X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FImmutableSet.h;h=be274dbe6758ce18fbdfb540c187996fee0536df;hb=670031666cf4dea0d122a0df2ec1d18822c225e4;hp=a0a28df2a360d1f53f3d80b0cadebe8392245b15;hpb=37474bce024c4a1e85dd777a8b489af60eb4c699;p=oota-llvm.git diff --git a/include/llvm/ADT/ImmutableSet.h b/include/llvm/ADT/ImmutableSet.h index a0a28df2a36..be274dbe675 100644 --- a/include/llvm/ADT/ImmutableSet.h +++ b/include/llvm/ADT/ImmutableSet.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Ted Kremenek and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -16,18 +16,20 @@ #include "llvm/Support/Allocator.h" #include "llvm/ADT/FoldingSet.h" +#include "llvm/Support/DataTypes.h" #include +#include namespace llvm { - -//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// // Immutable AVL-Tree Definition. //===----------------------------------------------------------------------===// template class ImutAVLFactory; - template class ImutAVLTreeInOrderIterator; - +template class ImutAVLTreeGenericIterator; + template class ImutAVLTree : public FoldingSetNode { public: @@ -37,41 +39,43 @@ public: typedef ImutAVLFactory Factory; friend class ImutAVLFactory; - + + friend class ImutAVLTreeGenericIterator; + friend class FoldingSet; + typedef ImutAVLTreeInOrderIterator iterator; - - //===----------------------------------------------------===// + + //===----------------------------------------------------===// // Public Interface. - //===----------------------------------------------------===// - + //===----------------------------------------------------===// + /// getLeft - Returns a pointer to the left subtree. This value /// is NULL if there is no left subtree. - ImutAVLTree* getLeft() const { + ImutAVLTree* getLeft() const { assert (!isMutable() && "Node is incorrectly marked mutable."); - + return reinterpret_cast(Left); } - + /// getRight - Returns a pointer to the right subtree. This value is /// NULL if there is no right subtree. - ImutAVLTree* getRight() const { return Right; } - - + ImutAVLTree* getRight() const { return Right; } + /// getHeight - Returns the height of the tree. A tree with no subtrees /// has a height of 1. - unsigned getHeight() const { return Height; } - + unsigned getHeight() const { return Height; } + /// getValue - Returns the data value associated with the tree node. const value_type& getValue() const { return Value; } - + /// find - Finds the subtree associated with the specified key value. /// This method returns NULL if no matching subtree is found. ImutAVLTree* find(key_type_ref K) { ImutAVLTree *T = this; - + while (T) { key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); - + if (ImutInfo::isEqual(K,CurrentKey)) return T; else if (ImutInfo::isLess(K,CurrentKey)) @@ -79,81 +83,105 @@ public: else T = T->getRight(); } - + return NULL; } + /// getMaxElement - Find the subtree associated with the highest ranged + /// key value. + ImutAVLTree* getMaxElement() { + ImutAVLTree *T = this; + ImutAVLTree *Right = T->getRight(); + while (Right) { T = Right; Right = T->getRight(); } + return T; + } + /// size - Returns the number of nodes in the tree, which includes /// both leaves and non-leaf nodes. unsigned size() const { unsigned n = 1; - + if (const ImutAVLTree* L = getLeft()) n += L->size(); if (const ImutAVLTree* R = getRight()) n += R->size(); - + return n; } - + /// begin - Returns an iterator that iterates over the nodes of the tree /// in an inorder traversal. The returned iterator thus refers to the /// the tree node with the minimum data element. iterator begin() const { return iterator(this); } - + /// end - Returns an iterator for the tree that denotes the end of an /// inorder traversal. iterator end() const { return iterator(); } - + + bool ElementEqual(value_type_ref V) const { + // Compare the keys. + if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(V))) + return false; + + // Also compare the data values. + if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), + ImutInfo::DataOfValue(V))) + return false; + + return true; + } + + bool ElementEqual(const ImutAVLTree* RHS) const { + return ElementEqual(RHS->getValue()); + } + /// isEqual - Compares two trees for structural equality and returns true /// if they are equal. This worst case performance of this operation is // linear in the sizes of the trees. bool isEqual(const ImutAVLTree& RHS) const { if (&RHS == this) return true; - + iterator LItr = begin(), LEnd = end(); iterator RItr = RHS.begin(), REnd = RHS.end(); - + while (LItr != LEnd && RItr != REnd) { if (*LItr == *RItr) { LItr.SkipSubTree(); RItr.SkipSubTree(); continue; } - - // FIXME: need to compare data values, not key values, but our - // traits don't support this yet. - if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(LItr->getValue()), - ImutInfo::KeyOfValue(RItr->getValue()))) + + if (!LItr->ElementEqual(*RItr)) return false; - + ++LItr; ++RItr; } - + return LItr == LEnd && RItr == REnd; } /// isNotEqual - Compares two trees for structural inequality. Performance /// is the same is isEqual. bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } - + /// contains - Returns true if this tree contains a subtree (node) that /// has an data element that matches the specified key. Complexity /// is logarithmic in the size of the tree. bool contains(const key_type_ref K) { return (bool) find(K); } - + /// foreach - A member template the accepts invokes operator() on a functor /// object (specifed by Callback) for every node/subtree in the tree. /// Nodes are visited using an inorder traversal. template void foreach(Callback& C) { if (ImutAVLTree* L = getLeft()) L->foreach(C); - - C(Value); - + + C(Value); + if (ImutAVLTree* R = getRight()) R->foreach(C); } - + /// verify - A utility method that checks that the balancing and /// ordering invariants of the tree are satisifed. It is a recursive /// method that returns the height of the tree, which is then consumed @@ -163,158 +191,234 @@ public: unsigned verify() const { unsigned HL = getLeft() ? getLeft()->verify() : 0; unsigned HR = getRight() ? getRight()->verify() : 0; - - assert (getHeight() == ( HL > HR ? HL : HR ) + 1 + + assert (getHeight() == ( HL > HR ? HL : HR ) + 1 && "Height calculation wrong."); - + assert ((HL > HR ? HL-HR : HR-HL) <= 2 && "Balancing invariant violated."); - - + + assert (!getLeft() || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), ImutInfo::KeyOfValue(getValue())) && "Value in left child is not less that current value."); - - + + assert (!getRight() || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), ImutInfo::KeyOfValue(getRight()->getValue())) && "Current value is not less that value of right child."); - + return getHeight(); - } - - //===----------------------------------------------------===// + } + + /// Profile - Profiling for ImutAVLTree. + void Profile(llvm::FoldingSetNodeID& ID) { + ID.AddInteger(ComputeDigest()); + } + + //===----------------------------------------------------===// // Internal Values. //===----------------------------------------------------===// - + private: uintptr_t Left; ImutAVLTree* Right; unsigned Height; value_type Value; - - //===----------------------------------------------------===// - // Profiling or FoldingSet. + unsigned Digest; + //===----------------------------------------------------===// - - static inline - void Profile(FoldingSetNodeID& ID, ImutAVLTree* L, ImutAVLTree* R, - value_type_ref V) { - ID.AddPointer(L); - ID.AddPointer(R); - ImutInfo::Profile(ID,V); - } - -public: - - void Profile(FoldingSetNodeID& ID) { - Profile(ID,getSafeLeft(),getRight(),getValue()); - } - - //===----------------------------------------------------===// // Internal methods (node manipulation; used by Factory). //===----------------------------------------------------===// - + private: - + + enum { Mutable = 0x1 }; + + /// ImutAVLTree - Internal constructor that is only called by + /// ImutAVLFactory. ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height) - : Left(reinterpret_cast(l) | 0x1), - Right(r), Height(height), Value(v) {} - - bool isMutable() const { return Left & 0x1; } - - ImutAVLTree* getSafeLeft() const { - return reinterpret_cast(Left & ~0x1); + : Left(reinterpret_cast(l) | Mutable), + Right(r), Height(height), Value(v), Digest(0) {} + + + /// isMutable - Returns true if the left and right subtree references + /// (as well as height) can be changed. If this method returns false, + /// the tree is truly immutable. Trees returned from an ImutAVLFactory + /// object should always have this method return true. Further, if this + /// method returns false for an instance of ImutAVLTree, all subtrees + /// will also have this method return false. The converse is not true. + bool isMutable() const { return Left & Mutable; } + + /// getSafeLeft - Returns the pointer to the left tree by always masking + /// out the mutable bit. This is used internally by ImutAVLFactory, + /// as no trees returned to the client should have the mutable flag set. + ImutAVLTree* getSafeLeft() const { + return reinterpret_cast(Left & ~Mutable); } - - // Mutating operations. A tree root can be manipulated as long as - // its reference has not "escaped" from internal methods of a - // factory object (see below). When a tree pointer is externally - // viewable by client code, the internal "mutable bit" is cleared - // to mark the tree immutable. Note that a tree that still has - // its mutable bit set may have children (subtrees) that are themselves + + //===----------------------------------------------------===// + // Mutating operations. A tree root can be manipulated as + // long as its reference has not "escaped" from internal + // methods of a factory object (see below). When a tree + // pointer is externally viewable by client code, the + // internal "mutable bit" is cleared to mark the tree + // immutable. Note that a tree that still has its mutable + // bit set may have children (subtrees) that are themselves // immutable. - - void RemoveMutableFlag() { - assert (Left & 0x1 && "Mutable flag already removed."); - Left &= ~0x1; + //===----------------------------------------------------===// + + + /// MarkImmutable - Clears the mutable flag for a tree. After this happens, + /// it is an error to call setLeft(), setRight(), and setHeight(). It + /// is also then safe to call getLeft() instead of getSafeLeft(). + void MarkImmutable() { + assert (isMutable() && "Mutable flag already removed."); + Left &= ~Mutable; } - + + /// setLeft - Changes the reference of the left subtree. Used internally + /// by ImutAVLFactory. void setLeft(ImutAVLTree* NewLeft) { - assert (isMutable()); - Left = reinterpret_cast(NewLeft) | 0x1; + assert (isMutable() && + "Only a mutable tree can have its left subtree changed."); + + Left = reinterpret_cast(NewLeft) | Mutable; } - + + /// setRight - Changes the reference of the right subtree. Used internally + /// by ImutAVLFactory. void setRight(ImutAVLTree* NewRight) { - assert (isMutable()); + assert (isMutable() && + "Only a mutable tree can have its right subtree changed."); + Right = NewRight; } - + + /// setHeight - Changes the height of the tree. Used internally by + /// ImutAVLFactory. void setHeight(unsigned h) { - assert (isMutable()); + assert (isMutable() && "Only a mutable tree can have its height changed."); Height = h; } + + + static inline + unsigned ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) { + unsigned digest = 0; + + if (L) digest += L->ComputeDigest(); + + { // Compute digest of stored data. + FoldingSetNodeID ID; + ImutInfo::Profile(ID,V); + digest += ID.ComputeHash(); + } + + if (R) digest += R->ComputeDigest(); + + return digest; + } + + inline unsigned ComputeDigest() { + if (Digest) return Digest; + + unsigned X = ComputeDigest(getSafeLeft(), getRight(), getValue()); + if (!isMutable()) Digest = X; + + return X; + } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Immutable AVL-Tree Factory class. //===----------------------------------------------------------------------===// -template +template class ImutAVLFactory { typedef ImutAVLTree TreeTy; typedef typename TreeTy::value_type_ref value_type_ref; typedef typename TreeTy::key_type_ref key_type_ref; - + typedef FoldingSet CacheTy; - - CacheTy Cache; - BumpPtrAllocator Allocator; - - //===--------------------------------------------------===// + + CacheTy Cache; + uintptr_t Allocator; + + bool ownsAllocator() const { + return Allocator & 0x1 ? false : true; + } + + BumpPtrAllocator& getAllocator() const { + return *reinterpret_cast(Allocator & ~0x1); + } + + //===--------------------------------------------------===// // Public interface. //===--------------------------------------------------===// - + public: - ImutAVLFactory() {} - + ImutAVLFactory() + : Allocator(reinterpret_cast(new BumpPtrAllocator())) {} + + ImutAVLFactory(BumpPtrAllocator& Alloc) + : Allocator(reinterpret_cast(&Alloc) | 0x1) {} + + ~ImutAVLFactory() { + if (ownsAllocator()) delete &getAllocator(); + } + TreeTy* Add(TreeTy* T, value_type_ref V) { T = Add_internal(V,T); MarkImmutable(T); return T; } - + TreeTy* Remove(TreeTy* T, key_type_ref V) { T = Remove_internal(V,T); MarkImmutable(T); return T; } - + TreeTy* GetEmptyTree() const { return NULL; } - - //===--------------------------------------------------===// + + //===--------------------------------------------------===// // A bunch of quick helper functions used for reasoning // about the properties of trees and their children. // These have succinct names so that the balancing code // is as terse (and readable) as possible. //===--------------------------------------------------===// private: - + bool isEmpty(TreeTy* T) const { return !T; } - unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; } + unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; } TreeTy* Left(TreeTy* T) const { return T->getSafeLeft(); } - TreeTy* Right(TreeTy* T) const { return T->getRight(); } + TreeTy* Right(TreeTy* T) const { return T->getRight(); } value_type_ref Value(TreeTy* T) const { return T->Value; } - + unsigned IncrementHeight(TreeTy* L, TreeTy* R) const { unsigned hl = Height(L); unsigned hr = Height(R); return ( hl > hr ? hl : hr ) + 1; } - - //===--------------------------------------------------===// + + + static bool CompareTreeWithSection(TreeTy* T, + typename TreeTy::iterator& TI, + typename TreeTy::iterator& TE) { + + typename TreeTy::iterator I = T->begin(), E = T->end(); + + for ( ; I!=E ; ++I, ++TI) + if (TI == TE || !I->ElementEqual(*TI)) + return false; + + return true; + } + + //===--------------------------------------------------===// // "CreateNode" is used to generate new tree roots that link // to other trees. The functon may also simply move links // in an existing root if that root is still marked mutable. @@ -323,28 +427,69 @@ private: // then discarded later before the finished tree is // returned to the caller. //===--------------------------------------------------===// - + TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) { - FoldingSetNodeID ID; - TreeTy::Profile(ID,L,R,V); - void* InsertPos; - - if (TreeTy* T = Cache.FindNodeOrInsertPos(ID,InsertPos)) + // Search the FoldingSet bucket for a Tree with the same digest. + FoldingSetNodeID ID; + unsigned digest = TreeTy::ComputeDigest(L, R, V); + ID.AddInteger(digest); + unsigned hash = ID.ComputeHash(); + + typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash); + typename CacheTy::bucket_iterator E = Cache.bucket_end(hash); + + for (; I != E; ++I) { + TreeTy* T = &*I; + + if (T->ComputeDigest() != digest) + continue; + + // We found a collision. Perform a comparison of Contents('T') + // with Contents('L')+'V'+Contents('R'). + + typename TreeTy::iterator TI = T->begin(), TE = T->end(); + + // First compare Contents('L') with the (initial) contents of T. + if (!CompareTreeWithSection(L, TI, TE)) + continue; + + // Now compare the new data element. + if (TI == TE || !TI->ElementEqual(V)) + continue; + + ++TI; + + // Now compare the remainder of 'T' with 'R'. + if (!CompareTreeWithSection(R, TI, TE)) + continue; + + if (TI != TE) // Contents('R') did not match suffix of 'T'. + continue; + + // Trees did match! Return 'T'. return T; - - assert (InsertPos != NULL); - - // FIXME: more intelligent calculation of alignment. - TreeTy* T = (TreeTy*) Allocator.Allocate(sizeof(*T),16); + } + + // No tree with the contents: Contents('L')+'V'+Contents('R'). + // Create it. + + // Allocate the new tree node and insert it into the cache. + BumpPtrAllocator& A = getAllocator(); + TreeTy* T = (TreeTy*) A.Allocate(); new (T) TreeTy(L,R,V,IncrementHeight(L,R)); - - Cache.InsertNode(T,InsertPos); - return T; + + // We do not insert 'T' into the FoldingSet here. This is because + // this tree is still mutable and things may get rebalanced. + // Because our digest is associative and based on the contents of + // the set, this should hopefully not cause any strange bugs. + // 'T' is inserted by 'MarkImmutable'. + + return T; } - - TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) { + + TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) { assert (!isEmpty(OldTree)); - + if (OldTree->isMutable()) { OldTree->setLeft(L); OldTree->setRight(R); @@ -353,66 +498,66 @@ private: } else return CreateNode(L, Value(OldTree), R); } - + /// Balance - Used by Add_internal and Remove_internal to /// balance a newly created tree. TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) { - + unsigned hl = Height(L); unsigned hr = Height(R); - + if (hl > hr + 2) { assert (!isEmpty(L) && "Left tree cannot be empty to have a height >= 2."); - + TreeTy* LL = Left(L); TreeTy* LR = Right(L); - + if (Height(LL) >= Height(LR)) return CreateNode(LL, L, CreateNode(LR,V,R)); - + assert (!isEmpty(LR) && "LR cannot be empty because it has a height >= 1."); - + TreeTy* LRL = Left(LR); TreeTy* LRR = Right(LR); - - return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R)); + + return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R)); } else if (hr > hl + 2) { assert (!isEmpty(R) && "Right tree cannot be empty to have a height >= 2."); - + TreeTy* RL = Left(R); TreeTy* RR = Right(R); - + if (Height(RR) >= Height(RL)) return CreateNode(CreateNode(L,V,RL), R, RR); - + assert (!isEmpty(RL) && "RL cannot be empty because it has a height >= 1."); - + TreeTy* RLL = Left(RL); TreeTy* RLR = Right(RL); - + return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR)); } else return CreateNode(L,V,R); } - + /// Add_internal - Creates a new tree that includes the specified /// data and the data from the original tree. If the original tree /// already contained the data item, the original tree is returned. TreeTy* Add_internal(value_type_ref V, TreeTy* T) { if (isEmpty(T)) return CreateNode(T, V, T); - + assert (!T->isMutable()); - + key_type_ref K = ImutInfo::KeyOfValue(V); key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); - + if (ImutInfo::isEqual(K,KCurrent)) return CreateNode(Left(T), V, Right(T)); else if (ImutInfo::isLess(K,KCurrent)) @@ -420,19 +565,19 @@ private: else return Balance(Left(T), Value(T), Add_internal(V,Right(T))); } - - /// Remove_interal - Creates a new tree that includes all the data + + /// Remove_internal - Creates a new tree that includes all the data /// from the original tree except the specified data. If the /// specified data did not exist in the original tree, the original /// tree is returned. TreeTy* Remove_internal(key_type_ref K, TreeTy* T) { if (isEmpty(T)) return T; - + assert (!T->isMutable()); - + key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); - + if (ImutInfo::isEqual(K,KCurrent)) return CombineLeftRightTrees(Left(T),Right(T)); else if (ImutInfo::isLess(K,KCurrent)) @@ -440,83 +585,89 @@ private: else return Balance(Left(T), Value(T), Remove_internal(K,Right(T))); } - + TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) { - if (isEmpty(L)) return R; + if (isEmpty(L)) return R; if (isEmpty(R)) return L; - - TreeTy* OldNode; + + TreeTy* OldNode; TreeTy* NewRight = RemoveMinBinding(R,OldNode); return Balance(L,Value(OldNode),NewRight); } - + TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) { assert (!isEmpty(T)); - + if (isEmpty(Left(T))) { NodeRemoved = T; return Right(T); } - + return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T)); - } - + } + /// MarkImmutable - Clears the mutable bits of a root and all of its /// descendants. void MarkImmutable(TreeTy* T) { if (!T || !T->isMutable()) return; - - T->RemoveMutableFlag(); + + T->MarkImmutable(); MarkImmutable(Left(T)); MarkImmutable(Right(T)); + + // Now that the node is immutable it can safely be inserted + // into the node cache. + llvm::FoldingSetNodeID ID; + ID.AddInteger(T->ComputeDigest()); + Cache.InsertNode(T, (void*) &*Cache.bucket_end(ID.ComputeHash())); } }; - - -//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// // Immutable AVL-Tree Iterators. -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// template class ImutAVLTreeGenericIterator { SmallVector stack; public: - enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, + enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, Flags=0x3 }; - - typedef ImutAVLTree TreeTy; + + typedef ImutAVLTree TreeTy; typedef ImutAVLTreeGenericIterator _Self; inline ImutAVLTreeGenericIterator() {} inline ImutAVLTreeGenericIterator(const TreeTy* Root) { if (Root) stack.push_back(reinterpret_cast(Root)); - } - + } + TreeTy* operator*() const { - assert (!stack.empty()); + assert (!stack.empty()); return reinterpret_cast(stack.back() & ~Flags); } - + uintptr_t getVisitState() { assert (!stack.empty()); return stack.back() & Flags; } - - + + bool AtEnd() const { return stack.empty(); } - bool AtBeginning() const { + bool AtBeginning() const { return stack.size() == 1 && getVisitState() == VisitedNone; } - + void SkipToParent() { assert (!stack.empty()); stack.pop_back(); - + if (stack.empty()) return; - + switch (getVisitState()) { case VisitedNone: stack.back() |= VisitedLeft; @@ -525,93 +676,93 @@ public: stack.back() |= VisitedRight; break; default: - assert (false && "Unreachable."); + assert (false && "Unreachable."); } } - + inline bool operator==(const _Self& x) const { if (stack.size() != x.stack.size()) return false; - + for (unsigned i = 0 ; i < stack.size(); i++) if (stack[i] != x.stack[i]) return false; - + return true; } - - inline bool operator!=(const _Self& x) const { return !operator==(x); } - + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + _Self& operator++() { assert (!stack.empty()); - + TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); assert (Current); - + switch (getVisitState()) { case VisitedNone: - if (TreeTy* L = Current->getLeft()) + if (TreeTy* L = Current->getSafeLeft()) stack.push_back(reinterpret_cast(L)); else stack.back() |= VisitedLeft; - + break; - + case VisitedLeft: if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast(R)); else stack.back() |= VisitedRight; - + break; - + case VisitedRight: - SkipToParent(); + SkipToParent(); break; - + default: assert (false && "Unreachable."); } - + return *this; } - + _Self& operator--() { assert (!stack.empty()); - + TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); assert (Current); - + switch (getVisitState()) { case VisitedNone: stack.pop_back(); break; - - case VisitedLeft: + + case VisitedLeft: stack.back() &= ~Flags; // Set state to "VisitedNone." - + if (TreeTy* L = Current->getLeft()) stack.push_back(reinterpret_cast(L) | VisitedRight); - + break; - - case VisitedRight: + + case VisitedRight: stack.back() &= ~Flags; stack.back() |= VisitedLeft; - + if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast(R) | VisitedRight); - + break; - + default: assert (false && "Unreachable."); } - + return *this; } }; - + template class ImutAVLTreeInOrderIterator { typedef ImutAVLTreeGenericIterator InternalIteratorTy; @@ -621,47 +772,47 @@ public: typedef ImutAVLTree TreeTy; typedef ImutAVLTreeInOrderIterator _Self; - ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { + ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { if (Root) operator++(); // Advance to first element. } - + ImutAVLTreeInOrderIterator() : InternalItr() {} inline bool operator==(const _Self& x) const { return InternalItr == x.InternalItr; } - - inline bool operator!=(const _Self& x) const { return !operator==(x); } - - inline TreeTy* operator*() { return *InternalItr; } - inline TreeTy* operator->() { return *InternalItr; } - - inline _Self& operator++() { + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline TreeTy* operator*() const { return *InternalItr; } + inline TreeTy* operator->() const { return *InternalItr; } + + inline _Self& operator++() { do ++InternalItr; - while (!InternalItr.AtEnd() && + while (!InternalItr.AtEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); return *this; } - - inline _Self& operator--() { + + inline _Self& operator--() { do --InternalItr; - while (!InternalItr.AtBeginning() && + while (!InternalItr.AtBeginning() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); - + return *this; } - + inline void SkipSubTree() { InternalItr.SkipToParent(); - + while (!InternalItr.AtEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) - ++InternalItr; + ++InternalItr; } }; - -//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// // Trait classes for Profile information. //===----------------------------------------------------------------------===// @@ -672,21 +823,21 @@ template struct ImutProfileInfo { typedef const T value_type; typedef const T& value_type_ref; - + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { - X.Profile(ID); - } + FoldingSetTrait::Profile(X,ID); + } }; /// Profile traits for integers. template -struct ImutProfileInteger { +struct ImutProfileInteger { typedef const T value_type; typedef const T& value_type_ref; - + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { ID.AddInteger(X); - } + } }; #define PROFILE_INTEGER_INFO(X)\ @@ -711,13 +862,13 @@ template struct ImutProfileInfo { typedef const T* value_type; typedef value_type value_type_ref; - + static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddPointer(X); } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Trait classes that contain element comparison operators and type // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These // inherit from the profile traits (ImutProfileInfo) to include operations @@ -734,16 +885,21 @@ struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; - + typedef bool data_type; + typedef bool data_type_ref; + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } - - static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return std::equal_to()(LHS,RHS); } - + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return std::less()(LHS,RHS); } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; /// ImutContainerInfo - Specialization for pointer values to treat pointers @@ -755,19 +911,24 @@ struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; - + typedef bool data_type; + typedef bool data_type_ref; + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } - + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } - + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Immutable Set //===----------------------------------------------------------------------===// @@ -776,24 +937,30 @@ class ImmutableSet { public: typedef typename ValInfo::value_type value_type; typedef typename ValInfo::value_type_ref value_type_ref; - -private: typedef ImutAVLTree TreeTy; + +private: TreeTy* Root; - - ImmutableSet(TreeTy* R) : Root(R) {} - + public: - + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableSet(TreeTy* R) : Root(R) {} + class Factory { typename TreeTy::Factory F; - + public: Factory() {} - + + Factory(BumpPtrAllocator& Alloc) + : F(Alloc) {} + /// GetEmptySet - Returns an immutable set that contains no elements. ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); } - + /// Add - Creates a new immutable set that contains all of the values /// of the original set with the addition of the specified value. If /// the original set already included the value, then the original set is @@ -804,7 +971,7 @@ public: ImmutableSet Add(ImmutableSet Old, value_type_ref V) { return ImmutableSet(F.Add(Old.Root,V)); } - + /// Remove - Creates a new immutable set that contains all of the values /// of the original set with the exception of the specified value. If /// the original set did not contain the value, the original set is @@ -815,42 +982,87 @@ public: ImmutableSet Remove(ImmutableSet Old, value_type_ref V) { return ImmutableSet(F.Remove(Old.Root,V)); } - + + BumpPtrAllocator& getAllocator() { return F.getAllocator(); } + private: Factory(const Factory& RHS) {}; - void operator=(const Factory& RHS) {}; + void operator=(const Factory& RHS) {}; }; - + friend class Factory; /// contains - Returns true if the set contains the specified value. bool contains(const value_type_ref V) const { return Root ? Root->contains(V) : false; } - + bool operator==(ImmutableSet RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; } - + bool operator!=(ImmutableSet RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; } - + + TreeTy* getRoot() const { return Root; } + /// isEmpty - Return true if the set contains no elements. bool isEmpty() const { return !Root; } - + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + template void foreach(Callback& C) { if (Root) Root->foreach(C); } - + template void foreach() { if (Root) { Callback C; Root->foreach(C); } } - - //===--------------------------------------------------===// + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator { + typename TreeTy::iterator itr; + + iterator() {} + iterator(TreeTy* t) : itr(t) {} + friend class ImmutableSet; + public: + inline value_type_ref operator*() const { return itr->getValue(); } + inline iterator& operator++() { ++itr; return *this; } + inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } + inline iterator& operator--() { --itr; return *this; } + inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } + inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } + inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } + inline value_type *operator->() const { return &(operator*()); } + }; + + iterator begin() const { return iterator(Root); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + inline unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) { + ID.AddPointer(S.Root); + } + + inline void Profile(FoldingSetNodeID& ID) const { + return Profile(ID,*this); + } + + //===--------------------------------------------------===// // For testing. - //===--------------------------------------------------===// - + //===--------------------------------------------------===// + void verify() const { if (Root) Root->verify(); } - unsigned getHeight() const { return Root ? Root->getHeight() : 0; } }; } // end namespace llvm