X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FSupport%2FMathExtras.h;h=4627557f7f1f05b2fe4382461d69527cc9a67ba4;hb=acbaecd4c8e4d19207e63624dcd9e01947b51757;hp=228d35ceff522f1b00541fc90eb8b34a868f287b;hpb=7107c3badfe78ec89dcab6c02cf1b1bcaccc42a8;p=oota-llvm.git diff --git a/include/llvm/Support/MathExtras.h b/include/llvm/Support/MathExtras.h index 228d35ceff5..4627557f7f1 100644 --- a/include/llvm/Support/MathExtras.h +++ b/include/llvm/Support/MathExtras.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -14,115 +14,136 @@ #ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H -#include "llvm/Support/DataTypes.h" -#include "llvm/System/IncludeFile.h" +#include "llvm/Support/SwapByteOrder.h" namespace llvm { -// NOTE: The following support functions use the _32/_64 extensions instead of +// NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity. +/// Hi_32 - This function returns the high 32 bits of a 64 bit value. +inline uint32_t Hi_32(uint64_t Value) { + return static_cast(Value >> 32); +} -// Hi_32 - This function returns the high 32 bits of a 64 bit value. -inline unsigned Hi_32(uint64_t Value) { - return static_cast(Value >> 32); +/// Lo_32 - This function returns the low 32 bits of a 64 bit value. +inline uint32_t Lo_32(uint64_t Value) { + return static_cast(Value); } -// Lo_32 - This function returns the low 32 bits of a 64 bit value. -inline unsigned Lo_32(uint64_t Value) { - return static_cast(Value); +/// isInt - Checks if an integer fits into the given bit width. +template +inline bool isInt(int64_t x) { + return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); +} +// Template specializations to get better code for common cases. +template<> +inline bool isInt<8>(int64_t x) { + return static_cast(x) == x; +} +template<> +inline bool isInt<16>(int64_t x) { + return static_cast(x) == x; +} +template<> +inline bool isInt<32>(int64_t x) { + return static_cast(x) == x; } -// is?Type - these functions produce optimal testing for integer data types. -inline bool isInt8 (int Value) { - return static_cast(Value) == Value; +/// isUInt - Checks if an unsigned integer fits into the given bit width. +template +inline bool isUInt(uint64_t x) { + return N >= 64 || x < (UINT64_C(1)<(Value) == Value; +// Template specializations to get better code for common cases. +template<> +inline bool isUInt<8>(uint64_t x) { + return static_cast(x) == x; } -inline bool isInt16 (int Value) { - return static_cast(Value) == Value; +template<> +inline bool isUInt<16>(uint64_t x) { + return static_cast(x) == x; } -inline bool isUInt16(int Value) { - return static_cast(Value) == Value; +template<> +inline bool isUInt<32>(uint64_t x) { + return static_cast(x) == x; } -inline bool isInt32 (int64_t Value) { - return static_cast(Value) == Value; + +/// isUIntN - Checks if an unsigned integer fits into the given (dynamic) +/// bit width. +inline bool isUIntN(unsigned N, uint64_t x) { + return x == (x & (~0ULL >> (64 - N))); } -inline bool isUInt32(int64_t Value) { - return static_cast(Value) == Value; + +/// isIntN - Checks if an signed integer fits into the given (dynamic) +/// bit width. +inline bool isIntN(unsigned N, int64_t x) { + return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); } -// isMask_32 - This function returns true if the argument is a sequence of ones -// starting at the least significant bit with the remainder zero (32 bit version.) -// Ex. isMask_32(0x0000FFFFU) == true. -inline const bool isMask_32(unsigned Value) { +/// isMask_32 - This function returns true if the argument is a sequence of ones +/// starting at the least significant bit with the remainder zero (32 bit +/// version). Ex. isMask_32(0x0000FFFFU) == true. +inline bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; } -// isMask_64 - This function returns true if the argument is a sequence of ones -// starting at the least significant bit with the remainder zero (64 bit version.) -inline const bool isMask_64(uint64_t Value) { +/// isMask_64 - This function returns true if the argument is a sequence of ones +/// starting at the least significant bit with the remainder zero (64 bit +/// version). +inline bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } -// isShiftedMask_32 - This function returns true if the argument contains a -// sequence of ones with the remainder zero (32 bit version.) -// Ex. isShiftedMask_32(0x0000FF00U) == true. -inline const bool isShiftedMask_32(unsigned Value) { +/// isShiftedMask_32 - This function returns true if the argument contains a +/// sequence of ones with the remainder zero (32 bit version.) +/// Ex. isShiftedMask_32(0x0000FF00U) == true. +inline bool isShiftedMask_32(uint32_t Value) { return isMask_32((Value - 1) | Value); } -// isShiftedMask_64 - This function returns true if the argument contains a -// sequence of ones with the remainder zero (64 bit version.) -inline const bool isShiftedMask_64(uint64_t Value) { +/// isShiftedMask_64 - This function returns true if the argument contains a +/// sequence of ones with the remainder zero (64 bit version.) +inline bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); } -// isPowerOf2_32 - This function returns true if the argument is a power of -// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) -inline bool isPowerOf2_32(unsigned Value) { +/// isPowerOf2_32 - This function returns true if the argument is a power of +/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) +inline bool isPowerOf2_32(uint32_t Value) { return Value && !(Value & (Value - 1)); } -// isPowerOf2_64 - This function returns true if the argument is a power of two -// > 0 (64 bit edition.) +/// isPowerOf2_64 - This function returns true if the argument is a power of two +/// > 0 (64 bit edition.) inline bool isPowerOf2_64(uint64_t Value) { return Value && !(Value & (Value - int64_t(1L))); } -// ByteSwap_16 - This function returns a byte-swapped representation of the -// 16-bit argument, Value. -inline unsigned short ByteSwap_16(unsigned short Value) { - unsigned short Hi = Value << 8; - unsigned short Lo = Value >> 8; - return Hi | Lo; +/// ByteSwap_16 - This function returns a byte-swapped representation of the +/// 16-bit argument, Value. +inline uint16_t ByteSwap_16(uint16_t Value) { + return sys::SwapByteOrder_16(Value); } -// ByteSwap_32 - This function returns a byte-swapped representation of the -// 32-bit argument, Value. -inline unsigned ByteSwap_32(unsigned Value) { - unsigned Byte0 = Value & 0x000000FF; - unsigned Byte1 = Value & 0x0000FF00; - unsigned Byte2 = Value & 0x00FF0000; - unsigned Byte3 = Value & 0xFF000000; - return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); +/// ByteSwap_32 - This function returns a byte-swapped representation of the +/// 32-bit argument, Value. +inline uint32_t ByteSwap_32(uint32_t Value) { + return sys::SwapByteOrder_32(Value); } -// ByteSwap_64 - This function returns a byte-swapped representation of the -// 64-bit argument, Value. +/// ByteSwap_64 - This function returns a byte-swapped representation of the +/// 64-bit argument, Value. inline uint64_t ByteSwap_64(uint64_t Value) { - uint64_t Hi = ByteSwap_32(unsigned(Value)); - uint64_t Lo = ByteSwap_32(unsigned(Value >> 32)); - return (Hi << 32) | Lo; + return sys::SwapByteOrder_64(Value); } -// CountLeadingZeros_32 - this function performs the platform optimal form of -// counting the number of zeros from the most significant bit to the first one -// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8. -// Returns 32 if the word is zero. -inline unsigned CountLeadingZeros_32(unsigned Value) { +/// CountLeadingZeros_32 - this function performs the platform optimal form of +/// counting the number of zeros from the most significant bit to the first one +/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8. +/// Returns 32 if the word is zero. +inline unsigned CountLeadingZeros_32(uint32_t Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clz(0) @@ -133,9 +154,9 @@ inline unsigned CountLeadingZeros_32(unsigned Value) { #else if (!Value) return 32; Count = 0; - // bisecton method for count leading zeros + // bisection method for count leading zeros for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { - unsigned Tmp = Value >> Shift; + uint32_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { @@ -146,10 +167,18 @@ inline unsigned CountLeadingZeros_32(unsigned Value) { return Count; } -// CountLeadingZeros_64 - This function performs the platform optimal form -// of counting the number of zeros from the most significant bit to the first -// one bit (64 bit edition.) -// Returns 64 if the word is zero. +/// CountLeadingOnes_32 - this function performs the operation of +/// counting the number of ones from the most significant bit to the first zero +/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountLeadingOnes_32(uint32_t Value) { + return CountLeadingZeros_32(~Value); +} + +/// CountLeadingZeros_64 - This function performs the platform optimal form +/// of counting the number of zeros from the most significant bit to the first +/// one bit (64 bit edition.) +/// Returns 64 if the word is zero. inline unsigned CountLeadingZeros_64(uint64_t Value) { unsigned Count; // result #if __GNUC__ >= 4 @@ -162,8 +191,8 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { if (sizeof(long) == sizeof(int64_t)) { if (!Value) return 64; Count = 0; - // bisecton method for count leading zeros - for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) { + // bisection method for count leading zeros + for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; @@ -173,7 +202,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { } } else { // get hi portion - unsigned Hi = Hi_32(Value); + uint32_t Hi = Hi_32(Value); // if some bits in hi portion if (Hi) { @@ -181,7 +210,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { Count = CountLeadingZeros_32(Hi); } else { // get lo portion - unsigned Lo = Lo_32(Value); + uint32_t Lo = Lo_32(Value); // same as 32 bit value Count = CountLeadingZeros_32(Lo)+32; } @@ -190,71 +219,131 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { return Count; } -// CountTrailingZeros_32 - this function performs the platform optimal form of -// counting the number of zeros from the least significant bit to the first one -// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. -// Returns 32 if the word is zero. -inline unsigned CountTrailingZeros_32(unsigned Value) { - return 32 - CountLeadingZeros_32(~Value & (Value - 1)); +/// CountLeadingOnes_64 - This function performs the operation +/// of counting the number of ones from the most significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountLeadingOnes_64(uint64_t Value) { + return CountLeadingZeros_64(~Value); +} + +/// CountTrailingZeros_32 - this function performs the platform optimal form of +/// counting the number of zeros from the least significant bit to the first one +/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. +/// Returns 32 if the word is zero. +inline unsigned CountTrailingZeros_32(uint32_t Value) { +#if __GNUC__ >= 4 + return Value ? __builtin_ctz(Value) : 32; +#else + static const unsigned Mod37BitPosition[] = { + 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, + 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, + 5, 20, 8, 19, 18 + }; + return Mod37BitPosition[(-Value & Value) % 37]; +#endif +} + +/// CountTrailingOnes_32 - this function performs the operation of +/// counting the number of ones from the least significant bit to the first zero +/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountTrailingOnes_32(uint32_t Value) { + return CountTrailingZeros_32(~Value); } -// CountTrailingZeros_64 - This function performs the platform optimal form -// of counting the number of zeros from the least significant bit to the first -// one bit (64 bit edition.) -// Returns 64 if the word is zero. +/// CountTrailingZeros_64 - This function performs the platform optimal form +/// of counting the number of zeros from the least significant bit to the first +/// one bit (64 bit edition.) +/// Returns 64 if the word is zero. inline unsigned CountTrailingZeros_64(uint64_t Value) { - return 64 - CountLeadingZeros_64(~Value & (Value - 1)); +#if __GNUC__ >= 4 + return Value ? __builtin_ctzll(Value) : 64; +#else + static const unsigned Mod67Position[] = { + 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54, + 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55, + 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27, + 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56, + 7, 48, 35, 6, 34, 33, 0 + }; + return Mod67Position[(-Value & Value) % 67]; +#endif +} + +/// CountTrailingOnes_64 - This function performs the operation +/// of counting the number of ones from the least significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountTrailingOnes_64(uint64_t Value) { + return CountTrailingZeros_64(~Value); } -// CountPopulation_32 - this function counts the number of set bits in a value. -// Ex. CountPopulation(0xF000F000) = 8 -// Returns 0 if the word is zero. -inline unsigned CountPopulation_32(unsigned Value) { - unsigned x, t; - x = Value - ((Value >> 1) & 0x55555555); - t = ((x >> 2) & 0x33333333); - x = (x & 0x33333333) + t; - x = (x + (x >> 4)) & 0x0F0F0F0F; - x = x + (x << 8); - x = x + (x << 16); - return x >> 24; +/// CountPopulation_32 - this function counts the number of set bits in a value. +/// Ex. CountPopulation(0xF000F000) = 8 +/// Returns 0 if the word is zero. +inline unsigned CountPopulation_32(uint32_t Value) { +#if __GNUC__ >= 4 + return __builtin_popcount(Value); +#else + uint32_t v = Value - ((Value >> 1) & 0x55555555); + v = (v & 0x33333333) + ((v >> 2) & 0x33333333); + return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; +#endif } -// CountPopulation_64 - this function counts the number of set bits in a value, -// (64 bit edition.) +/// CountPopulation_64 - this function counts the number of set bits in a value, +/// (64 bit edition.) inline unsigned CountPopulation_64(uint64_t Value) { - return CountPopulation_32(unsigned(Value >> 32)) + - CountPopulation_32(unsigned(Value)); +#if __GNUC__ >= 4 + return __builtin_popcountll(Value); +#else + uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); + v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); + v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; + return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); +#endif } -// Log2_32 - This function returns the floor log base 2 of the specified value, -// -1 if the value is zero. (32 bit edition.) -// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 -inline unsigned Log2_32(unsigned Value) { - return 31 - CountLeadingZeros_32(Value); +/// Log2_32 - This function returns the floor log base 2 of the specified value, +/// -1 if the value is zero. (32 bit edition.) +/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 +inline unsigned Log2_32(uint32_t Value) { + return 31 - CountLeadingZeros_32(Value); } -// Log2_64 - This function returns the floor log base 2 of the specified value, -// -1 if the value is zero. (64 bit edition.) +/// Log2_64 - This function returns the floor log base 2 of the specified value, +/// -1 if the value is zero. (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { - return 63 - CountLeadingZeros_64(Value); + return 63 - CountLeadingZeros_64(Value); } -// Log2_32_Ceil - This function returns the ceil log base 2 of the specified -// value, 32 if the value is zero. (32 bit edition). -// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 -inline unsigned Log2_32_Ceil(unsigned Value) { +/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified +/// value, 32 if the value is zero. (32 bit edition). +/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 +inline unsigned Log2_32_Ceil(uint32_t Value) { return 32-CountLeadingZeros_32(Value-1); } -// Log2_64 - This function returns the ceil log base 2 of the specified value, -// 64 if the value is zero. (64 bit edition.) +/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified +/// value, 64 if the value is zero. (64 bit edition.) inline unsigned Log2_64_Ceil(uint64_t Value) { return 64-CountLeadingZeros_64(Value-1); } -// BitsToDouble - This function takes a 64-bit integer and returns the bit -// equivalent double. +/// GreatestCommonDivisor64 - Return the greatest common divisor of the two +/// values using Euclid's algorithm. +inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { + while (B) { + uint64_t T = B; + B = A % B; + A = T; + } + return A; +} + +/// BitsToDouble - This function takes a 64-bit integer and returns the bit +/// equivalent double. inline double BitsToDouble(uint64_t Bits) { union { uint64_t L; @@ -264,8 +353,8 @@ inline double BitsToDouble(uint64_t Bits) { return T.D; } -// BitsToFloat - This function takes a 32-bit integer and returns the bit -// equivalent float. +/// BitsToFloat - This function takes a 32-bit integer and returns the bit +/// equivalent float. inline float BitsToFloat(uint32_t Bits) { union { uint32_t I; @@ -275,8 +364,10 @@ inline float BitsToFloat(uint32_t Bits) { return T.F; } -// DoubleToBits - This function takes a double and returns the bit -// equivalent 64-bit integer. +/// DoubleToBits - This function takes a double and returns the bit +/// equivalent 64-bit integer. Note that copying doubles around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint64_t DoubleToBits(double Double) { union { uint64_t L; @@ -286,8 +377,10 @@ inline uint64_t DoubleToBits(double Double) { return T.L; } -// FloatToBits - This function takes a float and returns the bit -// equivalent 32-bit integer. +/// FloatToBits - This function takes a float and returns the bit +/// equivalent 32-bit integer. Note that copying floats around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint32_t FloatToBits(float Float) { union { uint32_t I; @@ -297,17 +390,71 @@ inline uint32_t FloatToBits(float Float) { return T.I; } -// Platform-independent wrappers for the C99 isnan() function. -int IsNAN (float f); -int IsNAN (double d); +/// Platform-independent wrappers for the C99 isnan() function. +int IsNAN(float f); +int IsNAN(double d); -// Platform-independent wrappers for the C99 isinf() function. -int IsInf (float f); -int IsInf (double d); +/// Platform-independent wrappers for the C99 isinf() function. +int IsInf(float f); +int IsInf(double d); -} // End llvm namespace +/// MinAlign - A and B are either alignments or offsets. Return the minimum +/// alignment that may be assumed after adding the two together. +static inline uint64_t MinAlign(uint64_t A, uint64_t B) { + // The largest power of 2 that divides both A and B. + return (A | B) & -(A | B); +} + +/// NextPowerOf2 - Returns the next power of two (in 64-bits) +/// that is strictly greater than A. Returns zero on overflow. +static inline uint64_t NextPowerOf2(uint64_t A) { + A |= (A >> 1); + A |= (A >> 2); + A |= (A >> 4); + A |= (A >> 8); + A |= (A >> 16); + A |= (A >> 32); + return A + 1; +} -FORCE_DEFINING_FILE_TO_BE_LINKED(SupportIsInf) -FORCE_DEFINING_FILE_TO_BE_LINKED(SupportIsNAN) +/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is +/// greater than or equal to \arg Value and is a multiple of \arg +/// Align. Align must be non-zero. +/// +/// Examples: +/// RoundUpToAlignment(5, 8) = 8 +/// RoundUpToAlignment(17, 8) = 24 +/// RoundUpToAlignment(~0LL, 8) = 0 +inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { + return ((Value + Align - 1) / Align) * Align; +} + +/// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that +/// is greater than or equal to \arg Value and is a multiple of \arg +/// Align. Align must be non-zero. +inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { + return RoundUpToAlignment(Value, Align) - Value; +} + +/// abs64 - absolute value of a 64-bit int. Not all environments support +/// "abs" on whatever their name for the 64-bit int type is. The absolute +/// value of the largest negative number is undefined, as with "abs". +inline int64_t abs64(int64_t x) { + return (x < 0) ? -x : x; +} + +/// SignExtend32 - Sign extend B-bit number x to 32-bit int. +/// Usage int32_t r = SignExtend32<5>(x); +template inline int32_t SignExtend32(uint32_t x) { + return int32_t(x << (32 - B)) >> (32 - B); +} + +/// SignExtend64 - Sign extend B-bit number x to 64-bit int. +/// Usage int64_t r = SignExtend64<5>(x); +template inline int64_t SignExtend64(uint64_t x) { + return int64_t(x << (64 - B)) >> (64 - B); +} + +} // End llvm namespace #endif