X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FSupport%2FMathExtras.h;h=11f9e63c9bbcafa849f49177c20d9ecafc4d01d7;hb=b09c146b116359616f6cbd4c8b3328607e00ff42;hp=7ba5d8661cccdc5721606ca1da08725f875cb3af;hpb=d4c00c0f558193b492aed9ab6aacf84bf1d3fb4e;p=oota-llvm.git diff --git a/include/llvm/Support/MathExtras.h b/include/llvm/Support/MathExtras.h index 7ba5d8661cc..11f9e63c9bb 100644 --- a/include/llvm/Support/MathExtras.h +++ b/include/llvm/Support/MathExtras.h @@ -14,7 +14,7 @@ #ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H -#include "llvm/Support/DataTypes.h" +#include "llvm/Support/SwapByteOrder.h" namespace llvm { @@ -32,35 +32,69 @@ inline uint32_t Lo_32(uint64_t Value) { return static_cast(Value); } -/// is?Type - these functions produce optimal testing for integer data types. -inline bool isInt8 (int64_t Value) { - return static_cast(Value) == Value; -} -inline bool isUInt8 (int64_t Value) { - return static_cast(Value) == Value; -} -inline bool isInt16 (int64_t Value) { - return static_cast(Value) == Value; +/// isInt - Checks if an integer fits into the given bit width. +template +inline bool isInt(int64_t x) { + return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); } -inline bool isUInt16(int64_t Value) { - return static_cast(Value) == Value; +// Template specializations to get better code for common cases. +template<> +inline bool isInt<8>(int64_t x) { + return static_cast(x) == x; } -inline bool isInt32 (int64_t Value) { - return static_cast(Value) == Value; +template<> +inline bool isInt<16>(int64_t x) { + return static_cast(x) == x; } -inline bool isUInt32(int64_t Value) { - return static_cast(Value) == Value; +template<> +inline bool isInt<32>(int64_t x) { + return static_cast(x) == x; } -template -inline bool isInt(int64_t x) { - return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); +/// isShiftedInt - Checks if a signed integer is an N bit number shifted +/// left by S. +template +inline bool isShiftedInt(int64_t x) { + return isInt(x) && (x % (1< -inline bool isUint(uint64_t x) { +inline bool isUInt(uint64_t x) { return N >= 64 || x < (UINT64_C(1)< +inline bool isUInt<8>(uint64_t x) { + return static_cast(x) == x; +} +template<> +inline bool isUInt<16>(uint64_t x) { + return static_cast(x) == x; +} +template<> +inline bool isUInt<32>(uint64_t x) { + return static_cast(x) == x; +} + +/// isShiftedUInt - Checks if a unsigned integer is an N bit number shifted +/// left by S. +template +inline bool isShiftedUInt(uint64_t x) { + return isUInt(x) && (x % (1<> (64 - N))); +} + +/// isIntN - Checks if an signed integer fits into the given (dynamic) +/// bit width. +inline bool isIntN(unsigned N, int64_t x) { + return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); +} /// isMask_32 - This function returns true if the argument is a sequence of ones /// starting at the least significant bit with the remainder zero (32 bit @@ -104,45 +138,19 @@ inline bool isPowerOf2_64(uint64_t Value) { /// ByteSwap_16 - This function returns a byte-swapped representation of the /// 16-bit argument, Value. inline uint16_t ByteSwap_16(uint16_t Value) { -#if defined(_MSC_VER) && !defined(_DEBUG) - // The DLL version of the runtime lacks these functions (bug!?), but in a - // release build they're replaced with BSWAP instructions anyway. - return _byteswap_ushort(Value); -#else - uint16_t Hi = Value << 8; - uint16_t Lo = Value >> 8; - return Hi | Lo; -#endif + return sys::SwapByteOrder_16(Value); } /// ByteSwap_32 - This function returns a byte-swapped representation of the /// 32-bit argument, Value. inline uint32_t ByteSwap_32(uint32_t Value) { -#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) && !defined(__ICC) - return __builtin_bswap32(Value); -#elif defined(_MSC_VER) && !defined(_DEBUG) - return _byteswap_ulong(Value); -#else - uint32_t Byte0 = Value & 0x000000FF; - uint32_t Byte1 = Value & 0x0000FF00; - uint32_t Byte2 = Value & 0x00FF0000; - uint32_t Byte3 = Value & 0xFF000000; - return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); -#endif + return sys::SwapByteOrder_32(Value); } /// ByteSwap_64 - This function returns a byte-swapped representation of the /// 64-bit argument, Value. inline uint64_t ByteSwap_64(uint64_t Value) { -#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) && !defined(__ICC) - return __builtin_bswap64(Value); -#elif defined(_MSC_VER) && !defined(_DEBUG) - return _byteswap_uint64(Value); -#else - uint64_t Hi = ByteSwap_32(uint32_t(Value)); - uint32_t Lo = ByteSwap_32(uint32_t(Value >> 32)); - return (Hi << 32) | Lo; -#endif + return sys::SwapByteOrder_64(Value); } /// CountLeadingZeros_32 - this function performs the platform optimal form of @@ -160,7 +168,7 @@ inline unsigned CountLeadingZeros_32(uint32_t Value) { #else if (!Value) return 32; Count = 0; - // bisecton method for count leading zeros + // bisection method for count leading zeros for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { uint32_t Tmp = Value >> Shift; if (Tmp) { @@ -197,7 +205,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { if (sizeof(long) == sizeof(int64_t)) { if (!Value) return 64; Count = 0; - // bisecton method for count leading zeros + // bisection method for count leading zeros for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { @@ -406,14 +414,14 @@ int IsInf(double d); /// MinAlign - A and B are either alignments or offsets. Return the minimum /// alignment that may be assumed after adding the two together. -static inline uint64_t MinAlign(uint64_t A, uint64_t B) { +inline uint64_t MinAlign(uint64_t A, uint64_t B) { // The largest power of 2 that divides both A and B. return (A | B) & -(A | B); } /// NextPowerOf2 - Returns the next power of two (in 64-bits) /// that is strictly greater than A. Returns zero on overflow. -static inline uint64_t NextPowerOf2(uint64_t A) { +inline uint64_t NextPowerOf2(uint64_t A) { A |= (A >> 1); A |= (A >> 2); A |= (A >> 4); @@ -423,18 +431,26 @@ static inline uint64_t NextPowerOf2(uint64_t A) { return A + 1; } -/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is -/// greater than or equal to \arg Value and is a multiple of \arg -/// Align. Align must be non-zero. +/// Returns the next integer (mod 2**64) that is greater than or equal to +/// \p Value and is a multiple of \p Align. \p Align must be non-zero. /// /// Examples: -/// RoundUpToAlignment(5, 8) = 8 -/// RoundUpToAlignment(17, 8) = 24 -/// RoundUpToAlignment(~0LL, 8) = 0 +/// \code +/// RoundUpToAlignment(5, 8) = 8 +/// RoundUpToAlignment(17, 8) = 24 +/// RoundUpToAlignment(~0LL, 8) = 0 +/// \endcode inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { return ((Value + Align - 1) / Align) * Align; } +/// Returns the offset to the next integer (mod 2**64) that is greater than +/// or equal to \p Value and is a multiple of \p Align. \p Align must be +/// non-zero. +inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { + return RoundUpToAlignment(Value, Align) - Value; +} + /// abs64 - absolute value of a 64-bit int. Not all environments support /// "abs" on whatever their name for the 64-bit int type is. The absolute /// value of the largest negative number is undefined, as with "abs". @@ -442,6 +458,30 @@ inline int64_t abs64(int64_t x) { return (x < 0) ? -x : x; } +/// SignExtend32 - Sign extend B-bit number x to 32-bit int. +/// Usage int32_t r = SignExtend32<5>(x); +template inline int32_t SignExtend32(uint32_t x) { + return int32_t(x << (32 - B)) >> (32 - B); +} + +/// \brief Sign extend number in the bottom B bits of X to a 32-bit int. +/// Requires 0 < B <= 32. +inline int32_t SignExtend32(uint32_t X, unsigned B) { + return int32_t(X << (32 - B)) >> (32 - B); +} + +/// SignExtend64 - Sign extend B-bit number x to 64-bit int. +/// Usage int64_t r = SignExtend64<5>(x); +template inline int64_t SignExtend64(uint64_t x) { + return int64_t(x << (64 - B)) >> (64 - B); +} + +/// \brief Sign extend number in the bottom B bits of X to a 64-bit int. +/// Requires 0 < B <= 64. +inline int64_t SignExtend64(uint64_t X, unsigned B) { + return int64_t(X << (64 - B)) >> (64 - B); +} + } // End llvm namespace #endif