X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FExecutionEngine%2FExecutionEngine.h;h=ff584733eec654fa8003f208741b2dd6389f43c2;hb=875710a2fd6b3c4f814961582594bd5c1cdb493a;hp=e833be786966fefc69eb9a5549275df0785c8855;hpb=f88b9a639770327196b2a00f365155b954dd1d30;p=oota-llvm.git diff --git a/include/llvm/ExecutionEngine/ExecutionEngine.h b/include/llvm/ExecutionEngine/ExecutionEngine.h index e833be78696..22ce4491b7e 100644 --- a/include/llvm/ExecutionEngine/ExecutionEngine.h +++ b/include/llvm/ExecutionEngine/ExecutionEngine.h @@ -1,87 +1,650 @@ //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// // +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// // This file defines the abstract interface that implements execution support // for LLVM. // //===----------------------------------------------------------------------===// -#ifndef EXECUTION_ENGINE_H -#define EXECUTION_ENGINE_H +#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H +#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H -#include -#include +#include "llvm-c/ExecutionEngine.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/MC/MCCodeGenInfo.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Mutex.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" #include +#include +#include + +namespace llvm { + +struct GenericValue; class Constant; -class Type; -class GlobalValue; +class DataLayout; +class ExecutionEngine; class Function; +class GlobalVariable; +class GlobalValue; +class JITEventListener; +class JITMemoryManager; +class MachineCodeInfo; class Module; -class TargetData; -union GenericValue; +class MutexGuard; +class ObjectCache; +class RTDyldMemoryManager; +class Triple; +class Type; + +namespace object { + class Archive; + class ObjectFile; +} + +/// \brief Helper class for helping synchronize access to the global address map +/// table. Access to this class should be serialized under a mutex. +class ExecutionEngineState { +public: + struct AddressMapConfig : public ValueMapConfig { + typedef ExecutionEngineState *ExtraData; + static sys::Mutex *getMutex(ExecutionEngineState *EES); + static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old); + static void onRAUW(ExecutionEngineState *, const GlobalValue *, + const GlobalValue *); + }; + + typedef ValueMap + GlobalAddressMapTy; + +private: + ExecutionEngine ⅇ + + /// GlobalAddressMap - A mapping between LLVM global values and their + /// actualized version... + GlobalAddressMapTy GlobalAddressMap; + /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, + /// used to convert raw addresses into the LLVM global value that is emitted + /// at the address. This map is not computed unless getGlobalValueAtAddress + /// is called at some point. + std::map > GlobalAddressReverseMap; + +public: + ExecutionEngineState(ExecutionEngine &EE); + + GlobalAddressMapTy &getGlobalAddressMap() { + return GlobalAddressMap; + } + + std::map > & + getGlobalAddressReverseMap() { + return GlobalAddressReverseMap; + } + + /// \brief Erase an entry from the mapping table. + /// + /// \returns The address that \p ToUnmap was happed to. + void *RemoveMapping(const GlobalValue *ToUnmap); +}; + +/// \brief Abstract interface for implementation execution of LLVM modules, +/// designed to support both interpreter and just-in-time (JIT) compiler +/// implementations. class ExecutionEngine { - Module &CurMod; - const TargetData *TD; + /// The state object holding the global address mapping, which must be + /// accessed synchronously. + // + // FIXME: There is no particular need the entire map needs to be + // synchronized. Wouldn't a reader-writer design be better here? + ExecutionEngineState EEState; + + /// The target data for the platform for which execution is being performed. + const DataLayout *DL; + + /// Whether lazy JIT compilation is enabled. + bool CompilingLazily; + + /// Whether JIT compilation of external global variables is allowed. + bool GVCompilationDisabled; + + /// Whether the JIT should perform lookups of external symbols (e.g., + /// using dlsym). + bool SymbolSearchingDisabled; + + /// Whether the JIT should verify IR modules during compilation. + bool VerifyModules; + + friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. protected: - // GlobalAddress - A mapping between LLVM global values and their actualized - // version... - std::map GlobalAddress; + /// The list of Modules that we are JIT'ing from. We use a SmallVector to + /// optimize for the case where there is only one module. + SmallVector Modules; + + void setDataLayout(const DataLayout *Val) { DL = Val; } + + /// getMemoryforGV - Allocate memory for a global variable. + virtual char *getMemoryForGV(const GlobalVariable *GV); + + // To avoid having libexecutionengine depend on the JIT and interpreter + // libraries, the execution engine implementations set these functions to ctor + // pointers at startup time if they are linked in. + static ExecutionEngine *(*MCJITCtor)( + Module *M, + std::string *ErrorStr, + RTDyldMemoryManager *MCJMM, + TargetMachine *TM); + static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr); + + /// LazyFunctionCreator - If an unknown function is needed, this function + /// pointer is invoked to create it. If this returns null, the JIT will + /// abort. + void *(*LazyFunctionCreator)(const std::string &); - void setTargetData(const TargetData &td) { - TD = &td; - emitGlobals(); - } public: - ExecutionEngine(Module *M) : CurMod(*M) { - assert(M && "Module is null?"); - } + /// lock - This lock protects the ExecutionEngine, MCJIT, JIT, JITResolver and + /// JITEmitter classes. It must be held while changing the internal state of + /// any of those classes. + sys::Mutex lock; + + //===--------------------------------------------------------------------===// + // ExecutionEngine Startup + //===--------------------------------------------------------------------===// + virtual ~ExecutionEngine(); - - Module &getModule() const { return CurMod; } - const TargetData &getTargetData() const { return *TD; } - /// run - Start execution with the specified function and arguments. + /// addModule - Add a Module to the list of modules that we can JIT from. + /// Note that this takes ownership of the Module: when the ExecutionEngine is + /// destroyed, it destroys the Module as well. + virtual void addModule(Module *M) { + Modules.push_back(M); + } + + /// addObjectFile - Add an ObjectFile to the execution engine. /// - virtual int run(const std::string &FnName, - const std::vector &Args) = 0; + /// This method is only supported by MCJIT. MCJIT will immediately load the + /// object into memory and adds its symbols to the list used to resolve + /// external symbols while preparing other objects for execution. + /// + /// Objects added using this function will not be made executable until + /// needed by another object. + /// + /// MCJIT will take ownership of the ObjectFile. + virtual void addObjectFile(std::unique_ptr O); - /// createJIT - Create an return a new JIT compiler if there is one available - /// for the current target. Otherwise it returns null. + /// addArchive - Add an Archive to the execution engine. /// - static ExecutionEngine *createJIT(Module *M, unsigned Config); + /// This method is only supported by MCJIT. MCJIT will use the archive to + /// resolve external symbols in objects it is loading. If a symbol is found + /// in the Archive the contained object file will be extracted (in memory) + /// and loaded for possible execution. + virtual void addArchive(std::unique_ptr A); + + //===--------------------------------------------------------------------===// + + const DataLayout *getDataLayout() const { return DL; } + + /// removeModule - Remove a Module from the list of modules. Returns true if + /// M is found. + virtual bool removeModule(Module *M); - /// createInterpreter - Create a new interpreter object. This can never fail. + /// FindFunctionNamed - Search all of the active modules to find the one that + /// defines FnName. This is very slow operation and shouldn't be used for + /// general code. + virtual Function *FindFunctionNamed(const char *FnName); + + /// runFunction - Execute the specified function with the specified arguments, + /// and return the result. + virtual GenericValue runFunction(Function *F, + const std::vector &ArgValues) = 0; + + /// getPointerToNamedFunction - This method returns the address of the + /// specified function by using the dlsym function call. As such it is only + /// useful for resolving library symbols, not code generated symbols. + /// + /// If AbortOnFailure is false and no function with the given name is + /// found, this function silently returns a null pointer. Otherwise, + /// it prints a message to stderr and aborts. + /// + /// This function is deprecated for the MCJIT execution engine. + /// + /// FIXME: the JIT and MCJIT interfaces should be disentangled or united + /// again, if possible. /// - static ExecutionEngine *createInterpreter(Module *M, unsigned Config, - bool DebugMode, bool TraceMode); + virtual void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) = 0; - void addGlobalMapping(const Function *F, void *Addr) { - void *&CurVal = GlobalAddress[(const GlobalValue*)F]; - assert(CurVal == 0 && "GlobalMapping already established!"); - CurVal = Addr; + /// mapSectionAddress - map a section to its target address space value. + /// Map the address of a JIT section as returned from the memory manager + /// to the address in the target process as the running code will see it. + /// This is the address which will be used for relocation resolution. + virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { + llvm_unreachable("Re-mapping of section addresses not supported with this " + "EE!"); } - // getPointerToGlobal - This returns the address of the specified global - // value. This may involve code generation if it's a function. - // + /// generateCodeForModule - Run code generationen for the specified module and + /// load it into memory. + /// + /// When this function has completed, all code and data for the specified + /// module, and any module on which this module depends, will be generated + /// and loaded into memory, but relocations will not yet have been applied + /// and all memory will be readable and writable but not executable. + /// + /// This function is primarily useful when generating code for an external + /// target, allowing the client an opportunity to remap section addresses + /// before relocations are applied. Clients that intend to execute code + /// locally can use the getFunctionAddress call, which will generate code + /// and apply final preparations all in one step. + /// + /// This method has no effect for the legacy JIT engine or the interpeter. + virtual void generateCodeForModule(Module *M) {} + + /// finalizeObject - ensure the module is fully processed and is usable. + /// + /// It is the user-level function for completing the process of making the + /// object usable for execution. It should be called after sections within an + /// object have been relocated using mapSectionAddress. When this method is + /// called the MCJIT execution engine will reapply relocations for a loaded + /// object. This method has no effect for the legacy JIT engine or the + /// interpeter. + virtual void finalizeObject() {} + + /// runStaticConstructorsDestructors - This method is used to execute all of + /// the static constructors or destructors for a program. + /// + /// \param isDtors - Run the destructors instead of constructors. + virtual void runStaticConstructorsDestructors(bool isDtors); + + /// runStaticConstructorsDestructors - This method is used to execute all of + /// the static constructors or destructors for a particular module. + /// + /// \param isDtors - Run the destructors instead of constructors. + void runStaticConstructorsDestructors(Module *module, bool isDtors); + + + /// runFunctionAsMain - This is a helper function which wraps runFunction to + /// handle the common task of starting up main with the specified argc, argv, + /// and envp parameters. + int runFunctionAsMain(Function *Fn, const std::vector &argv, + const char * const * envp); + + + /// addGlobalMapping - Tell the execution engine that the specified global is + /// at the specified location. This is used internally as functions are JIT'd + /// and as global variables are laid out in memory. It can and should also be + /// used by clients of the EE that want to have an LLVM global overlay + /// existing data in memory. Mappings are automatically removed when their + /// GlobalValue is destroyed. + void addGlobalMapping(const GlobalValue *GV, void *Addr); + + /// clearAllGlobalMappings - Clear all global mappings and start over again, + /// for use in dynamic compilation scenarios to move globals. + void clearAllGlobalMappings(); + + /// clearGlobalMappingsFromModule - Clear all global mappings that came from a + /// particular module, because it has been removed from the JIT. + void clearGlobalMappingsFromModule(Module *M); + + /// updateGlobalMapping - Replace an existing mapping for GV with a new + /// address. This updates both maps as required. If "Addr" is null, the + /// entry for the global is removed from the mappings. This returns the old + /// value of the pointer, or null if it was not in the map. + void *updateGlobalMapping(const GlobalValue *GV, void *Addr); + + /// getPointerToGlobalIfAvailable - This returns the address of the specified + /// global value if it is has already been codegen'd, otherwise it returns + /// null. + /// + /// This function is deprecated for the MCJIT execution engine. It doesn't + /// seem to be needed in that case, but an equivalent can be added if it is. + void *getPointerToGlobalIfAvailable(const GlobalValue *GV); + + /// getPointerToGlobal - This returns the address of the specified global + /// value. This may involve code generation if it's a function. + /// + /// This function is deprecated for the MCJIT execution engine. Use + /// getGlobalValueAddress instead. void *getPointerToGlobal(const GlobalValue *GV); - // getPointerToFunction - The different EE's represent function bodies in - // different ways. They should each implement this to say what a function - // pointer should look like. - // - virtual void *getPointerToFunction(const Function *F) = 0; + /// getPointerToFunction - The different EE's represent function bodies in + /// different ways. They should each implement this to say what a function + /// pointer should look like. When F is destroyed, the ExecutionEngine will + /// remove its global mapping and free any machine code. Be sure no threads + /// are running inside F when that happens. + /// + /// This function is deprecated for the MCJIT execution engine. Use + /// getFunctionAddress instead. + virtual void *getPointerToFunction(Function *F) = 0; + + /// getPointerToFunctionOrStub - If the specified function has been + /// code-gen'd, return a pointer to the function. If not, compile it, or use + /// a stub to implement lazy compilation if available. See + /// getPointerToFunction for the requirements on destroying F. + /// + /// This function is deprecated for the MCJIT execution engine. Use + /// getFunctionAddress instead. + virtual void *getPointerToFunctionOrStub(Function *F) { + // Default implementation, just codegen the function. + return getPointerToFunction(F); + } + + /// getGlobalValueAddress - Return the address of the specified global + /// value. This may involve code generation. + /// + /// This function should not be called with the JIT or interpreter engines. + virtual uint64_t getGlobalValueAddress(const std::string &Name) { + // Default implementation for JIT and interpreter. MCJIT will override this. + // JIT and interpreter clients should use getPointerToGlobal instead. + return 0; + } + + /// getFunctionAddress - Return the address of the specified function. + /// This may involve code generation. + virtual uint64_t getFunctionAddress(const std::string &Name) { + // Default implementation for JIT and interpreter. MCJIT will override this. + // JIT and interpreter clients should use getPointerToFunction instead. + return 0; + } + + // The JIT overrides a version that actually does this. + virtual void runJITOnFunction(Function *, MachineCodeInfo * = nullptr) { } + + /// getGlobalValueAtAddress - Return the LLVM global value object that starts + /// at the specified address. + /// + const GlobalValue *getGlobalValueAtAddress(void *Addr); + + /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. + /// Ptr is the address of the memory at which to store Val, cast to + /// GenericValue *. It is not a pointer to a GenericValue containing the + /// address at which to store Val. + void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, + Type *Ty); + + void InitializeMemory(const Constant *Init, void *Addr); + + /// getOrEmitGlobalVariable - Return the address of the specified global + /// variable, possibly emitting it to memory if needed. This is used by the + /// Emitter. + /// + /// This function is deprecated for the MCJIT execution engine. Use + /// getGlobalValueAddress instead. + virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { + return getPointerToGlobal((const GlobalValue *)GV); + } + + /// Registers a listener to be called back on various events within + /// the JIT. See JITEventListener.h for more details. Does not + /// take ownership of the argument. The argument may be NULL, in + /// which case these functions do nothing. + virtual void RegisterJITEventListener(JITEventListener *) {} + virtual void UnregisterJITEventListener(JITEventListener *) {} + + /// Sets the pre-compiled object cache. The ownership of the ObjectCache is + /// not changed. Supported by MCJIT but not JIT. + virtual void setObjectCache(ObjectCache *) { + llvm_unreachable("No support for an object cache"); + } + + /// setProcessAllSections (MCJIT Only): By default, only sections that are + /// "required for execution" are passed to the RTDyldMemoryManager, and other + /// sections are discarded. Passing 'true' to this method will cause + /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless + /// of whether they are "required to execute" in the usual sense. + /// + /// Rationale: Some MCJIT clients want to be able to inspect metadata + /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze + /// performance. Passing these sections to the memory manager allows the + /// client to make policy about the relevant sections, rather than having + /// MCJIT do it. + virtual void setProcessAllSections(bool ProcessAllSections) { + llvm_unreachable("No support for ProcessAllSections option"); + } + + /// Return the target machine (if available). + virtual TargetMachine *getTargetMachine() { return nullptr; } + + /// DisableLazyCompilation - When lazy compilation is off (the default), the + /// JIT will eagerly compile every function reachable from the argument to + /// getPointerToFunction. If lazy compilation is turned on, the JIT will only + /// compile the one function and emit stubs to compile the rest when they're + /// first called. If lazy compilation is turned off again while some lazy + /// stubs are still around, and one of those stubs is called, the program will + /// abort. + /// + /// In order to safely compile lazily in a threaded program, the user must + /// ensure that 1) only one thread at a time can call any particular lazy + /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock + /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a + /// lazy stub. See http://llvm.org/PR5184 for details. + void DisableLazyCompilation(bool Disabled = true) { + CompilingLazily = !Disabled; + } + bool isCompilingLazily() const { + return CompilingLazily; + } + // Deprecated in favor of isCompilingLazily (to reduce double-negatives). + // Remove this in LLVM 2.8. + bool isLazyCompilationDisabled() const { + return !CompilingLazily; + } + + /// DisableGVCompilation - If called, the JIT will abort if it's asked to + /// allocate space and populate a GlobalVariable that is not internal to + /// the module. + void DisableGVCompilation(bool Disabled = true) { + GVCompilationDisabled = Disabled; + } + bool isGVCompilationDisabled() const { + return GVCompilationDisabled; + } + + /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown + /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to + /// resolve symbols in a custom way. + void DisableSymbolSearching(bool Disabled = true) { + SymbolSearchingDisabled = Disabled; + } + bool isSymbolSearchingDisabled() const { + return SymbolSearchingDisabled; + } + + /// Enable/Disable IR module verification. + /// + /// Note: Module verification is enabled by default in Debug builds, and + /// disabled by default in Release. Use this method to override the default. + void setVerifyModules(bool Verify) { + VerifyModules = Verify; + } + bool getVerifyModules() const { + return VerifyModules; + } + + /// InstallLazyFunctionCreator - If an unknown function is needed, the + /// specified function pointer is invoked to create it. If it returns null, + /// the JIT will abort. + void InstallLazyFunctionCreator(void* (*P)(const std::string &)) { + LazyFunctionCreator = P; + } + +protected: + explicit ExecutionEngine(Module *M); -private: void emitGlobals(); -public: // FIXME: protected: // API shared among subclasses + void EmitGlobalVariable(const GlobalVariable *GV); + GenericValue getConstantValue(const Constant *C); - void StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty); - GenericValue LoadValueFromMemory(GenericValue *Ptr, const Type *Ty); - void *CreateArgv(const std::vector &InputArgv); - void InitializeMemory(const Constant *Init, void *Addr); + void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, + Type *Ty); }; +namespace EngineKind { + // These are actually bitmasks that get or-ed together. + enum Kind { + JIT = 0x1, + Interpreter = 0x2 + }; + const static Kind Either = (Kind)(JIT | Interpreter); +} + +/// EngineBuilder - Builder class for ExecutionEngines. Use this by +/// stack-allocating a builder, chaining the various set* methods, and +/// terminating it with a .create() call. +class EngineBuilder { +private: + Module *M; + EngineKind::Kind WhichEngine; + std::string *ErrorStr; + CodeGenOpt::Level OptLevel; + RTDyldMemoryManager *MCJMM; + JITMemoryManager *JMM; + TargetOptions Options; + Reloc::Model RelocModel; + CodeModel::Model CMModel; + std::string MArch; + std::string MCPU; + SmallVector MAttrs; + bool VerifyModules; + + /// InitEngine - Does the common initialization of default options. + void InitEngine(); + +public: + /// EngineBuilder - Constructor for EngineBuilder. If create() is called and + /// is successful, the created engine takes ownership of the module. + EngineBuilder(Module *m) : M(m) { + InitEngine(); + } + + /// setEngineKind - Controls whether the user wants the interpreter, the JIT, + /// or whichever engine works. This option defaults to EngineKind::Either. + EngineBuilder &setEngineKind(EngineKind::Kind w) { + WhichEngine = w; + return *this; + } + + /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows + /// clients to customize their memory allocation policies for the MCJIT. This + /// is only appropriate for the MCJIT; setting this and configuring the builder + /// to create anything other than MCJIT will cause a runtime error. If create() + /// is called and is successful, the created engine takes ownership of the + /// memory manager. This option defaults to NULL. Using this option nullifies + /// the setJITMemoryManager() option. + EngineBuilder &setMCJITMemoryManager(RTDyldMemoryManager *mcjmm) { + MCJMM = mcjmm; + JMM = nullptr; + return *this; + } + + /// setJITMemoryManager - Sets the JIT memory manager to use. This allows + /// clients to customize their memory allocation policies. This is only + /// appropriate for either JIT or MCJIT; setting this and configuring the + /// builder to create an interpreter will cause a runtime error. If create() + /// is called and is successful, the created engine takes ownership of the + /// memory manager. This option defaults to NULL. This option overrides + /// setMCJITMemoryManager() as well. + EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) { + MCJMM = nullptr; + JMM = jmm; + return *this; + } + + /// setErrorStr - Set the error string to write to on error. This option + /// defaults to NULL. + EngineBuilder &setErrorStr(std::string *e) { + ErrorStr = e; + return *this; + } + + /// setOptLevel - Set the optimization level for the JIT. This option + /// defaults to CodeGenOpt::Default. + EngineBuilder &setOptLevel(CodeGenOpt::Level l) { + OptLevel = l; + return *this; + } + + /// setTargetOptions - Set the target options that the ExecutionEngine + /// target is using. Defaults to TargetOptions(). + EngineBuilder &setTargetOptions(const TargetOptions &Opts) { + Options = Opts; + return *this; + } + + /// setRelocationModel - Set the relocation model that the ExecutionEngine + /// target is using. Defaults to target specific default "Reloc::Default". + EngineBuilder &setRelocationModel(Reloc::Model RM) { + RelocModel = RM; + return *this; + } + + /// setCodeModel - Set the CodeModel that the ExecutionEngine target + /// data is using. Defaults to target specific default + /// "CodeModel::JITDefault". + EngineBuilder &setCodeModel(CodeModel::Model M) { + CMModel = M; + return *this; + } + + /// setMArch - Override the architecture set by the Module's triple. + EngineBuilder &setMArch(StringRef march) { + MArch.assign(march.begin(), march.end()); + return *this; + } + + /// setMCPU - Target a specific cpu type. + EngineBuilder &setMCPU(StringRef mcpu) { + MCPU.assign(mcpu.begin(), mcpu.end()); + return *this; + } + + /// setVerifyModules - Set whether the JIT implementation should verify + /// IR modules during compilation. + EngineBuilder &setVerifyModules(bool Verify) { + VerifyModules = Verify; + return *this; + } + + /// setMAttrs - Set cpu-specific attributes. + template + EngineBuilder &setMAttrs(const StringSequence &mattrs) { + MAttrs.clear(); + MAttrs.append(mattrs.begin(), mattrs.end()); + return *this; + } + + TargetMachine *selectTarget(); + + /// selectTarget - Pick a target either via -march or by guessing the native + /// arch. Add any CPU features specified via -mcpu or -mattr. + TargetMachine *selectTarget(const Triple &TargetTriple, + StringRef MArch, + StringRef MCPU, + const SmallVectorImpl& MAttrs); + + ExecutionEngine *create() { + return create(selectTarget()); + } + + ExecutionEngine *create(TargetMachine *TM); +}; + +// Create wrappers for C Binding types (see CBindingWrapping.h). +DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef) + +} // End llvm namespace + #endif