()); - - if (BB->getTerminator()->getNumSuccessors() == 1) { - if (visited.find(BB->getTerminator()->getSuccessor(0)) == - visited.end()) - phi_translate_set(MS, BB, anticOut); - else - phi_translate_set( - anticipatedIn[BB->getTerminator()->getSuccessor(0)], BB, anticOut); - } else if (BB->getTerminator()->getNumSuccessors() > 1) { - BasicBlock* first = BB->getTerminator()->getSuccessor(0); - anticOut.insert(anticipatedIn[first].begin(), - anticipatedIn[first].end()); - for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { - BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); - std::set& succAnticIn = anticipatedIn[currSucc]; - - std::set temp; - std::insert_iterator > temp_ins(temp, - temp.begin()); - std::set_intersection(anticOut.begin(), anticOut.end(), - succAnticIn.begin(), succAnticIn.end(), - temp_ins, ExprLT()); - - anticOut.clear(); - anticOut.insert(temp.begin(), temp.end()); - } - } + SmallPtrSet anticOut; + + // Postorder walk of the CFG + for (po_iterator BBI = po_begin(&F.getEntryBlock()), + BBE = po_end(&F.getEntryBlock()); BBI != BBE; ++BBI) { + BasicBlock* BB = *BBI; - DOUT << "ANTIC_OUT: "; - dump_unique(anticOut); - DOUT << "\n"; + if (block_changed.count(BB) != 0) { + unsigned ret = buildsets_anticin(BB, anticOut,generatedExpressions[BB], + generatedTemporaries[BB], visited); - std::set S; - std::insert_iterator > s_ins(S, S.begin()); - std::set_union(anticOut.begin(), anticOut.end(), - generatedExpressions[BB].begin(), - generatedExpressions[BB].end(), - s_ins, ExprLT()); + if (ret == 0) { + changed = true; + continue; + } else { + visited.insert(BB); + + if (ret == 2) + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + PI != PE; ++PI) { + block_changed.insert(*PI); + } + else + block_changed.erase(BB); + + changed |= (ret == 2); + } + } + } + + iterations++; + } + + DOUT << "ITERATIONS: " << iterations << "\n"; +} + +/// insertion_pre - When a partial redundancy has been identified, eliminate it +/// by inserting appropriate values into the predecessors and a phi node in +/// the main block +void GVNPRE::insertion_pre(Value* e, BasicBlock* BB, + std::map& avail, + std::map >& new_sets) { + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + DOUT << "PRED: " << (*PI)->getName() << "\n"; + Value* e2 = avail[*PI]; + if (!find_leader(availableOut[*PI], VN.lookup(e2))) { + User* U = cast(e2); - anticIn.clear(); + Value* s1 = 0; + if (isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0))) + s1 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(0))); + else + s1 = U->getOperand(0); - for (std::set::iterator I = S.begin(), E = S.end(); - I != E; ++I) { - if (generatedTemporaries[BB].find(*I) == generatedTemporaries[BB].end()) - anticIn.insert(*I); - } + Value* s2 = 0; - clean(anticIn); + if (isa(U) || + isa(U) || + isa(U) || + isa(U) || + isa(U) || + isa(U)) + if (isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1))) { + s2 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(1))); + } else { + s2 = U->getOperand(1); + } - DOUT << "ANTIC_IN: "; - dump_unique(anticIn); - DOUT << "\n"; + // Ternary Operators + Value* s3 = 0; + if (isa(U) || + isa(U) || + isa(U)) + if (isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2))) { + s3 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(2))); + } else { + s3 = U->getOperand(2); + } - if (old.size() != anticIn.size()) - changed = true; + // Vararg operators + std::vector sVarargs; + if (GetElementPtrInst* G = dyn_cast(U)) { + for (GetElementPtrInst::op_iterator OI = G->idx_begin(), + OE = G->idx_end(); OI != OE; ++OI) { + if (isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI)) { + sVarargs.push_back(find_leader(availableOut[*PI], + VN.lookup(*OI))); + } else { + sVarargs.push_back(*OI); + } + } + } - anticOut.clear(); + Value* newVal = 0; + if (BinaryOperator* BO = dyn_cast(U)) + newVal = BinaryOperator::create(BO->getOpcode(), s1, s2, + BO->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CmpInst* C = dyn_cast(U)) + newVal = CmpInst::create(C->getOpcode(), C->getPredicate(), s1, s2, + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ShuffleVectorInst* S = dyn_cast(U)) + newVal = new ShuffleVectorInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (InsertElementInst* S = dyn_cast(U)) + newVal = new InsertElementInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ExtractElementInst* S = dyn_cast(U)) + newVal = new ExtractElementInst(s1, s2, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (SelectInst* S = dyn_cast(U)) + newVal = new SelectInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CastInst* C = dyn_cast(U)) + newVal = CastInst::create(C->getOpcode(), s1, C->getType(), + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (GetElementPtrInst* G = dyn_cast(U)) + newVal = new GetElementPtrInst(s1, &sVarargs[0], sVarargs.size(), + G->getName()+".gvnpre", + (*PI)->getTerminator()); + + + VN.add(newVal, VN.lookup(U)); + + SmallPtrSet& predAvail = availableOut[*PI]; + val_replace(predAvail, newVal); + val_replace(new_sets[*PI], newVal); + + std::map::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, newVal)); + + ++NumInsertedVals; } - - iterations++; } - - DOUT << "Iterations: " << iterations << "\n"; - - for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { - DOUT << "Name: " << I->getName().c_str() << "\n"; - - DOUT << "TMP_GEN: "; - dump(generatedTemporaries[I]); - DOUT << "\n"; - - DOUT << "EXP_GEN: "; - dump_unique(generatedExpressions[I]); - DOUT << "\n"; - - DOUT << "ANTIC_IN: "; - dump_unique(anticipatedIn[I]); - DOUT << "\n"; + + PHINode* p = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (p == 0) + p = new PHINode(avail[*PI]->getType(), "gvnpre-join", BB->begin()); - DOUT << "AVAIL_OUT: "; - dump_unique(availableOut[I]); - DOUT << "\n"; + p->addIncoming(avail[*PI], *PI); } + + VN.add(p, VN.lookup(e)); + val_replace(availableOut[BB], p); + generatedPhis[BB].insert(p); + new_sets[BB].insert(p); + + ++NumInsertedPhis; +} + +/// insertion_mergepoint - When walking the dom tree, check at each merge +/// block for the possibility of a partial redundancy. If present, eliminate it +unsigned GVNPRE::insertion_mergepoint(std::vector& workList, + df_iterator& D, + std::map >& new_sets) { + bool changed_function = false; + bool new_stuff = false; + BasicBlock* BB = D->getBlock(); + for (unsigned i = 0; i < workList.size(); ++i) { + Value* e = workList[i]; + + if (isa(e) || isa(e) || + isa(e) || isa(e) || + isa(e) || isa(e) || isa(e) || + isa(e)) { + if (find_leader(availableOut[D->getIDom()->getBlock()], + VN.lookup(e)) != 0) + continue; + + std::map avail; + bool by_some = false; + bool all_same = true; + Value * first_s = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; + ++PI) { + Value *e2 = phi_translate(e, *PI, BB); + Value *e3 = find_leader(availableOut[*PI], VN.lookup(e2)); + + if (e3 == 0) { + std::map::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e2)); + all_same = false; + } else { + std::map::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e3)); + + by_some = true; + if (first_s == 0) + first_s = e3; + else if (first_s != e3) + all_same = false; + } + } + + if (by_some && !all_same && + !find_leader(generatedPhis[BB], VN.lookup(e))) { + insertion_pre(e, BB, avail, new_sets); + + changed_function = true; + new_stuff = true; + } + } + } - // Phase 2: Insert + unsigned retval = 0; + if (changed_function) + retval += 1; + if (new_stuff) + retval += 2; - DOUT<< "\nPhase 2: Insertion\n"; + return retval; +} + +/// insert - Phase 2 of the main algorithm. Walk the dominator tree looking for +/// merge points. When one is found, check for a partial redundancy. If one is +/// present, eliminate it. Repeat this walk until no changes are made. +bool GVNPRE::insertion(Function& F) { + bool changed_function = false; + + DominatorTree &DT = getAnalysis(); - std::map > new_sets; - unsigned i_iterations = 0; + std::map > new_sets; bool new_stuff = true; while (new_stuff) { new_stuff = false; - DOUT << "Iteration: " << i_iterations << "\n\n"; for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { BasicBlock* BB = DI->getBlock(); - std::set& new_set = new_sets[BB]; - std::set& availOut = availableOut[BB]; - std::set& anticIn = anticipatedIn[BB]; + if (BB == 0) + continue; + + SmallPtrSet& availOut = availableOut[BB]; + SmallPtrSet& anticIn = anticipatedIn[BB]; // Replace leaders with leaders inherited from dominator if (DI->getIDom() != 0) { - std::set& dom_set = new_sets[DI->getIDom()->getBlock()]; - for (std::set::iterator I = dom_set.begin(), + SmallPtrSet& dom_set = new_sets[DI->getIDom()->getBlock()]; + for (SmallPtrSet::iterator I = dom_set.begin(), E = dom_set.end(); I != E; ++I) { - new_set.insert(*I); - - std::set::iterator val = availOut.find(*I); - if (val != availOut.end()) - availOut.erase(val); - availOut.insert(*I); + val_replace(new_sets[BB], *I); + val_replace(availOut, *I); } } // If there is more than one predecessor... if (pred_begin(BB) != pred_end(BB) && ++pred_begin(BB) != pred_end(BB)) { std::vector workList; + workList.reserve(anticIn.size()); topo_sort(anticIn, workList); - DOUT << "Merge Block: " << BB->getName() << "\n"; - DOUT << "ANTIC_IN: "; - dump_unique(anticIn); - DOUT << "\n"; - - while (!workList.empty()) { - Value* e = workList.back(); - workList.pop_back(); - - if (isa(e)) { - if (find_leader(availableOut[DI->getIDom()->getBlock()], e) != 0) - continue; - - std::map avail; - bool by_some = false; - int num_avail = 0; - - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; - ++PI) { - Value *e2 = phi_translate(anticIn, e, *PI); - Value *e3 = find_leader(availableOut[*PI], e2); - - if (e3 == 0) { - std::map::iterator av = avail.find(*PI); - if (av != avail.end()) - avail.erase(av); - avail.insert(std::make_pair(*PI, e2)); - } else { - std::map::iterator av = avail.find(*PI); - if (av != avail.end()) - avail.erase(av); - avail.insert(std::make_pair(*PI, e3)); - - by_some = true; - num_avail++; - } - } - - if (by_some && - num_avail < std::distance(pred_begin(BB), pred_end(BB))) { - DOUT << "Processing Value: "; - DEBUG(e->dump()); - DOUT << "\n\n"; - - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - PI != PE; ++PI) { - Value* e2 = avail[*PI]; - if (!find_leader(availableOut[*PI], e2)) { - BinaryOperator* BO = cast(e2); - - Value* s1 = 0; - if (isa(BO->getOperand(0))) - s1 = find_leader(availableOut[*PI], BO->getOperand(0)); - else - s1 = BO->getOperand(0); - - Value* s2 = 0; - if (isa(BO->getOperand(1))) - s2 = find_leader(availableOut[*PI], BO->getOperand(1)); - else - s2 = BO->getOperand(1); - - Value* newVal = BinaryOperator::create(BO->getOpcode(), - s1, s2, - BO->getName()+".gvnpre", - (*PI)->getTerminator()); - add(newVal, VN[BO]); - availableOut[*PI].insert(newVal); - - DOUT << "Creating value: " << std::hex << newVal << std::dec << "\n"; - - std::map::iterator av = avail.find(*PI); - if (av != avail.end()) - avail.erase(av); - avail.insert(std::make_pair(*PI, newVal)); - } - } - - PHINode* p = 0; - - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - PI != PE; ++PI) { - if (p == 0) - p = new PHINode(avail[*PI]->getType(), "gvnpre-join", - BB->begin()); - - p->addIncoming(avail[*PI], *PI); - } - - add(p, VN[e]); - DOUT << "Creating value: " << std::hex << p << std::dec << "\n"; - - availOut.insert(p); - new_stuff = true; - - DOUT << "Preds After Processing: "; - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - PI != PE; ++PI) - DEBUG((*PI)->dump()); - DOUT << "\n\n"; - - DOUT << "Merge Block After Processing: "; - DEBUG(BB->dump()); - DOUT << "\n\n"; - - new_set.insert(p); - } - } - } + unsigned result = insertion_mergepoint(workList, DI, new_sets); + if (result & 1) + changed_function = true; + if (result & 2) + new_stuff = true; } } - i_iterations++; } + return changed_function; +} + +// GVNPRE::runOnFunction - This is the main transformation entry point for a +// function. +// +bool GVNPRE::runOnFunction(Function &F) { + // Clean out global sets from any previous functions + VN.clear(); + createdExpressions.clear(); + availableOut.clear(); + anticipatedIn.clear(); + generatedPhis.clear(); + + bool changed_function = false; + + // Phase 1: BuildSets + // This phase calculates the AVAIL_OUT and ANTIC_IN sets + buildsets(F); + + // Phase 2: Insert + // This phase inserts values to make partially redundant values + // fully redundant + changed_function |= insertion(F); + // Phase 3: Eliminate - for (df_iterator DI = df_begin(DT.getRootNode()), - E = df_end(DT.getRootNode()); DI != E; ++DI) { - BasicBlock* BB = DI->getBlock(); - - std::vector erase; - - for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); - BI != BE; ++BI) { - if (!BI->isTerminator()) { - Value* leader = find_leader(availableOut[BB], BI); - if (leader != 0) - if (Instruction* Instr = dyn_cast(leader)) - if (Instr->getParent() != 0 && Instr != BI) { - BI->replaceAllUsesWith(leader); - erase.push_back(BI); - } - } - } - - for (std::vector::iterator I = erase.begin(), E = erase.end(); - I != E; ++I) - (*I)->eraseFromParent(); - } + // This phase performs trivial full redundancy elimination + changed_function |= elimination(); // Phase 4: Cleanup - for (std::set::iterator I = createdExpressions.begin(), - E = createdExpressions.end(); I != E; ++I) { - delete *I; - } + // This phase cleans up values that were created solely + // as leaders for expressions + cleanup(); - return false; + return changed_function; }