X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FInstrTypes.h;h=31a3dc8f01d73d89bd708b893efaf4d4c4a01397;hb=b09c146b116359616f6cbd4c8b3328607e00ff42;hp=105775fe84a212956a0257d267d58c3a4ef3ad5c;hpb=a41f50dea8573e4a610b5aa5e45b5c368559b084;p=oota-llvm.git diff --git a/include/llvm/InstrTypes.h b/include/llvm/InstrTypes.h index 105775fe84a..31a3dc8f01d 100644 --- a/include/llvm/InstrTypes.h +++ b/include/llvm/InstrTypes.h @@ -1,7 +1,14 @@ -//===-- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*--=// +//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file defines various meta classes of instructions that exist in the VM -// representation. Specific concrete subclasses of these may be found in the +// representation. Specific concrete subclasses of these may be found in the // i*.h files... // //===----------------------------------------------------------------------===// @@ -9,97 +16,836 @@ #ifndef LLVM_INSTRUCTION_TYPES_H #define LLVM_INSTRUCTION_TYPES_H +#include "llvm/ADT/Twine.h" +#include "llvm/DerivedTypes.h" #include "llvm/Instruction.h" -#include -#include +#include "llvm/OperandTraits.h" + +namespace llvm { -class Method; -class SymTabValue; +class LLVMContext; //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// -// TerminatorInst - Subclasses of this class are all able to terminate a basic -// block. Thus, these are all the flow control type of operations. -// +/// TerminatorInst - Subclasses of this class are all able to terminate a basic +/// block. Thus, these are all the flow control type of operations. +/// class TerminatorInst : public Instruction { +protected: + TerminatorInst(Type *Ty, Instruction::TermOps iType, + Use *Ops, unsigned NumOps, + Instruction *InsertBefore = 0) + : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {} + + TerminatorInst(Type *Ty, Instruction::TermOps iType, + Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) + : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {} + + // Out of line virtual method, so the vtable, etc has a home. + ~TerminatorInst(); + + /// Virtual methods - Terminators should overload these and provide inline + /// overrides of non-V methods. + virtual BasicBlock *getSuccessorV(unsigned idx) const = 0; + virtual unsigned getNumSuccessorsV() const = 0; + virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0; + virtual TerminatorInst *clone_impl() const = 0; public: - TerminatorInst(unsigned iType); - inline ~TerminatorInst() {} - // Terminators must implement the methods required by Instruction... - virtual Instruction *clone() const = 0; - virtual const char *getOpcodeName() const = 0; + /// getNumSuccessors - Return the number of successors that this terminator + /// has. + unsigned getNumSuccessors() const { + return getNumSuccessorsV(); + } - // Additionally, they must provide a method to get at the successors of this - // terminator instruction. If 'idx' is out of range, a null pointer shall be - // returned. - // - virtual const BasicBlock *getSuccessor(unsigned idx) const = 0; - virtual unsigned getNumSuccessors() const = 0; + /// getSuccessor - Return the specified successor. + /// + BasicBlock *getSuccessor(unsigned idx) const { + return getSuccessorV(idx); + } - inline BasicBlock *getSuccessor(unsigned idx) { - return (BasicBlock*)((const TerminatorInst *)this)->getSuccessor(idx); + /// setSuccessor - Update the specified successor to point at the provided + /// block. + void setSuccessor(unsigned idx, BasicBlock *B) { + setSuccessorV(idx, B); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Instruction *I) { + return I->isTerminator(); + } + static inline bool classof(const Value *V) { + return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// -// UnaryOperator Class +// UnaryInstruction Class //===----------------------------------------------------------------------===// -class UnaryOperator : public Instruction { +class UnaryInstruction : public Instruction { + void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; + +protected: + UnaryInstruction(Type *Ty, unsigned iType, Value *V, + Instruction *IB = 0) + : Instruction(Ty, iType, &Op<0>(), 1, IB) { + Op<0>() = V; + } + UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE) + : Instruction(Ty, iType, &Op<0>(), 1, IAE) { + Op<0>() = V; + } public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 1); + } - // create() - Construct a unary instruction, given the opcode - // and its operand. - // - static UnaryOperator *create(unsigned Op, Value *Source); + // Out of line virtual method, so the vtable, etc has a home. + ~UnaryInstruction(); - UnaryOperator(Value *S, unsigned iType, const string &Name = "") - : Instruction(S->getType(), iType, Name) { - Operands.reserve(1); - Operands.push_back(Use(S, this)); - } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); - virtual Instruction *clone() const { - return create(getOpcode(), Operands[0]); + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Alloca || + I->getOpcode() == Instruction::Load || + I->getOpcode() == Instruction::VAArg || + I->getOpcode() == Instruction::ExtractValue || + (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd); + } + static inline bool classof(const Value *V) { + return isa(V) && classof(cast(V)); } - - virtual const char *getOpcodeName() const = 0; }; +template <> +struct OperandTraits : + public FixedNumOperandTraits { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value) //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// class BinaryOperator : public Instruction { + void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; +protected: + void init(BinaryOps iType); + BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, + const Twine &Name, Instruction *InsertBefore); + BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, + const Twine &Name, BasicBlock *InsertAtEnd); + virtual BinaryOperator *clone_impl() const LLVM_OVERRIDE; public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Create() - Construct a binary instruction, given the opcode and the two + /// operands. Optionally (if InstBefore is specified) insert the instruction + /// into a BasicBlock right before the specified instruction. The specified + /// Instruction is allowed to be a dereferenced end iterator. + /// + static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name = Twine(), + Instruction *InsertBefore = 0); + + /// Create() - Construct a binary instruction, given the opcode and the two + /// operands. Also automatically insert this instruction to the end of the + /// BasicBlock specified. + /// + static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name, BasicBlock *InsertAtEnd); + + /// Create* - These methods just forward to Create, and are useful when you + /// statically know what type of instruction you're going to create. These + /// helpers just save some typing. +#define HANDLE_BINARY_INST(N, OPC, CLASS) \ + static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ + const Twine &Name = "") {\ + return Create(Instruction::OPC, V1, V2, Name);\ + } +#include "llvm/Instruction.def" +#define HANDLE_BINARY_INST(N, OPC, CLASS) \ + static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ + const Twine &Name, BasicBlock *BB) {\ + return Create(Instruction::OPC, V1, V2, Name, BB);\ + } +#include "llvm/Instruction.def" +#define HANDLE_BINARY_INST(N, OPC, CLASS) \ + static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ + const Twine &Name, Instruction *I) {\ + return Create(Instruction::OPC, V1, V2, Name, I);\ + } +#include "llvm/Instruction.def" + + static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name = "") { + BinaryOperator *BO = Create(Opc, V1, V2, Name); + BO->setHasNoSignedWrap(true); + return BO; + } + static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, BasicBlock *BB) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); + BO->setHasNoSignedWrap(true); + return BO; + } + static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, Instruction *I) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, I); + BO->setHasNoSignedWrap(true); + return BO; + } + + static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name = "") { + BinaryOperator *BO = Create(Opc, V1, V2, Name); + BO->setHasNoUnsignedWrap(true); + return BO; + } + static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, BasicBlock *BB) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); + BO->setHasNoUnsignedWrap(true); + return BO; + } + static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, Instruction *I) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, I); + BO->setHasNoUnsignedWrap(true); + return BO; + } + + static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name = "") { + BinaryOperator *BO = Create(Opc, V1, V2, Name); + BO->setIsExact(true); + return BO; + } + static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, BasicBlock *BB) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); + BO->setIsExact(true); + return BO; + } + static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, + const Twine &Name, Instruction *I) { + BinaryOperator *BO = Create(Opc, V1, V2, Name, I); + BO->setIsExact(true); + return BO; + } + +#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \ + static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ + (Value *V1, Value *V2, const Twine &Name = "") { \ + return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \ + } \ + static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ + (Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \ + return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \ + } \ + static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ + (Value *V1, Value *V2, const Twine &Name, Instruction *I) { \ + return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \ + } + + DEFINE_HELPERS(Add, NSW) // CreateNSWAdd + DEFINE_HELPERS(Add, NUW) // CreateNUWAdd + DEFINE_HELPERS(Sub, NSW) // CreateNSWSub + DEFINE_HELPERS(Sub, NUW) // CreateNUWSub + DEFINE_HELPERS(Mul, NSW) // CreateNSWMul + DEFINE_HELPERS(Mul, NUW) // CreateNUWMul + DEFINE_HELPERS(Shl, NSW) // CreateNSWShl + DEFINE_HELPERS(Shl, NUW) // CreateNUWShl + + DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv + DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv + DEFINE_HELPERS(AShr, Exact) // CreateExactAShr + DEFINE_HELPERS(LShr, Exact) // CreateExactLShr + +#undef DEFINE_HELPERS + + /// Helper functions to construct and inspect unary operations (NEG and NOT) + /// via binary operators SUB and XOR: + /// + /// CreateNeg, CreateNot - Create the NEG and NOT + /// instructions out of SUB and XOR instructions. + /// + static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "", + Instruction *InsertBefore = 0); + static BinaryOperator *CreateNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd); + static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "", + Instruction *InsertBefore = 0); + static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd); + static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "", + Instruction *InsertBefore = 0); + static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd); + static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "", + Instruction *InsertBefore = 0); + static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd); + static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "", + Instruction *InsertBefore = 0); + static BinaryOperator *CreateNot(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd); + + /// isNeg, isFNeg, isNot - Check if the given Value is a + /// NEG, FNeg, or NOT instruction. + /// + static bool isNeg(const Value *V); + static bool isFNeg(const Value *V); + static bool isNot(const Value *V); - // create() - Construct a binary instruction, given the opcode - // and the two operands. - // - static BinaryOperator *create(unsigned Op, Value *S1, Value *S2, - const string &Name = ""); + /// getNegArgument, getNotArgument - Helper functions to extract the + /// unary argument of a NEG, FNEG or NOT operation implemented via + /// Sub, FSub, or Xor. + /// + static const Value *getNegArgument(const Value *BinOp); + static Value *getNegArgument( Value *BinOp); + static const Value *getFNegArgument(const Value *BinOp); + static Value *getFNegArgument( Value *BinOp); + static const Value *getNotArgument(const Value *BinOp); + static Value *getNotArgument( Value *BinOp); - BinaryOperator(unsigned iType, Value *S1, Value *S2, - const string &Name = "") - : Instruction(S1->getType(), iType, Name) { - Operands.reserve(2); - Operands.push_back(Use(S1, this)); - Operands.push_back(Use(S2, this)); - assert(Operands[0] && Operands[1] && - Operands[0]->getType() == Operands[1]->getType()); + BinaryOps getOpcode() const { + return static_cast(Instruction::getOpcode()); } - virtual Instruction *clone() const { - return create(getOpcode(), Operands[0], Operands[1]); + /// swapOperands - Exchange the two operands to this instruction. + /// This instruction is safe to use on any binary instruction and + /// does not modify the semantics of the instruction. If the instruction + /// cannot be reversed (ie, it's a Div), then return true. + /// + bool swapOperands(); + + /// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction, + /// which must be an operator which supports this flag. See LangRef.html + /// for the meaning of this flag. + void setHasNoUnsignedWrap(bool b = true); + + /// setHasNoSignedWrap - Set or clear the nsw flag on this instruction, + /// which must be an operator which supports this flag. See LangRef.html + /// for the meaning of this flag. + void setHasNoSignedWrap(bool b = true); + + /// setIsExact - Set or clear the exact flag on this instruction, + /// which must be an operator which supports this flag. See LangRef.html + /// for the meaning of this flag. + void setIsExact(bool b = true); + + /// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set. + bool hasNoUnsignedWrap() const; + + /// hasNoSignedWrap - Determine whether the no signed wrap flag is set. + bool hasNoSignedWrap() const; + + /// isExact - Determine whether the exact flag is set. + bool isExact() const; + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Instruction *I) { + return I->isBinaryOp(); } + static inline bool classof(const Value *V) { + return isa(V) && classof(cast(V)); + } +}; - virtual const char *getOpcodeName() const = 0; +template <> +struct OperandTraits : + public FixedNumOperandTraits { }; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value) + +//===----------------------------------------------------------------------===// +// CastInst Class +//===----------------------------------------------------------------------===// + +/// CastInst - This is the base class for all instructions that perform data +/// casts. It is simply provided so that instruction category testing +/// can be performed with code like: +/// +/// if (isa(Instr)) { ... } +/// @brief Base class of casting instructions. +class CastInst : public UnaryInstruction { + virtual void anchor() LLVM_OVERRIDE; +protected: + /// @brief Constructor with insert-before-instruction semantics for subclasses + CastInst(Type *Ty, unsigned iType, Value *S, + const Twine &NameStr = "", Instruction *InsertBefore = 0) + : UnaryInstruction(Ty, iType, S, InsertBefore) { + setName(NameStr); + } + /// @brief Constructor with insert-at-end-of-block semantics for subclasses + CastInst(Type *Ty, unsigned iType, Value *S, + const Twine &NameStr, BasicBlock *InsertAtEnd) + : UnaryInstruction(Ty, iType, S, InsertAtEnd) { + setName(NameStr); + } +public: + /// Provides a way to construct any of the CastInst subclasses using an + /// opcode instead of the subclass's constructor. The opcode must be in the + /// CastOps category (Instruction::isCast(opcode) returns true). This + /// constructor has insert-before-instruction semantics to automatically + /// insert the new CastInst before InsertBefore (if it is non-null). + /// @brief Construct any of the CastInst subclasses + static CastInst *Create( + Instruction::CastOps, ///< The opcode of the cast instruction + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + /// Provides a way to construct any of the CastInst subclasses using an + /// opcode instead of the subclass's constructor. The opcode must be in the + /// CastOps category. This constructor has insert-at-end-of-block semantics + /// to automatically insert the new CastInst at the end of InsertAtEnd (if + /// its non-null). + /// @brief Construct any of the CastInst subclasses + static CastInst *Create( + Instruction::CastOps, ///< The opcode for the cast instruction + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which operand is casted + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create a ZExt or BitCast cast instruction + static CastInst *CreateZExtOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create a ZExt or BitCast cast instruction + static CastInst *CreateZExtOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which operand is casted + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create a SExt or BitCast cast instruction + static CastInst *CreateSExtOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create a SExt or BitCast cast instruction + static CastInst *CreateSExtOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which operand is casted + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create a BitCast or a PtrToInt cast instruction + static CastInst *CreatePointerCast( + Value *S, ///< The pointer value to be casted (operand 0) + Type *Ty, ///< The type to which operand is casted + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create a BitCast or a PtrToInt cast instruction + static CastInst *CreatePointerCast( + Value *S, ///< The pointer value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts. + static CastInst *CreateIntegerCast( + Value *S, ///< The pointer value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + bool isSigned, ///< Whether to regard S as signed or not + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts. + static CastInst *CreateIntegerCast( + Value *S, ///< The integer value to be casted (operand 0) + Type *Ty, ///< The integer type to which operand is casted + bool isSigned, ///< Whether to regard S as signed or not + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts + static CastInst *CreateFPCast( + Value *S, ///< The floating point value to be casted + Type *Ty, ///< The floating point type to cast to + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts + static CastInst *CreateFPCast( + Value *S, ///< The floating point value to be casted + Type *Ty, ///< The floating point type to cast to + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Create a Trunc or BitCast cast instruction + static CastInst *CreateTruncOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which cast should be made + const Twine &Name = "", ///< Name for the instruction + Instruction *InsertBefore = 0 ///< Place to insert the instruction + ); + + /// @brief Create a Trunc or BitCast cast instruction + static CastInst *CreateTruncOrBitCast( + Value *S, ///< The value to be casted (operand 0) + Type *Ty, ///< The type to which operand is casted + const Twine &Name, ///< The name for the instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// @brief Check whether it is valid to call getCastOpcode for these types. + static bool isCastable( + Type *SrcTy, ///< The Type from which the value should be cast. + Type *DestTy ///< The Type to which the value should be cast. + ); + + /// Returns the opcode necessary to cast Val into Ty using usual casting + /// rules. + /// @brief Infer the opcode for cast operand and type + static Instruction::CastOps getCastOpcode( + const Value *Val, ///< The value to cast + bool SrcIsSigned, ///< Whether to treat the source as signed + Type *Ty, ///< The Type to which the value should be casted + bool DstIsSigned ///< Whether to treate the dest. as signed + ); + + /// There are several places where we need to know if a cast instruction + /// only deals with integer source and destination types. To simplify that + /// logic, this method is provided. + /// @returns true iff the cast has only integral typed operand and dest type. + /// @brief Determine if this is an integer-only cast. + bool isIntegerCast() const; + + /// A lossless cast is one that does not alter the basic value. It implies + /// a no-op cast but is more stringent, preventing things like int->float, + /// long->double, or int->ptr. + /// @returns true iff the cast is lossless. + /// @brief Determine if this is a lossless cast. + bool isLosslessCast() const; + + /// A no-op cast is one that can be effected without changing any bits. + /// It implies that the source and destination types are the same size. The + /// IntPtrTy argument is used to make accurate determinations for casts + /// involving Integer and Pointer types. They are no-op casts if the integer + /// is the same size as the pointer. However, pointer size varies with + /// platform. Generally, the result of DataLayout::getIntPtrType() should be + /// passed in. If that's not available, use Type::Int64Ty, which will make + /// the isNoopCast call conservative. + /// @brief Determine if the described cast is a no-op cast. + static bool isNoopCast( + Instruction::CastOps Opcode, ///< Opcode of cast + Type *SrcTy, ///< SrcTy of cast + Type *DstTy, ///< DstTy of cast + Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null + ); + + /// @brief Determine if this cast is a no-op cast. + bool isNoopCast( + Type *IntPtrTy ///< Integer type corresponding to pointer + ) const; + + /// Determine how a pair of casts can be eliminated, if they can be at all. + /// This is a helper function for both CastInst and ConstantExpr. + /// @returns 0 if the CastInst pair can't be eliminated, otherwise + /// returns Instruction::CastOps value for a cast that can replace + /// the pair, casting SrcTy to DstTy. + /// @brief Determine if a cast pair is eliminable + static unsigned isEliminableCastPair( + Instruction::CastOps firstOpcode, ///< Opcode of first cast + Instruction::CastOps secondOpcode, ///< Opcode of second cast + Type *SrcTy, ///< SrcTy of 1st cast + Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast + Type *DstTy, ///< DstTy of 2nd cast + Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null + Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null + Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null + ); + + /// @brief Return the opcode of this CastInst + Instruction::CastOps getOpcode() const { + return Instruction::CastOps(Instruction::getOpcode()); + } + + /// @brief Return the source type, as a convenience + Type* getSrcTy() const { return getOperand(0)->getType(); } + /// @brief Return the destination type, as a convenience + Type* getDestTy() const { return getType(); } + + /// This method can be used to determine if a cast from S to DstTy using + /// Opcode op is valid or not. + /// @returns true iff the proposed cast is valid. + /// @brief Determine if a cast is valid without creating one. + static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy); + + /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Instruction *I) { + return I->isCast(); + } + static inline bool classof(const Value *V) { + return isa(V) && classof(cast(V)); + } +}; + +//===----------------------------------------------------------------------===// +// CmpInst Class +//===----------------------------------------------------------------------===// + +/// This class is the base class for the comparison instructions. +/// @brief Abstract base class of comparison instructions. +class CmpInst : public Instruction { + void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; + CmpInst() LLVM_DELETED_FUNCTION; +protected: + CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred, + Value *LHS, Value *RHS, const Twine &Name = "", + Instruction *InsertBefore = 0); + + CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred, + Value *LHS, Value *RHS, const Twine &Name, + BasicBlock *InsertAtEnd); + + virtual void anchor() LLVM_OVERRIDE; // Out of line virtual method. +public: + /// This enumeration lists the possible predicates for CmpInst subclasses. + /// Values in the range 0-31 are reserved for FCmpInst, while values in the + /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the + /// predicate values are not overlapping between the classes. + enum Predicate { + // Opcode U L G E Intuitive operation + FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded) + FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal + FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than + FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal + FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than + FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal + FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal + FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans) + FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y) + FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal + FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than + FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal + FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than + FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal + FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal + FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded) + FIRST_FCMP_PREDICATE = FCMP_FALSE, + LAST_FCMP_PREDICATE = FCMP_TRUE, + BAD_FCMP_PREDICATE = FCMP_TRUE + 1, + ICMP_EQ = 32, ///< equal + ICMP_NE = 33, ///< not equal + ICMP_UGT = 34, ///< unsigned greater than + ICMP_UGE = 35, ///< unsigned greater or equal + ICMP_ULT = 36, ///< unsigned less than + ICMP_ULE = 37, ///< unsigned less or equal + ICMP_SGT = 38, ///< signed greater than + ICMP_SGE = 39, ///< signed greater or equal + ICMP_SLT = 40, ///< signed less than + ICMP_SLE = 41, ///< signed less or equal + FIRST_ICMP_PREDICATE = ICMP_EQ, + LAST_ICMP_PREDICATE = ICMP_SLE, + BAD_ICMP_PREDICATE = ICMP_SLE + 1 + }; + + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + /// Construct a compare instruction, given the opcode, the predicate and + /// the two operands. Optionally (if InstBefore is specified) insert the + /// instruction into a BasicBlock right before the specified instruction. + /// The specified Instruction is allowed to be a dereferenced end iterator. + /// @brief Create a CmpInst + static CmpInst *Create(OtherOps Op, + unsigned short predicate, Value *S1, + Value *S2, const Twine &Name = "", + Instruction *InsertBefore = 0); + + /// Construct a compare instruction, given the opcode, the predicate and the + /// two operands. Also automatically insert this instruction to the end of + /// the BasicBlock specified. + /// @brief Create a CmpInst + static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1, + Value *S2, const Twine &Name, BasicBlock *InsertAtEnd); + + /// @brief Get the opcode casted to the right type + OtherOps getOpcode() const { + return static_cast(Instruction::getOpcode()); + } + + /// @brief Return the predicate for this instruction. + Predicate getPredicate() const { + return Predicate(getSubclassDataFromInstruction()); + } + + /// @brief Set the predicate for this instruction to the specified value. + void setPredicate(Predicate P) { setInstructionSubclassData(P); } + + static bool isFPPredicate(Predicate P) { + return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE; + } + + static bool isIntPredicate(Predicate P) { + return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE; + } + + bool isFPPredicate() const { return isFPPredicate(getPredicate()); } + bool isIntPredicate() const { return isIntPredicate(getPredicate()); } + + + /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, + /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. + /// @returns the inverse predicate for the instruction's current predicate. + /// @brief Return the inverse of the instruction's predicate. + Predicate getInversePredicate() const { + return getInversePredicate(getPredicate()); + } + + /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, + /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. + /// @returns the inverse predicate for predicate provided in \p pred. + /// @brief Return the inverse of a given predicate + static Predicate getInversePredicate(Predicate pred); + + /// For example, EQ->EQ, SLE->SGE, ULT->UGT, + /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc. + /// @returns the predicate that would be the result of exchanging the two + /// operands of the CmpInst instruction without changing the result + /// produced. + /// @brief Return the predicate as if the operands were swapped + Predicate getSwappedPredicate() const { + return getSwappedPredicate(getPredicate()); + } + + /// This is a static version that you can use without an instruction + /// available. + /// @brief Return the predicate as if the operands were swapped. + static Predicate getSwappedPredicate(Predicate pred); + + /// @brief Provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// This is just a convenience that dispatches to the subclasses. + /// @brief Swap the operands and adjust predicate accordingly to retain + /// the same comparison. + void swapOperands(); + + /// This is just a convenience that dispatches to the subclasses. + /// @brief Determine if this CmpInst is commutative. + bool isCommutative() const; + + /// This is just a convenience that dispatches to the subclasses. + /// @brief Determine if this is an equals/not equals predicate. + bool isEquality() const; + + /// @returns true if the comparison is signed, false otherwise. + /// @brief Determine if this instruction is using a signed comparison. + bool isSigned() const { + return isSigned(getPredicate()); + } + + /// @returns true if the comparison is unsigned, false otherwise. + /// @brief Determine if this instruction is using an unsigned comparison. + bool isUnsigned() const { + return isUnsigned(getPredicate()); + } + + /// This is just a convenience. + /// @brief Determine if this is true when both operands are the same. + bool isTrueWhenEqual() const { + return isTrueWhenEqual(getPredicate()); + } + + /// This is just a convenience. + /// @brief Determine if this is false when both operands are the same. + bool isFalseWhenEqual() const { + return isFalseWhenEqual(getPredicate()); + } + + /// @returns true if the predicate is unsigned, false otherwise. + /// @brief Determine if the predicate is an unsigned operation. + static bool isUnsigned(unsigned short predicate); + + /// @returns true if the predicate is signed, false otherwise. + /// @brief Determine if the predicate is an signed operation. + static bool isSigned(unsigned short predicate); + + /// @brief Determine if the predicate is an ordered operation. + static bool isOrdered(unsigned short predicate); + + /// @brief Determine if the predicate is an unordered operation. + static bool isUnordered(unsigned short predicate); + + /// Determine if the predicate is true when comparing a value with itself. + static bool isTrueWhenEqual(unsigned short predicate); + + /// Determine if the predicate is false when comparing a value with itself. + static bool isFalseWhenEqual(unsigned short predicate); + + /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::ICmp || + I->getOpcode() == Instruction::FCmp; + } + static inline bool classof(const Value *V) { + return isa(V) && classof(cast(V)); + } + + /// @brief Create a result type for fcmp/icmp + static Type* makeCmpResultType(Type* opnd_type) { + if (VectorType* vt = dyn_cast(opnd_type)) { + return VectorType::get(Type::getInt1Ty(opnd_type->getContext()), + vt->getNumElements()); + } + return Type::getInt1Ty(opnd_type->getContext()); + } +private: + // Shadow Value::setValueSubclassData with a private forwarding method so that + // subclasses cannot accidentally use it. + void setValueSubclassData(unsigned short D) { + Value::setValueSubclassData(D); + } +}; + + +// FIXME: these are redundant if CmpInst < BinaryOperator +template <> +struct OperandTraits : public FixedNumOperandTraits { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value) + +} // End llvm namespace + #endif