X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FDenseMap.h;h=cbcf7892c97004c01d0cd6263b1bd3ed9d16682c;hb=75eac5f0ebff4d0ffe10ce6bc8f2867c5f15315b;hp=9d55435c91f94ed4397d7bd04c8e13f6679ec7ca;hpb=7c78afefe96669cc3eb886308291213415d9d7b0;p=oota-llvm.git diff --git a/include/llvm/ADT/DenseMap.h b/include/llvm/ADT/DenseMap.h index 9d55435c91f..cbcf7892c97 100644 --- a/include/llvm/ADT/DenseMap.h +++ b/include/llvm/ADT/DenseMap.h @@ -1,63 +1,1039 @@ -//===- DenseMap.h - A dense map implmentation -------------------*- C++ -*-===// -// +//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// +// // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// //===----------------------------------------------------------------------===// // -// This file implements a dense map. A dense map template takes two -// types. The first is the mapped type and the second is a functor -// that maps its argument to a size_t. On instantiation a "null" value -// can be provided to be used as a "does not exist" indicator in the -// map. A member function grow() is provided that given the value of -// the maximally indexed key (the argument of the functor) makes sure -// the map has enough space for it. +// This file defines the DenseMap class. // //===----------------------------------------------------------------------===// -#ifndef SUPPORT_DENSEMAP_H -#define SUPPORT_DENSEMAP_H +#ifndef LLVM_ADT_DENSEMAP_H +#define LLVM_ADT_DENSEMAP_H -#include +#include "llvm/Support/Compiler.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/PointerLikeTypeTraits.h" +#include "llvm/Support/type_traits.h" +#include "llvm/ADT/DenseMapInfo.h" +#include +#include +#include +#include +#include +#include +#include +#include namespace llvm { -template -class DenseMap { - typedef typename ToIndexT::argument_type IndexT; - typedef std::vector StorageT; - StorageT storage_; - T nullVal_; - ToIndexT toIndex_; +template, + bool IsConst = false> +class DenseMapIterator; + +template +class DenseMapBase { +protected: + typedef std::pair BucketT; + +public: + typedef KeyT key_type; + typedef ValueT mapped_type; + typedef BucketT value_type; + + typedef DenseMapIterator iterator; + typedef DenseMapIterator const_iterator; + inline iterator begin() { + // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets(). + return empty() ? end() : iterator(getBuckets(), getBucketsEnd()); + } + inline iterator end() { + return iterator(getBucketsEnd(), getBucketsEnd(), true); + } + inline const_iterator begin() const { + return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd()); + } + inline const_iterator end() const { + return const_iterator(getBucketsEnd(), getBucketsEnd(), true); + } + + bool empty() const { return getNumEntries() == 0; } + unsigned size() const { return getNumEntries(); } + + /// Grow the densemap so that it has at least Size buckets. Does not shrink + void resize(size_t Size) { + if (Size > getNumBuckets()) + grow(Size); + } + + void clear() { + if (getNumEntries() == 0 && getNumTombstones() == 0) return; + + // If the capacity of the array is huge, and the # elements used is small, + // shrink the array. + if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { + shrink_and_clear(); + return; + } + + const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); + for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { + if (!KeyInfoT::isEqual(P->first, EmptyKey)) { + if (!KeyInfoT::isEqual(P->first, TombstoneKey)) { + P->second.~ValueT(); + decrementNumEntries(); + } + P->first = EmptyKey; + } + } + assert(getNumEntries() == 0 && "Node count imbalance!"); + setNumTombstones(0); + } + + /// count - Return true if the specified key is in the map. + bool count(const KeyT &Val) const { + const BucketT *TheBucket; + return LookupBucketFor(Val, TheBucket); + } + + iterator find(const KeyT &Val) { + BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return iterator(TheBucket, getBucketsEnd(), true); + return end(); + } + const_iterator find(const KeyT &Val) const { + const BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return const_iterator(TheBucket, getBucketsEnd(), true); + return end(); + } + + /// Alternate version of find() which allows a different, and possibly + /// less expensive, key type. + /// The DenseMapInfo is responsible for supplying methods + /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key + /// type used. + template + iterator find_as(const LookupKeyT &Val) { + BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return iterator(TheBucket, getBucketsEnd(), true); + return end(); + } + template + const_iterator find_as(const LookupKeyT &Val) const { + const BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return const_iterator(TheBucket, getBucketsEnd(), true); + return end(); + } + + /// lookup - Return the entry for the specified key, or a default + /// constructed value if no such entry exists. + ValueT lookup(const KeyT &Val) const { + const BucketT *TheBucket; + if (LookupBucketFor(Val, TheBucket)) + return TheBucket->second; + return ValueT(); + } + + // Inserts key,value pair into the map if the key isn't already in the map. + // If the key is already in the map, it returns false and doesn't update the + // value. + std::pair insert(const std::pair &KV) { + BucketT *TheBucket; + if (LookupBucketFor(KV.first, TheBucket)) + return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), + false); // Already in map. + + // Otherwise, insert the new element. + TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket); + return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true); + } + + /// insert - Range insertion of pairs. + template + void insert(InputIt I, InputIt E) { + for (; I != E; ++I) + insert(*I); + } + + + bool erase(const KeyT &Val) { + BucketT *TheBucket; + if (!LookupBucketFor(Val, TheBucket)) + return false; // not in map. + + TheBucket->second.~ValueT(); + TheBucket->first = getTombstoneKey(); + decrementNumEntries(); + incrementNumTombstones(); + return true; + } + void erase(iterator I) { + BucketT *TheBucket = &*I; + TheBucket->second.~ValueT(); + TheBucket->first = getTombstoneKey(); + decrementNumEntries(); + incrementNumTombstones(); + } + + value_type& FindAndConstruct(const KeyT &Key) { + BucketT *TheBucket; + if (LookupBucketFor(Key, TheBucket)) + return *TheBucket; + + return *InsertIntoBucket(Key, ValueT(), TheBucket); + } + + ValueT &operator[](const KeyT &Key) { + return FindAndConstruct(Key).second; + } + +#if LLVM_USE_RVALUE_REFERENCES + value_type& FindAndConstruct(KeyT &&Key) { + BucketT *TheBucket; + if (LookupBucketFor(Key, TheBucket)) + return *TheBucket; + + return *InsertIntoBucket(Key, ValueT(), TheBucket); + } + + ValueT &operator[](KeyT &&Key) { + return FindAndConstruct(Key).second; + } +#endif + + /// isPointerIntoBucketsArray - Return true if the specified pointer points + /// somewhere into the DenseMap's array of buckets (i.e. either to a key or + /// value in the DenseMap). + bool isPointerIntoBucketsArray(const void *Ptr) const { + return Ptr >= getBuckets() && Ptr < getBucketsEnd(); + } + + /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets + /// array. In conjunction with the previous method, this can be used to + /// determine whether an insertion caused the DenseMap to reallocate. + const void *getPointerIntoBucketsArray() const { return getBuckets(); } + +protected: + DenseMapBase() {} + + void destroyAll() { + if (getNumBuckets() == 0) // Nothing to do. + return; + + const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); + for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { + if (!KeyInfoT::isEqual(P->first, EmptyKey) && + !KeyInfoT::isEqual(P->first, TombstoneKey)) + P->second.~ValueT(); + P->first.~KeyT(); + } + +#ifndef NDEBUG + memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets()); +#endif + } + + void initEmpty() { + setNumEntries(0); + setNumTombstones(0); + + assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && + "# initial buckets must be a power of two!"); + const KeyT EmptyKey = getEmptyKey(); + for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) + new (&B->first) KeyT(EmptyKey); + } + + void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { + initEmpty(); + + // Insert all the old elements. + const KeyT EmptyKey = getEmptyKey(); + const KeyT TombstoneKey = getTombstoneKey(); + for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { + if (!KeyInfoT::isEqual(B->first, EmptyKey) && + !KeyInfoT::isEqual(B->first, TombstoneKey)) { + // Insert the key/value into the new table. + BucketT *DestBucket; + bool FoundVal = LookupBucketFor(B->first, DestBucket); + (void)FoundVal; // silence warning. + assert(!FoundVal && "Key already in new map?"); + DestBucket->first = llvm_move(B->first); + new (&DestBucket->second) ValueT(llvm_move(B->second)); + incrementNumEntries(); + + // Free the value. + B->second.~ValueT(); + } + B->first.~KeyT(); + } + +#ifndef NDEBUG + if (OldBucketsBegin != OldBucketsEnd) + memset((void*)OldBucketsBegin, 0x5a, + sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin)); +#endif + } + + template + void copyFrom(const DenseMapBase& other) { + assert(getNumBuckets() == other.getNumBuckets()); + + setNumEntries(other.getNumEntries()); + setNumTombstones(other.getNumTombstones()); + + if (isPodLike::value && isPodLike::value) + memcpy(getBuckets(), other.getBuckets(), + getNumBuckets() * sizeof(BucketT)); + else + for (size_t i = 0; i < getNumBuckets(); ++i) { + new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first); + if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) && + !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey())) + new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second); + } + } + + void swap(DenseMapBase& RHS) { + std::swap(getNumEntries(), RHS.getNumEntries()); + std::swap(getNumTombstones(), RHS.getNumTombstones()); + } + + static unsigned getHashValue(const KeyT &Val) { + return KeyInfoT::getHashValue(Val); + } + template + static unsigned getHashValue(const LookupKeyT &Val) { + return KeyInfoT::getHashValue(Val); + } + static const KeyT getEmptyKey() { + return KeyInfoT::getEmptyKey(); + } + static const KeyT getTombstoneKey() { + return KeyInfoT::getTombstoneKey(); + } + +private: + unsigned getNumEntries() const { + return static_cast(this)->getNumEntries(); + } + void setNumEntries(unsigned Num) { + static_cast(this)->setNumEntries(Num); + } + void incrementNumEntries() { + setNumEntries(getNumEntries() + 1); + } + void decrementNumEntries() { + setNumEntries(getNumEntries() - 1); + } + unsigned getNumTombstones() const { + return static_cast(this)->getNumTombstones(); + } + void setNumTombstones(unsigned Num) { + static_cast(this)->setNumTombstones(Num); + } + void incrementNumTombstones() { + setNumTombstones(getNumTombstones() + 1); + } + void decrementNumTombstones() { + setNumTombstones(getNumTombstones() - 1); + } + const BucketT *getBuckets() const { + return static_cast(this)->getBuckets(); + } + BucketT *getBuckets() { + return static_cast(this)->getBuckets(); + } + unsigned getNumBuckets() const { + return static_cast(this)->getNumBuckets(); + } + BucketT *getBucketsEnd() { + return getBuckets() + getNumBuckets(); + } + const BucketT *getBucketsEnd() const { + return getBuckets() + getNumBuckets(); + } + + void grow(unsigned AtLeast) { + static_cast(this)->grow(AtLeast); + } + + void shrink_and_clear() { + static_cast(this)->shrink_and_clear(); + } + + + BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value, + BucketT *TheBucket) { + TheBucket = InsertIntoBucketImpl(Key, TheBucket); + + TheBucket->first = Key; + new (&TheBucket->second) ValueT(Value); + return TheBucket; + } + +#if LLVM_USE_RVALUE_REFERENCES + BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value, + BucketT *TheBucket) { + TheBucket = InsertIntoBucketImpl(Key, TheBucket); + + TheBucket->first = Key; + new (&TheBucket->second) ValueT(std::move(Value)); + return TheBucket; + } + + BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) { + TheBucket = InsertIntoBucketImpl(Key, TheBucket); + + TheBucket->first = std::move(Key); + new (&TheBucket->second) ValueT(std::move(Value)); + return TheBucket; + } +#endif + + BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) { + // If the load of the hash table is more than 3/4, or if fewer than 1/8 of + // the buckets are empty (meaning that many are filled with tombstones), + // grow the table. + // + // The later case is tricky. For example, if we had one empty bucket with + // tons of tombstones, failing lookups (e.g. for insertion) would have to + // probe almost the entire table until it found the empty bucket. If the + // table completely filled with tombstones, no lookup would ever succeed, + // causing infinite loops in lookup. + unsigned NewNumEntries = getNumEntries() + 1; + unsigned NumBuckets = getNumBuckets(); + if (NewNumEntries*4 >= NumBuckets*3) { + this->grow(NumBuckets * 2); + LookupBucketFor(Key, TheBucket); + NumBuckets = getNumBuckets(); + } + if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) { + this->grow(NumBuckets); + LookupBucketFor(Key, TheBucket); + } + assert(TheBucket); + + // Only update the state after we've grown our bucket space appropriately + // so that when growing buckets we have self-consistent entry count. + incrementNumEntries(); + + // If we are writing over a tombstone, remember this. + if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey())) + decrementNumTombstones(); + + return TheBucket; + } + + /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in + /// FoundBucket. If the bucket contains the key and a value, this returns + /// true, otherwise it returns a bucket with an empty marker or tombstone and + /// returns false. + template + bool LookupBucketFor(const LookupKeyT &Val, + const BucketT *&FoundBucket) const { + const BucketT *BucketsPtr = getBuckets(); + const unsigned NumBuckets = getNumBuckets(); + + if (NumBuckets == 0) { + FoundBucket = 0; + return false; + } + + // FoundTombstone - Keep track of whether we find a tombstone while probing. + const BucketT *FoundTombstone = 0; + const KeyT EmptyKey = getEmptyKey(); + const KeyT TombstoneKey = getTombstoneKey(); + assert(!KeyInfoT::isEqual(Val, EmptyKey) && + !KeyInfoT::isEqual(Val, TombstoneKey) && + "Empty/Tombstone value shouldn't be inserted into map!"); + + unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); + unsigned ProbeAmt = 1; + while (1) { + const BucketT *ThisBucket = BucketsPtr + BucketNo; + // Found Val's bucket? If so, return it. + if (KeyInfoT::isEqual(Val, ThisBucket->first)) { + FoundBucket = ThisBucket; + return true; + } + + // If we found an empty bucket, the key doesn't exist in the set. + // Insert it and return the default value. + if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) { + // If we've already seen a tombstone while probing, fill it in instead + // of the empty bucket we eventually probed to. + if (FoundTombstone) ThisBucket = FoundTombstone; + FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; + return false; + } + + // If this is a tombstone, remember it. If Val ends up not in the map, we + // prefer to return it than something that would require more probing. + if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone) + FoundTombstone = ThisBucket; // Remember the first tombstone found. + + // Otherwise, it's a hash collision or a tombstone, continue quadratic + // probing. + BucketNo += ProbeAmt++; + BucketNo &= (NumBuckets-1); + } + } + + template + bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { + const BucketT *ConstFoundBucket; + bool Result = const_cast(this) + ->LookupBucketFor(Val, ConstFoundBucket); + FoundBucket = const_cast(ConstFoundBucket); + return Result; + } + +public: + /// Return the approximate size (in bytes) of the actual map. + /// This is just the raw memory used by DenseMap. + /// If entries are pointers to objects, the size of the referenced objects + /// are not included. + size_t getMemorySize() const { + return getNumBuckets() * sizeof(BucketT); + } +}; + +template > +class DenseMap + : public DenseMapBase, + KeyT, ValueT, KeyInfoT> { + // Lift some types from the dependent base class into this class for + // simplicity of referring to them. + typedef DenseMapBase BaseT; + typedef typename BaseT::BucketT BucketT; + friend class DenseMapBase; + + BucketT *Buckets; + unsigned NumEntries; + unsigned NumTombstones; + unsigned NumBuckets; public: - DenseMap() : nullVal_(T()) { } + explicit DenseMap(unsigned NumInitBuckets = 0) { + init(NumInitBuckets); + } + + DenseMap(const DenseMap &other) { + init(0); + copyFrom(other); + } + +#if LLVM_USE_RVALUE_REFERENCES + DenseMap(DenseMap &&other) { + init(0); + swap(other); + } +#endif + + template + DenseMap(const InputIt &I, const InputIt &E) { + init(NextPowerOf2(std::distance(I, E))); + this->insert(I, E); + } + + ~DenseMap() { + this->destroyAll(); + operator delete(Buckets); + } - explicit DenseMap(const T& val) : nullVal_(val) { } + void swap(DenseMap& RHS) { + std::swap(Buckets, RHS.Buckets); + std::swap(NumEntries, RHS.NumEntries); + std::swap(NumTombstones, RHS.NumTombstones); + std::swap(NumBuckets, RHS.NumBuckets); + } - typename StorageT::reference operator[](IndexT n) { - assert(toIndex_(n) < storage_.size() && "index out of bounds!"); - return storage_[toIndex_(n)]; + DenseMap& operator=(const DenseMap& other) { + copyFrom(other); + return *this; + } + +#if LLVM_USE_RVALUE_REFERENCES + DenseMap& operator=(DenseMap &&other) { + this->destroyAll(); + operator delete(Buckets); + init(0); + swap(other); + return *this; + } +#endif + + void copyFrom(const DenseMap& other) { + this->destroyAll(); + operator delete(Buckets); + if (allocateBuckets(other.NumBuckets)) { + this->BaseT::copyFrom(other); + } else { + NumEntries = 0; + NumTombstones = 0; } + } - typename StorageT::const_reference operator[](IndexT n) const { - assert(toIndex_(n) < storage_.size() && "index out of bounds!"); - return storage_[toIndex_(n)]; + void init(unsigned InitBuckets) { + if (allocateBuckets(InitBuckets)) { + this->BaseT::initEmpty(); + } else { + NumEntries = 0; + NumTombstones = 0; } + } - void clear() { - storage_.clear(); + void grow(unsigned AtLeast) { + unsigned OldNumBuckets = NumBuckets; + BucketT *OldBuckets = Buckets; + + allocateBuckets(std::max(64, NextPowerOf2(AtLeast))); + assert(Buckets); + if (!OldBuckets) { + this->BaseT::initEmpty(); + return; } - void grow(IndexT n) { - unsigned NewSize = toIndex_(n) + 1; - if (NewSize > storage_.size()) - storage_.resize(NewSize, nullVal_); + this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); + + // Free the old table. + operator delete(OldBuckets); + } + + void shrink_and_clear() { + unsigned OldNumEntries = NumEntries; + this->destroyAll(); + + // Reduce the number of buckets. + unsigned NewNumBuckets = 0; + if (OldNumEntries) + NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); + if (NewNumBuckets == NumBuckets) { + this->BaseT::initEmpty(); + return; + } + + operator delete(Buckets); + init(NewNumBuckets); + } + +private: + unsigned getNumEntries() const { + return NumEntries; + } + void setNumEntries(unsigned Num) { + NumEntries = Num; + } + + unsigned getNumTombstones() const { + return NumTombstones; + } + void setNumTombstones(unsigned Num) { + NumTombstones = Num; + } + + BucketT *getBuckets() const { + return Buckets; + } + + unsigned getNumBuckets() const { + return NumBuckets; + } + + bool allocateBuckets(unsigned Num) { + NumBuckets = Num; + if (NumBuckets == 0) { + Buckets = 0; + return false; } + + Buckets = static_cast(operator new(sizeof(BucketT) * NumBuckets)); + return true; + } +}; + +template > +class SmallDenseMap + : public DenseMapBase, + KeyT, ValueT, KeyInfoT> { + // Lift some types from the dependent base class into this class for + // simplicity of referring to them. + typedef DenseMapBase BaseT; + typedef typename BaseT::BucketT BucketT; + friend class DenseMapBase; + + unsigned Small : 1; + unsigned NumEntries : 31; + unsigned NumTombstones; + + struct LargeRep { + BucketT *Buckets; + unsigned NumBuckets; + }; + + /// A "union" of an inline bucket array and the struct representing + /// a large bucket. This union will be discriminated by the 'Small' bit. + AlignedCharArrayUnion storage; + +public: + explicit SmallDenseMap(unsigned NumInitBuckets = 0) { + init(NumInitBuckets); + } + + SmallDenseMap(const SmallDenseMap &other) { + init(0); + copyFrom(other); + } + +#if LLVM_USE_RVALUE_REFERENCES + SmallDenseMap(SmallDenseMap &&other) { + init(0); + swap(other); + } +#endif + + template + SmallDenseMap(const InputIt &I, const InputIt &E) { + init(NextPowerOf2(std::distance(I, E))); + this->insert(I, E); + } + + ~SmallDenseMap() { + this->destroyAll(); + deallocateBuckets(); + } + + void swap(SmallDenseMap& RHS) { + unsigned TmpNumEntries = RHS.NumEntries; + RHS.NumEntries = NumEntries; + NumEntries = TmpNumEntries; + std::swap(NumTombstones, RHS.NumTombstones); + + const KeyT EmptyKey = this->getEmptyKey(); + const KeyT TombstoneKey = this->getTombstoneKey(); + if (Small && RHS.Small) { + // If we're swapping inline bucket arrays, we have to cope with some of + // the tricky bits of DenseMap's storage system: the buckets are not + // fully initialized. Thus we swap every key, but we may have + // a one-directional move of the value. + for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { + BucketT *LHSB = &getInlineBuckets()[i], + *RHSB = &RHS.getInlineBuckets()[i]; + bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) && + !KeyInfoT::isEqual(LHSB->first, TombstoneKey)); + bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) && + !KeyInfoT::isEqual(RHSB->first, TombstoneKey)); + if (hasLHSValue && hasRHSValue) { + // Swap together if we can... + std::swap(*LHSB, *RHSB); + continue; + } + // Swap separately and handle any assymetry. + std::swap(LHSB->first, RHSB->first); + if (hasLHSValue) { + new (&RHSB->second) ValueT(llvm_move(LHSB->second)); + LHSB->second.~ValueT(); + } else if (hasRHSValue) { + new (&LHSB->second) ValueT(llvm_move(RHSB->second)); + RHSB->second.~ValueT(); + } + } + return; + } + if (!Small && !RHS.Small) { + std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); + std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); + return; + } + + SmallDenseMap &SmallSide = Small ? *this : RHS; + SmallDenseMap &LargeSide = Small ? RHS : *this; + + // First stash the large side's rep and move the small side across. + LargeRep TmpRep = llvm_move(*LargeSide.getLargeRep()); + LargeSide.getLargeRep()->~LargeRep(); + LargeSide.Small = true; + // This is similar to the standard move-from-old-buckets, but the bucket + // count hasn't actually rotated in this case. So we have to carefully + // move construct the keys and values into their new locations, but there + // is no need to re-hash things. + for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { + BucketT *NewB = &LargeSide.getInlineBuckets()[i], + *OldB = &SmallSide.getInlineBuckets()[i]; + new (&NewB->first) KeyT(llvm_move(OldB->first)); + OldB->first.~KeyT(); + if (!KeyInfoT::isEqual(NewB->first, EmptyKey) && + !KeyInfoT::isEqual(NewB->first, TombstoneKey)) { + new (&NewB->second) ValueT(llvm_move(OldB->second)); + OldB->second.~ValueT(); + } + } + + // The hard part of moving the small buckets across is done, just move + // the TmpRep into its new home. + SmallSide.Small = false; + new (SmallSide.getLargeRep()) LargeRep(llvm_move(TmpRep)); + } + + SmallDenseMap& operator=(const SmallDenseMap& other) { + copyFrom(other); + return *this; + } + +#if LLVM_USE_RVALUE_REFERENCES + SmallDenseMap& operator=(SmallDenseMap &&other) { + this->destroyAll(); + deallocateBuckets(); + init(0); + swap(other); + return *this; + } +#endif + + void copyFrom(const SmallDenseMap& other) { + this->destroyAll(); + deallocateBuckets(); + Small = true; + if (other.getNumBuckets() > InlineBuckets) { + Small = false; + allocateBuckets(other.getNumBuckets()); + } + this->BaseT::copyFrom(other); + } + + void init(unsigned InitBuckets) { + Small = true; + if (InitBuckets > InlineBuckets) { + Small = false; + new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); + } + this->BaseT::initEmpty(); + } + + void grow(unsigned AtLeast) { + if (AtLeast > InlineBuckets) + AtLeast = std::max(64, NextPowerOf2(AtLeast)); + + if (Small) { + if (AtLeast <= InlineBuckets) + return; // Nothing to do. + + // First move the inline buckets into a temporary storage. + AlignedCharArrayUnion TmpStorage; + BucketT *TmpBegin = reinterpret_cast(TmpStorage.buffer); + BucketT *TmpEnd = TmpBegin; + + // Loop over the buckets, moving non-empty, non-tombstones into the + // temporary storage. Have the loop move the TmpEnd forward as it goes. + const KeyT EmptyKey = this->getEmptyKey(); + const KeyT TombstoneKey = this->getTombstoneKey(); + for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { + if (!KeyInfoT::isEqual(P->first, EmptyKey) && + !KeyInfoT::isEqual(P->first, TombstoneKey)) { + assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && + "Too many inline buckets!"); + new (&TmpEnd->first) KeyT(llvm_move(P->first)); + new (&TmpEnd->second) ValueT(llvm_move(P->second)); + ++TmpEnd; + P->second.~ValueT(); + } + P->first.~KeyT(); + } + + // Now make this map use the large rep, and move all the entries back + // into it. + Small = false; + new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); + this->moveFromOldBuckets(TmpBegin, TmpEnd); + return; + } + + LargeRep OldRep = llvm_move(*getLargeRep()); + getLargeRep()->~LargeRep(); + if (AtLeast <= InlineBuckets) { + Small = true; + } else { + new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); + } + + this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); + + // Free the old table. + operator delete(OldRep.Buckets); + } + + void shrink_and_clear() { + unsigned OldSize = this->size(); + this->destroyAll(); + + // Reduce the number of buckets. + unsigned NewNumBuckets = 0; + if (OldSize) { + NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); + if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) + NewNumBuckets = 64; + } + if ((Small && NewNumBuckets <= InlineBuckets) || + (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { + this->BaseT::initEmpty(); + return; + } + + deallocateBuckets(); + init(NewNumBuckets); + } + +private: + unsigned getNumEntries() const { + return NumEntries; + } + void setNumEntries(unsigned Num) { + assert(Num < INT_MAX && "Cannot support more than INT_MAX entries"); + NumEntries = Num; + } + + unsigned getNumTombstones() const { + return NumTombstones; + } + void setNumTombstones(unsigned Num) { + NumTombstones = Num; + } + + const BucketT *getInlineBuckets() const { + assert(Small); + // Note that this cast does not violate aliasing rules as we assert that + // the memory's dynamic type is the small, inline bucket buffer, and the + // 'storage.buffer' static type is 'char *'. + return reinterpret_cast(storage.buffer); + } + BucketT *getInlineBuckets() { + return const_cast( + const_cast(this)->getInlineBuckets()); + } + const LargeRep *getLargeRep() const { + assert(!Small); + // Note, same rule about aliasing as with getInlineBuckets. + return reinterpret_cast(storage.buffer); + } + LargeRep *getLargeRep() { + return const_cast( + const_cast(this)->getLargeRep()); + } + + const BucketT *getBuckets() const { + return Small ? getInlineBuckets() : getLargeRep()->Buckets; + } + BucketT *getBuckets() { + return const_cast( + const_cast(this)->getBuckets()); + } + unsigned getNumBuckets() const { + return Small ? InlineBuckets : getLargeRep()->NumBuckets; + } + + void deallocateBuckets() { + if (Small) + return; + + operator delete(getLargeRep()->Buckets); + getLargeRep()->~LargeRep(); + } + + LargeRep allocateBuckets(unsigned Num) { + assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); + LargeRep Rep = { + static_cast(operator new(sizeof(BucketT) * Num)), Num + }; + return Rep; + } +}; + +template +class DenseMapIterator { + typedef std::pair Bucket; + typedef DenseMapIterator ConstIterator; + friend class DenseMapIterator; +public: + typedef ptrdiff_t difference_type; + typedef typename conditional::type value_type; + typedef value_type *pointer; + typedef value_type &reference; + typedef std::forward_iterator_tag iterator_category; +private: + pointer Ptr, End; +public: + DenseMapIterator() : Ptr(0), End(0) {} + + DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false) + : Ptr(Pos), End(E) { + if (!NoAdvance) AdvancePastEmptyBuckets(); + } + + // If IsConst is true this is a converting constructor from iterator to + // const_iterator and the default copy constructor is used. + // Otherwise this is a copy constructor for iterator. + DenseMapIterator(const DenseMapIterator& I) + : Ptr(I.Ptr), End(I.End) {} + + reference operator*() const { + return *Ptr; + } + pointer operator->() const { + return Ptr; + } + + bool operator==(const ConstIterator &RHS) const { + return Ptr == RHS.operator->(); + } + bool operator!=(const ConstIterator &RHS) const { + return Ptr != RHS.operator->(); + } + + inline DenseMapIterator& operator++() { // Preincrement + ++Ptr; + AdvancePastEmptyBuckets(); + return *this; + } + DenseMapIterator operator++(int) { // Postincrement + DenseMapIterator tmp = *this; ++*this; return tmp; + } + +private: + void AdvancePastEmptyBuckets() { + const KeyT Empty = KeyInfoT::getEmptyKey(); + const KeyT Tombstone = KeyInfoT::getTombstoneKey(); + + while (Ptr != End && + (KeyInfoT::isEqual(Ptr->first, Empty) || + KeyInfoT::isEqual(Ptr->first, Tombstone))) + ++Ptr; + } }; + +template +static inline size_t +capacity_in_bytes(const DenseMap &X) { + return X.getMemorySize(); +} -} // End llvm namespace +} // end namespace llvm #endif