X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FSmallVector.h;h=445f99190085106c7a2acece129332c49b549e57;hb=6de603071879bdc5d7d663826354c24a9d176469;hp=b5ee6c454b3088e0b6e04b07963dfbad15bef357;hpb=8c06509f9590a63ab2d4361945aac18c02b71f0c;p=oota-llvm.git diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index b5ee6c454b3..445f9919008 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -14,10 +14,37 @@ #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H +#include "llvm/ADT/iterator.h" +#include "llvm/Support/type_traits.h" #include -#include +#include +#include #include +#ifdef _MSC_VER +namespace std { +#if _MSC_VER <= 1310 + // Work around flawed VC++ implementation of std::uninitialized_copy. Define + // additional overloads so that elements with pointer types are recognized as + // scalars and not objects, causing bizarre type conversion errors. + template + inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { + _Scalar_ptr_iterator_tag _Cat; + return _Cat; + } + + template + inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { + _Scalar_ptr_iterator_tag _Cat; + return _Cat; + } +#else +// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear +// is that the above hack won't work if it wasn't fixed. +#endif +} +#endif + namespace llvm { /// SmallVectorImpl - This class consists of common code factored out of the @@ -27,7 +54,7 @@ template class SmallVectorImpl { protected: T *Begin, *End, *Capacity; - + // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. An array of char would work great, but might not be @@ -48,55 +75,77 @@ protected: // Space after 'FirstEl' is clobbered, do not add any instance vars after it. public: // Default ctor - Initialize to empty. - SmallVectorImpl(unsigned N) - : Begin((T*)&FirstEl), End((T*)&FirstEl), Capacity((T*)&FirstEl+N) { + explicit SmallVectorImpl(unsigned N) + : Begin(reinterpret_cast(&FirstEl)), + End(reinterpret_cast(&FirstEl)), + Capacity(reinterpret_cast(&FirstEl)+N) { } - + ~SmallVectorImpl() { // Destroy the constructed elements in the vector. destroy_range(Begin, End); // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) - delete[] (char*)Begin; + operator delete(Begin); } - + typedef size_t size_type; + typedef ptrdiff_t difference_type; + typedef T value_type; typedef T* iterator; typedef const T* const_iterator; + + typedef std::reverse_iterator const_reverse_iterator; + typedef std::reverse_iterator reverse_iterator; + typedef T& reference; typedef const T& const_reference; + typedef T* pointer; + typedef const T* const_pointer; bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } - + size_type max_size() const { return size_type(-1) / sizeof(T); } + + // forward iterator creation methods. iterator begin() { return Begin; } const_iterator begin() const { return Begin; } - iterator end() { return End; } const_iterator end() const { return End; } - + + // reverse iterator creation methods. + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { return const_reverse_iterator(begin());} + + + /* These asserts could be "Begin + idx < End", but there are lots of places + in llvm where we use &v[v.size()] instead of v.end(). */ reference operator[](unsigned idx) { + assert (Begin + idx <= End); return Begin[idx]; } const_reference operator[](unsigned idx) const { + assert (Begin + idx <= End); return Begin[idx]; } - + reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } - + reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } - + void push_back(const_reference Elt) { if (End < Capacity) { Retry: @@ -107,53 +156,59 @@ public: grow(); goto Retry; } - + void pop_back() { --End; End->~T(); } - + + T pop_back_val() { + T Result = back(); + pop_back(); + return Result; + } + void clear() { destroy_range(Begin, End); End = Begin; } - + void resize(unsigned N) { if (N < size()) { destroy_range(Begin+N, End); End = Begin+N; } else if (N > size()) { - if (Begin+N > Capacity) + if (unsigned(Capacity-Begin) < N) grow(N); construct_range(End, Begin+N, T()); End = Begin+N; } } - + void resize(unsigned N, const T &NV) { if (N < size()) { destroy_range(Begin+N, End); End = Begin+N; } else if (N > size()) { - if (Begin+N > Capacity) + if (unsigned(Capacity-Begin) < N) grow(N); construct_range(End, Begin+N, NV); End = Begin+N; } } - + void reserve(unsigned N) { if (unsigned(Capacity-Begin) < N) grow(N); } - + void swap(SmallVectorImpl &RHS); - + /// append - Add the specified range to the end of the SmallVector. /// template void append(in_iter in_start, in_iter in_end) { - unsigned NumInputs = std::distance(in_start, in_end); + size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. if (End+NumInputs > Capacity) grow(size()+NumInputs); @@ -162,36 +217,52 @@ public: std::uninitialized_copy(in_start, in_end, End); End += NumInputs; } - + + /// append - Add the specified range to the end of the SmallVector. + /// + void append(size_type NumInputs, const T &Elt) { + // Grow allocated space if needed. + if (End+NumInputs > Capacity) + grow(size()+NumInputs); + + // Copy the new elements over. + std::uninitialized_fill_n(End, NumInputs, Elt); + End += NumInputs; + } + void assign(unsigned NumElts, const T &Elt) { clear(); - if (Begin+NumElts > Capacity) + if (unsigned(Capacity-Begin) < NumElts) grow(NumElts); End = Begin+NumElts; construct_range(Begin, End, Elt); } - - void erase(iterator I) { + + iterator erase(iterator I) { + iterator N = I; // Shift all elts down one. std::copy(I+1, End, I); // Drop the last elt. pop_back(); + return(N); } - - void erase(iterator S, iterator E) { + + iterator erase(iterator S, iterator E) { + iterator N = S; // Shift all elts down. iterator I = std::copy(E, End, S); // Drop the last elts. destroy_range(I, End); End = I; + return(N); } - + iterator insert(iterator I, const T &Elt) { if (I == End) { // Important special case for empty vector. push_back(Elt); return end()-1; } - + if (End < Capacity) { Retry: new (End) T(back()); @@ -201,78 +272,142 @@ public: *I = Elt; return I; } - unsigned EltNo = I-Begin; + size_t EltNo = I-Begin; grow(); I = Begin+EltNo; goto Retry; } - + + iterator insert(iterator I, size_type NumToInsert, const T &Elt) { + if (I == End) { // Important special case for empty vector. + append(NumToInsert, Elt); + return end()-1; + } + + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I-begin(); + + // Ensure there is enough space. + reserve(static_cast(size() + NumToInsert)); + + // Uninvalidate the iterator. + I = begin()+InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(end()-I) >= NumToInsert) { + T *OldEnd = End; + append(End-NumToInsert, End); + + // Copy the existing elements that get replaced. + std::copy(I, OldEnd-NumToInsert, I+NumToInsert); + + std::fill_n(I, NumToInsert, Elt); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Copy over the elements that we're about to overwrite. + T *OldEnd = End; + End += NumToInsert; + size_t NumOverwritten = OldEnd-I; + std::uninitialized_copy(I, OldEnd, End-NumOverwritten); + + // Replace the overwritten part. + std::fill_n(I, NumOverwritten, Elt); + + // Insert the non-overwritten middle part. + std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); + return I; + } + template iterator insert(iterator I, ItTy From, ItTy To) { if (I == End) { // Important special case for empty vector. append(From, To); return end()-1; } - - unsigned NumToInsert = std::distance(From, To); + + size_t NumToInsert = std::distance(From, To); // Convert iterator to elt# to avoid invalidating iterator when we reserve() - unsigned InsertElt = I-begin(); - + size_t InsertElt = I-begin(); + // Ensure there is enough space. - reserve(size() + NumToInsert); - + reserve(static_cast(size() + NumToInsert)); + // Uninvalidate the iterator. I = begin()+InsertElt; - - // If we already have this many elements in the collection, append the - // dest elements at the end, then copy over the appropriate elements. Since - // we already reserved space, we know that this won't reallocate the vector. - if (size() >= NumToInsert) { + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(end()-I) >= NumToInsert) { T *OldEnd = End; append(End-NumToInsert, End); - + // Copy the existing elements that get replaced. std::copy(I, OldEnd-NumToInsert, I+NumToInsert); - + std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - + // Copy over the elements that we're about to overwrite. T *OldEnd = End; End += NumToInsert; - unsigned NumOverwritten = OldEnd-I; + size_t NumOverwritten = OldEnd-I; std::uninitialized_copy(I, OldEnd, End-NumOverwritten); - + // Replace the overwritten part. std::copy(From, From+NumOverwritten, I); - + // Insert the non-overwritten middle part. std::uninitialized_copy(From+NumOverwritten, To, OldEnd); return I; } - + const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); - + + bool operator==(const SmallVectorImpl &RHS) const { + if (size() != RHS.size()) return false; + for (T *This = Begin, *That = RHS.Begin, *E = Begin+size(); + This != E; ++This, ++That) + if (*This != *That) + return false; + return true; + } + bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } + + bool operator<(const SmallVectorImpl &RHS) const { + return std::lexicographical_compare(begin(), end(), + RHS.begin(), RHS.end()); + } + private: /// isSmall - Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { - return (void*)Begin == (void*)&FirstEl; + return static_cast(Begin) == + static_cast(&FirstEl); } /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. - void grow(unsigned MinSize = 0); + void grow(size_type MinSize = 0); void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } - + void destroy_range(T *S, T *E) { while (S != E) { --E; @@ -283,24 +418,28 @@ private: // Define this out-of-line to dissuade the C++ compiler from inlining it. template -void SmallVectorImpl::grow(unsigned MinSize) { - unsigned CurCapacity = Capacity-Begin; - unsigned CurSize = size(); - unsigned NewCapacity = 2*CurCapacity; +void SmallVectorImpl::grow(size_t MinSize) { + size_t CurCapacity = Capacity-Begin; + size_t CurSize = size(); + size_t NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; - T *NewElts = reinterpret_cast(new char[NewCapacity*sizeof(T)]); - + T *NewElts = static_cast(operator new(NewCapacity*sizeof(T))); + // Copy the elements over. - std::uninitialized_copy(Begin, End, NewElts); - + if (is_class::value) + std::uninitialized_copy(Begin, End, NewElts); + else + // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). + memcpy(NewElts, Begin, CurSize * sizeof(T)); + // Destroy the original elements. destroy_range(Begin, End); - + // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) - delete[] (char*)Begin; - + operator delete(Begin); + Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; @@ -309,7 +448,7 @@ void SmallVectorImpl::grow(unsigned MinSize) { template void SmallVectorImpl::swap(SmallVectorImpl &RHS) { if (this == &RHS) return; - + // We can only avoid copying elements if neither vector is small. if (!isSmall() && !RHS.isSmall()) { std::swap(Begin, RHS.Begin); @@ -321,51 +460,55 @@ void SmallVectorImpl::swap(SmallVectorImpl &RHS) { grow(RHS.size()); if (RHS.begin()+size() > RHS.Capacity) RHS.grow(size()); - + // Swap the shared elements. - unsigned NumShared = size(); + size_t NumShared = size(); if (NumShared > RHS.size()) NumShared = RHS.size(); - for (unsigned i = 0; i != NumShared; ++i) + for (unsigned i = 0; i != static_cast(NumShared); ++i) std::swap(Begin[i], RHS[i]); - + // Copy over the extra elts. if (size() > RHS.size()) { - unsigned EltDiff = size() - RHS.size(); + size_t EltDiff = size() - RHS.size(); std::uninitialized_copy(Begin+NumShared, End, RHS.End); RHS.End += EltDiff; destroy_range(Begin+NumShared, End); End = Begin+NumShared; } else if (RHS.size() > size()) { - unsigned EltDiff = RHS.size() - size(); + size_t EltDiff = RHS.size() - size(); std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End); End += EltDiff; destroy_range(RHS.Begin+NumShared, RHS.End); RHS.End = RHS.Begin+NumShared; } } - + template const SmallVectorImpl & SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; - + // If we already have sufficient space, assign the common elements, then // destroy any excess. - unsigned RHSSize = RHS.size(); - unsigned CurSize = size(); + unsigned RHSSize = unsigned(RHS.size()); + unsigned CurSize = unsigned(size()); if (CurSize >= RHSSize) { // Assign common elements. - iterator NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); - + iterator NewEnd; + if (RHSSize) + NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); + else + NewEnd = Begin; + // Destroy excess elements. destroy_range(NewEnd, End); - + // Trim. End = NewEnd; return *this; } - + // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. if (unsigned(Capacity-Begin) < RHSSize) { @@ -378,15 +521,15 @@ SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); } - + // Copy construct the new elements in place. std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); - + // Set end. End = Begin+RHSSize; return *this; } - + /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of @@ -402,42 +545,47 @@ class SmallVector : public SmallVectorImpl { typedef typename SmallVectorImpl::U U; enum { // MinUs - The number of U's require to cover N T's. - MinUs = (sizeof(T)*N+sizeof(U)-1)/sizeof(U), - + MinUs = (static_cast(sizeof(T))*N + + static_cast(sizeof(U)) - 1) / + static_cast(sizeof(U)), + // NumInlineEltsElts - The number of elements actually in this array. There // is already one in the parent class, and we have to round up to avoid // having a zero-element array. - NumInlineEltsElts = (MinUs - 1) > 0 ? (MinUs - 1) : 1, - + NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, + // NumTsAvailable - The number of T's we actually have space for, which may // be more than N due to rounding. - NumTsAvailable = (NumInlineEltsElts+1)*sizeof(U) / sizeof(T) + NumTsAvailable = (NumInlineEltsElts+1)*static_cast(sizeof(U))/ + static_cast(sizeof(T)) }; U InlineElts[NumInlineEltsElts]; -public: +public: SmallVector() : SmallVectorImpl(NumTsAvailable) { } - - SmallVector(unsigned Size, const T &Value) + + explicit SmallVector(unsigned Size, const T &Value = T()) : SmallVectorImpl(NumTsAvailable) { this->reserve(Size); while (Size--) - push_back(Value); + this->push_back(Value); } - + template SmallVector(ItTy S, ItTy E) : SmallVectorImpl(NumTsAvailable) { - append(S, E); + this->append(S, E); } - + SmallVector(const SmallVector &RHS) : SmallVectorImpl(NumTsAvailable) { - operator=(RHS); + if (!RHS.empty()) + SmallVectorImpl::operator=(RHS); } - + const SmallVector &operator=(const SmallVector &RHS) { SmallVectorImpl::operator=(RHS); return *this; } + }; } // End llvm namespace @@ -449,7 +597,7 @@ namespace std { swap(llvm::SmallVectorImpl &LHS, llvm::SmallVectorImpl &RHS) { LHS.swap(RHS); } - + /// Implement std::swap in terms of SmallVector swap. template inline void