X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FDenseMap.h;h=83edd640e33493125f6539b91125bbce70170b6f;hb=a727d5502c8e23c090da658bf14c5ebc1169a070;hp=5fcdfae9dea71235f54e14e1b8ecc9fee3cda8ac;hpb=4d0d864be3d9a698c4edfe36961a22126f041298;p=oota-llvm.git diff --git a/include/llvm/ADT/DenseMap.h b/include/llvm/ADT/DenseMap.h index 5fcdfae9dea..83edd640e33 100644 --- a/include/llvm/ADT/DenseMap.h +++ b/include/llvm/ADT/DenseMap.h @@ -1,61 +1,355 @@ -//===- DenseMap.h - A dense map implmentation -------------------*- C++ -*-===// -// +//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// +// // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under +// This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // -// This file implements a dense map. A dense map template takes two -// types. The first is the mapped type and the second is a functor -// that maps its argument to a size_t. On instanciation a "null" value -// can be provided to be used as a "does not exist" indicator in the -// map. A member function grow() is provided that given the value of -// the maximally indexed key (the argument of the functor) makes sure -// the map has enough space for it. +// This file defines the DenseMap class. // //===----------------------------------------------------------------------===// -#ifndef SUPPORT_DENSEMAP_H -#define SUPPORT_DENSEMAP_H +#ifndef LLVM_ADT_DENSEMAP_H +#define LLVM_ADT_DENSEMAP_H -#include +#include "llvm/Support/DataTypes.h" +#include +#include namespace llvm { + +template +struct DenseMapKeyInfo { + //static inline T getEmptyKey(); + //static inline T getTombstoneKey(); + //static unsigned getHashValue(const T &Val); + //static bool isPod() +}; -template -class DenseMap { - typedef typename ToIndexT::argument_type IndexT; - typedef std::vector StorageT; - StorageT storage_; - T nullVal_; - ToIndexT toIndex_; +// Provide DenseMapKeyInfo for all pointers. +template +struct DenseMapKeyInfo { + static inline T* getEmptyKey() { return (T*)-1; } + static inline T* getTombstoneKey() { return (T*)-2; } + static unsigned getHashValue(const T *PtrVal) { + return (unsigned)((uintptr_t)PtrVal >> 4) ^ + (unsigned)((uintptr_t)PtrVal >> 9); + } + static bool isPod() { return true; } +}; +template > +class DenseMapIterator; +template > +class DenseMapConstIterator; + +template > +class DenseMap { + typedef std::pair BucketT; + unsigned NumBuckets; + BucketT *Buckets; + + unsigned NumEntries; + unsigned NumTombstones; + DenseMap(const DenseMap &); // not implemented. public: - DenseMap() { } + explicit DenseMap(unsigned NumInitBuckets = 64) { + init(NumInitBuckets); + } + ~DenseMap() { + const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); + for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { + if (P->first != EmptyKey && P->first != TombstoneKey) + P->second.~ValueT(); + P->first.~KeyT(); + } + delete[] (char*)Buckets; + } + + typedef DenseMapIterator iterator; + typedef DenseMapConstIterator const_iterator; + inline iterator begin() { + return iterator(Buckets, Buckets+NumBuckets); + } + inline iterator end() { + return iterator(Buckets+NumBuckets, Buckets+NumBuckets); + } + inline const_iterator begin() const { + return const_iterator(Buckets, Buckets+NumBuckets); + } + inline const_iterator end() const { + return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets); + } + + bool empty() const { return NumEntries == 0; } + unsigned size() const { return NumEntries; } + + void clear() { + const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); + for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { + if (P->first != EmptyKey && P->first != TombstoneKey) { + P->first = EmptyKey; + P->second.~ValueT(); + --NumEntries; + } + } + assert(NumEntries == 0 && "Node count imbalance!"); + NumTombstones = 0; + } + + /// count - Return true if the specified key is in the map. + bool count(const KeyT &Val) const { + BucketT *TheBucket; + return LookupBucketFor(Val, TheBucket); + } + + iterator find(const KeyT &Val) { + BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return iterator(TheBucket, Buckets+NumBuckets); + return end(); + } + const_iterator find(const KeyT &Val) const { + BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return const_iterator(TheBucket, Buckets+NumBuckets); + return end(); + } + + bool insert(const std::pair &KV) { + BucketT *TheBucket; + if (LookupBucketFor(KV.first, TheBucket)) + return false; // Already in map. + + // Otherwise, insert the new element. + InsertIntoBucket(KV.first, KV.second, TheBucket); + return true; + } + + bool erase(const KeyT &Val) { + BucketT *TheBucket; + if (!LookupBucketFor(Val, TheBucket)) + return false; // not in map. - explicit DenseMap(const T& val) : nullVal_(val) { } + TheBucket->second.~ValueT(); + TheBucket->first = getTombstoneKey(); + --NumEntries; + ++NumTombstones; + return true; + } + bool erase(iterator I) { + BucketT *TheBucket = &*I; + TheBucket->second.~ValueT(); + TheBucket->first = getTombstoneKey(); + --NumEntries; + ++NumTombstones; + return true; + } + + ValueT &operator[](const KeyT &Key) { + BucketT *TheBucket; + if (LookupBucketFor(Key, TheBucket)) + return TheBucket->second; - typename StorageT::reference operator[](IndexT n) { - assert(toIndex_(n) < storage_.size() && "index out of bounds!"); - return storage_[toIndex_(n)]; + return InsertIntoBucket(Key, ValueT(), TheBucket)->second; + } + +private: + BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value, + BucketT *TheBucket) { + // If the load of the hash table is more than 3/4, or if fewer than 1/8 of + // the buckets are empty (meaning that many are filled with tombstones), + // grow the table. + // + // The later case is tricky. For example, if we had one empty bucket with + // tons of tombstones, failing lookups (e.g. for insertion) would have to + // probe almost the entire table until it found the empty bucket. If the + // table completely filled with tombstones, no lookup would ever succeed, + // causing infinite loops in lookup. + if (NumEntries*4 >= NumBuckets*3 || + NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) { + this->grow(); + LookupBucketFor(Key, TheBucket); } + ++NumEntries; + + // If we are writing over a tombstone, remember this. + if (TheBucket->first != getEmptyKey()) + --NumTombstones; + + TheBucket->first = Key; + new (&TheBucket->second) ValueT(Value); + return TheBucket; + } - typename StorageT::const_reference operator[](IndexT n) const { - assert(toIndex_(n) < storage_.size() && "index out of bounds!"); - return storage_[toIndex_(n)]; + static unsigned getHashValue(const KeyT &Val) { + return KeyInfoT::getHashValue(Val); + } + static const KeyT getEmptyKey() { + return KeyInfoT::getEmptyKey(); + } + static const KeyT getTombstoneKey() { + return KeyInfoT::getTombstoneKey(); + } + + /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in + /// FoundBucket. If the bucket contains the key and a value, this returns + /// true, otherwise it returns a bucket with an empty marker or tombstone and + /// returns false. + bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const { + unsigned BucketNo = getHashValue(Val); + unsigned ProbeAmt = 1; + BucketT *BucketsPtr = Buckets; + + // FoundTombstone - Keep track of whether we find a tombstone while probing. + BucketT *FoundTombstone = 0; + const KeyT EmptyKey = getEmptyKey(); + const KeyT TombstoneKey = getTombstoneKey(); + assert(Val != EmptyKey && Val != TombstoneKey && + "Empty/Tombstone value shouldn't be inserted into map!"); + + while (1) { + BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1)); + // Found Val's bucket? If so, return it. + if (ThisBucket->first == Val) { + FoundBucket = ThisBucket; + return true; + } + + // If we found an empty bucket, the key doesn't exist in the set. + // Insert it and return the default value. + if (ThisBucket->first == EmptyKey) { + // If we've already seen a tombstone while probing, fill it in instead + // of the empty bucket we eventually probed to. + if (FoundTombstone) ThisBucket = FoundTombstone; + FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; + return false; + } + + // If this is a tombstone, remember it. If Val ends up not in the map, we + // prefer to return it than something that would require more probing. + if (ThisBucket->first == TombstoneKey && !FoundTombstone) + FoundTombstone = ThisBucket; // Remember the first tombstone found. + + // Otherwise, it's a hash collision or a tombstone, continue quadratic + // probing. + BucketNo += ProbeAmt++; } + } - void clear() { - storage_.assign(storage_.size(), nullVal_); - } + void init(unsigned InitBuckets) { + NumEntries = 0; + NumTombstones = 0; + NumBuckets = InitBuckets; + assert(InitBuckets && (InitBuckets & InitBuckets-1) == 0 && + "# initial buckets must be a power of two!"); + Buckets = (BucketT*)new char[sizeof(BucketT)*InitBuckets]; + // Initialize all the keys to EmptyKey. + const KeyT EmptyKey = getEmptyKey(); + for (unsigned i = 0; i != InitBuckets; ++i) + new (&Buckets[i].first) KeyT(EmptyKey); + } + + void grow() { + unsigned OldNumBuckets = NumBuckets; + BucketT *OldBuckets = Buckets; + + // Double the number of buckets. + NumBuckets <<= 1; + NumTombstones = 0; + Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets]; + + // Initialize all the keys to EmptyKey. + const KeyT EmptyKey = getEmptyKey(); + for (unsigned i = 0, e = NumBuckets; i != e; ++i) + new (&Buckets[i].first) KeyT(EmptyKey); - void grow(IndexT n) { - storage_.resize(toIndex_(n) + 1, nullVal_); + // Insert all the old elements. + const KeyT TombstoneKey = getTombstoneKey(); + for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) { + if (B->first != EmptyKey && B->first != TombstoneKey) { + // Insert the key/value into the new table. + BucketT *DestBucket; + bool FoundVal = LookupBucketFor(B->first, DestBucket); + FoundVal = FoundVal; // silence warning. + assert(!FoundVal && "Key already in new map?"); + DestBucket->first = B->first; + new (&DestBucket->second) ValueT(B->second); + + // Free the value. + B->second.~ValueT(); + } + B->first.~KeyT(); } + + // Free the old table. + delete[] (char*)OldBuckets; + } +}; + +template +class DenseMapIterator { + typedef std::pair BucketT; +protected: + const BucketT *Ptr, *End; +public: + DenseMapIterator(const BucketT *Pos, const BucketT *E) : Ptr(Pos), End(E) { + AdvancePastEmptyBuckets(); + } + + std::pair &operator*() const { + return *const_cast(Ptr); + } + std::pair *operator->() const { + return const_cast(Ptr); + } + + bool operator==(const DenseMapIterator &RHS) const { + return Ptr == RHS.Ptr; + } + bool operator!=(const DenseMapIterator &RHS) const { + return Ptr != RHS.Ptr; + } + + inline DenseMapIterator& operator++() { // Preincrement + ++Ptr; + AdvancePastEmptyBuckets(); + return *this; + } + DenseMapIterator operator++(int) { // Postincrement + DenseMapIterator tmp = *this; ++*this; return tmp; + } + +private: + void AdvancePastEmptyBuckets() { + const KeyT Empty = KeyInfoT::getEmptyKey(); + const KeyT Tombstone = KeyInfoT::getTombstoneKey(); + + while (Ptr != End && (Ptr->first == Empty || Ptr->first == Tombstone)) + ++Ptr; + } +}; + +template +class DenseMapConstIterator : public DenseMapIterator { +public: + DenseMapConstIterator(const std::pair *Pos, + const std::pair *E) + : DenseMapIterator(Pos, E) { + } + const std::pair &operator*() const { + return *this->Ptr; + } + const std::pair *operator->() const { + return this->Ptr; + } }; -} // End llvm namespace +} // end namespace llvm #endif