X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FBitVector.h;h=ad00d51f99e9f472c20f5027d63140a9b5267b71;hb=2b762697564ca1e12e0e974e93ceeb4c3420505c;hp=9dcb9e106f26b2a64630151a8f3c4f1798cfe6de;hpb=3f5e91565273e3f4639d37ee5a5b856699e8c9e5;p=oota-llvm.git diff --git a/include/llvm/ADT/BitVector.h b/include/llvm/ADT/BitVector.h index 9dcb9e106f2..ad00d51f99e 100644 --- a/include/llvm/ADT/BitVector.h +++ b/include/llvm/ADT/BitVector.h @@ -14,11 +14,13 @@ #ifndef LLVM_ADT_BITVECTOR_H #define LLVM_ADT_BITVECTOR_H +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include #include #include -#include +#include namespace llvm { @@ -27,11 +29,15 @@ class BitVector { enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; + static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, + "Unsupported word size"); + BitWord *Bits; // Actual bits. unsigned Size; // Size of bitvector in bits. - unsigned Capacity; // Size of allocated memory in BitWord. + unsigned Capacity; // Number of BitWords allocated in the Bits array. public: + typedef unsigned size_type; // Encapsulation of a single bit. class reference { friend class BitVector; @@ -47,7 +53,7 @@ public: BitPos = Idx % BITWORD_SIZE; } - ~reference() {} + reference(const reference&) = default; reference &operator=(reference t) { *this = bool(t); @@ -56,28 +62,28 @@ public: reference& operator=(bool t) { if (t) - *WordRef |= 1L << BitPos; + *WordRef |= BitWord(1) << BitPos; else - *WordRef &= ~(1L << BitPos); + *WordRef &= ~(BitWord(1) << BitPos); return *this; } operator bool() const { - return ((*WordRef) & (1L << BitPos)) ? true : false; + return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; } }; /// BitVector default ctor - Creates an empty bitvector. BitVector() : Size(0), Capacity(0) { - Bits = 0; + Bits = nullptr; } /// BitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit BitVector(unsigned s, bool t = false) : Size(s) { Capacity = NumBitWords(s); - Bits = new BitWord[Capacity]; + Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); init_words(Bits, Capacity, t); if (t) clear_unused_bits(); @@ -86,36 +92,36 @@ public: /// BitVector copy ctor. BitVector(const BitVector &RHS) : Size(RHS.size()) { if (Size == 0) { - Bits = 0; + Bits = nullptr; Capacity = 0; return; } Capacity = NumBitWords(RHS.size()); - Bits = new BitWord[Capacity]; - std::copy(RHS.Bits, &RHS.Bits[Capacity], Bits); + Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); + std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); + } + + BitVector(BitVector &&RHS) + : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) { + RHS.Bits = nullptr; } ~BitVector() { - delete[] Bits; + std::free(Bits); } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return Size == 0; } /// size - Returns the number of bits in this bitvector. - unsigned size() const { return Size; } + size_type size() const { return Size; } /// count - Returns the number of bits which are set. - unsigned count() const { + size_type count() const { unsigned NumBits = 0; for (unsigned i = 0; i < NumBitWords(size()); ++i) - if (sizeof(BitWord) == 4) - NumBits += CountPopulation_32((uint32_t)Bits[i]); - else if (sizeof(BitWord) == 8) - NumBits += CountPopulation_64(Bits[i]); - else - assert(0 && "Unsupported!"); + NumBits += countPopulation(Bits[i]); return NumBits; } @@ -127,6 +133,19 @@ public: return false; } + /// all - Returns true if all bits are set. + bool all() const { + for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) + if (Bits[i] != ~0UL) + return false; + + // If bits remain check that they are ones. The unused bits are always zero. + if (unsigned Remainder = Size % BITWORD_SIZE) + return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; + + return true; + } + /// none - Returns true if none of the bits are set. bool none() const { return !any(); @@ -136,14 +155,8 @@ public: /// of the bits are set. int find_first() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) - if (Bits[i] != 0) { - if (sizeof(BitWord) == 4) - return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]); - else if (sizeof(BitWord) == 8) - return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); - else - assert(0 && "Unsupported!"); - } + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); return -1; } @@ -158,27 +171,15 @@ public: unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; // Mask off previous bits. - Copy &= ~0L << BitPos; + Copy &= ~0UL << BitPos; - if (Copy != 0) { - if (sizeof(BitWord) == 4) - return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy); - else if (sizeof(BitWord) == 8) - return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy); - else - assert(0 && "Unsupported!"); - } + if (Copy != 0) + return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); // Check subsequent words. for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) - if (Bits[i] != 0) { - if (sizeof(BitWord) == 4) - return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]); - else if (sizeof(BitWord) == 8) - return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); - else - assert(0 && "Unsupported!"); - } + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); return -1; } @@ -221,7 +222,37 @@ public: } BitVector &set(unsigned Idx) { - Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); + assert(Bits && "Bits never allocated"); + Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); + return *this; + } + + /// set - Efficiently set a range of bits in [I, E) + BitVector &set(unsigned I, unsigned E) { + assert(I <= E && "Attempted to set backwards range!"); + assert(E <= size() && "Attempted to set out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = 1UL << (E % BITWORD_SIZE); + BitWord IMask = 1UL << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] |= Mask; + return *this; + } + + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] |= PrefixMask; + I = RoundUpToAlignment(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = ~0UL; + + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] |= PostfixMask; + return *this; } @@ -231,7 +262,36 @@ public: } BitVector &reset(unsigned Idx) { - Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); + Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); + return *this; + } + + /// reset - Efficiently reset a range of bits in [I, E) + BitVector &reset(unsigned I, unsigned E) { + assert(I <= E && "Attempted to reset backwards range!"); + assert(E <= size() && "Attempted to reset out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = 1UL << (E % BITWORD_SIZE); + BitWord IMask = 1UL << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] &= ~Mask; + return *this; + } + + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] &= ~PrefixMask; + I = RoundUpToAlignment(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = 0UL; + + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] &= ~PostfixMask; + return *this; } @@ -243,15 +303,10 @@ public: } BitVector &flip(unsigned Idx) { - Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE); + Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } - // No argument flip. - BitVector operator~() const { - return BitVector(*this).flip(); - } - // Indexing. reference operator[](unsigned Idx) { assert (Idx < Size && "Out-of-bounds Bit access."); @@ -260,7 +315,7 @@ public: bool operator[](unsigned Idx) const { assert (Idx < Size && "Out-of-bounds Bit access."); - BitWord Mask = 1L << (Idx % BITWORD_SIZE); + BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; } @@ -268,6 +323,16 @@ public: return (*this)[Idx]; } + /// Test if any common bits are set. + bool anyCommon(const BitVector &RHS) const { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) + if (Bits[i] & RHS.Bits[i]) + return true; + return false; + } + // Comparison operators. bool operator==(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); @@ -294,7 +359,7 @@ public: return !(*this == RHS); } - // Intersection, union, disjoint union. + /// Intersection, union, disjoint union. BitVector &operator&=(const BitVector &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); @@ -311,6 +376,33 @@ public: return *this; } + /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. + BitVector &reset(const BitVector &RHS) { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + Bits[i] &= ~RHS.Bits[i]; + return *this; + } + + /// test - Check if (This - RHS) is zero. + /// This is the same as reset(RHS) and any(). + bool test(const BitVector &RHS) const { + unsigned ThisWords = NumBitWords(size()); + unsigned RHSWords = NumBitWords(RHS.size()); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + if ((Bits[i] & ~RHS.Bits[i]) != 0) + return true; + + for (; i != ThisWords ; ++i) + if (Bits[i] != 0) + return true; + + return false; + } + BitVector &operator|=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); @@ -335,29 +427,79 @@ public: unsigned RHSWords = NumBitWords(Size); if (Size <= Capacity * BITWORD_SIZE) { if (Size) - std::copy(RHS.Bits, &RHS.Bits[RHSWords], Bits); + std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); clear_unused_bits(); return *this; } // Grow the bitvector to have enough elements. Capacity = RHSWords; - BitWord *NewBits = new BitWord[Capacity]; - std::copy(RHS.Bits, &RHS.Bits[RHSWords], NewBits); + assert(Capacity > 0 && "negative capacity?"); + BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); + std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); // Destroy the old bits. - delete[] Bits; + std::free(Bits); Bits = NewBits; return *this; } + const BitVector &operator=(BitVector &&RHS) { + if (this == &RHS) return *this; + + std::free(Bits); + Bits = RHS.Bits; + Size = RHS.Size; + Capacity = RHS.Capacity; + + RHS.Bits = nullptr; + + return *this; + } + void swap(BitVector &RHS) { std::swap(Bits, RHS.Bits); std::swap(Size, RHS.Size); std::swap(Capacity, RHS.Capacity); } + //===--------------------------------------------------------------------===// + // Portable bit mask operations. + //===--------------------------------------------------------------------===// + // + // These methods all operate on arrays of uint32_t, each holding 32 bits. The + // fixed word size makes it easier to work with literal bit vector constants + // in portable code. + // + // The LSB in each word is the lowest numbered bit. The size of a portable + // bit mask is always a whole multiple of 32 bits. If no bit mask size is + // given, the bit mask is assumed to cover the entire BitVector. + + /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. + /// This computes "*this |= Mask". + void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask(Mask, MaskWords); + } + + /// clearBitsInMask - Clear any bits in this vector that are set in Mask. + /// Don't resize. This computes "*this &= ~Mask". + void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask(Mask, MaskWords); + } + + /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this |= ~Mask". + void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask(Mask, MaskWords); + } + + /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this &= Mask". + void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask(Mask, MaskWords); + } + private: unsigned NumBitWords(unsigned S) const { return (S + BITWORD_SIZE-1) / BITWORD_SIZE; @@ -373,8 +515,11 @@ private: // Then set any stray high bits of the last used word. unsigned ExtraBits = Size % BITWORD_SIZE; if (ExtraBits) { - Bits[UsedWords-1] &= ~(~0L << ExtraBits); - Bits[UsedWords-1] |= (0 - (BitWord)t) << ExtraBits; + BitWord ExtraBitMask = ~0UL << ExtraBits; + if (t) + Bits[UsedWords-1] |= ExtraBitMask; + else + Bits[UsedWords-1] &= ~ExtraBitMask; } } @@ -384,17 +529,9 @@ private: } void grow(unsigned NewSize) { - unsigned OldCapacity = Capacity; - Capacity = NumBitWords(NewSize); - BitWord *NewBits = new BitWord[Capacity]; - - // Copy the old bits over. - if (OldCapacity != 0) - std::copy(Bits, &Bits[OldCapacity], NewBits); - - // Destroy the old bits. - delete[] Bits; - Bits = NewBits; + Capacity = std::max(NumBitWords(NewSize), Capacity * 2); + assert(Capacity > 0 && "realloc-ing zero space"); + Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord)); clear_unused_bits(); } @@ -402,24 +539,41 @@ private: void init_words(BitWord *B, unsigned NumWords, bool t) { memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); } -}; -inline BitVector operator&(const BitVector &LHS, const BitVector &RHS) { - BitVector Result(LHS); - Result &= RHS; - return Result; -} + template + void applyMask(const uint32_t *Mask, unsigned MaskWords) { + static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); + MaskWords = std::min(MaskWords, (size() + 31) / 32); + const unsigned Scale = BITWORD_SIZE / 32; + unsigned i; + for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { + BitWord BW = Bits[i]; + // This inner loop should unroll completely when BITWORD_SIZE > 32. + for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) BW |= BitWord(M) << b; + else BW &= ~(BitWord(M) << b); + } + Bits[i] = BW; + } + for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) Bits[i] |= BitWord(M) << b; + else Bits[i] &= ~(BitWord(M) << b); + } + if (AddBits) + clear_unused_bits(); + } -inline BitVector operator|(const BitVector &LHS, const BitVector &RHS) { - BitVector Result(LHS); - Result |= RHS; - return Result; -} +public: + /// Return the size (in bytes) of the bit vector. + size_t getMemorySize() const { return Capacity * sizeof(BitWord); } +}; -inline BitVector operator^(const BitVector &LHS, const BitVector &RHS) { - BitVector Result(LHS); - Result ^= RHS; - return Result; +static inline size_t capacity_in_bytes(const BitVector &X) { + return X.getMemorySize(); } } // End llvm namespace