X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FSupport%2FMathExtras.h;h=85e19acd9ea77dbf2e9a253969d040ec24800604;hb=bb2ead6e5f1f901b25cf79b7a8752dce3cfd5c23;hp=6ba51d6d5828bcd67518167e115d43c9ecee8a47;hpb=2a934cb6072bb0840b39e899e02ad9dea95b18dc;p=oota-llvm.git diff --git a/include/llvm/Support/MathExtras.h b/include/llvm/Support/MathExtras.h index 6ba51d6d582..85e19acd9ea 100644 --- a/include/llvm/Support/MathExtras.h +++ b/include/llvm/Support/MathExtras.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -18,70 +18,70 @@ namespace llvm { -// NOTE: The following support functions use the _32/_64 extensions instead of +// NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity. /// Hi_32 - This function returns the high 32 bits of a 64 bit value. -inline unsigned Hi_32(uint64_t Value) { - return static_cast(Value >> 32); +inline uint32_t Hi_32(uint64_t Value) { + return static_cast(Value >> 32); } /// Lo_32 - This function returns the low 32 bits of a 64 bit value. -inline unsigned Lo_32(uint64_t Value) { - return static_cast(Value); +inline uint32_t Lo_32(uint64_t Value) { + return static_cast(Value); } /// is?Type - these functions produce optimal testing for integer data types. -inline bool isInt8 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt8 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt8 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt8 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isInt16 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt16 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt16(int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt16(int64_t Value) { + return static_cast(Value) == Value; } -inline bool isInt32 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt32 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt32(int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt32(int64_t Value) { + return static_cast(Value) == Value; } /// isMask_32 - This function returns true if the argument is a sequence of ones /// starting at the least significant bit with the remainder zero (32 bit /// version). Ex. isMask_32(0x0000FFFFU) == true. -inline const bool isMask_32(unsigned Value) { +inline bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; } /// isMask_64 - This function returns true if the argument is a sequence of ones /// starting at the least significant bit with the remainder zero (64 bit /// version). -inline const bool isMask_64(uint64_t Value) { +inline bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } -/// isShiftedMask_32 - This function returns true if the argument contains a +/// isShiftedMask_32 - This function returns true if the argument contains a /// sequence of ones with the remainder zero (32 bit version.) /// Ex. isShiftedMask_32(0x0000FF00U) == true. -inline const bool isShiftedMask_32(unsigned Value) { +inline bool isShiftedMask_32(uint32_t Value) { return isMask_32((Value - 1) | Value); } -/// isShiftedMask_64 - This function returns true if the argument contains a +/// isShiftedMask_64 - This function returns true if the argument contains a /// sequence of ones with the remainder zero (64 bit version.) -inline const bool isShiftedMask_64(uint64_t Value) { +inline bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); } -/// isPowerOf2_32 - This function returns true if the argument is a power of +/// isPowerOf2_32 - This function returns true if the argument is a power of /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) -inline bool isPowerOf2_32(unsigned Value) { +inline bool isPowerOf2_32(uint32_t Value) { return Value && !(Value & (Value - 1)); } @@ -93,35 +93,53 @@ inline bool isPowerOf2_64(uint64_t Value) { /// ByteSwap_16 - This function returns a byte-swapped representation of the /// 16-bit argument, Value. -inline unsigned short ByteSwap_16(unsigned short Value) { - unsigned short Hi = Value << 8; - unsigned short Lo = Value >> 8; +inline uint16_t ByteSwap_16(uint16_t Value) { +#if defined(_MSC_VER) && !defined(_DEBUG) + // The DLL version of the runtime lacks these functions (bug!?), but in a + // release build they're replaced with BSWAP instructions anyway. + return _byteswap_ushort(Value); +#else + uint16_t Hi = Value << 8; + uint16_t Lo = Value >> 8; return Hi | Lo; +#endif } /// ByteSwap_32 - This function returns a byte-swapped representation of the /// 32-bit argument, Value. -inline unsigned ByteSwap_32(unsigned Value) { - unsigned Byte0 = Value & 0x000000FF; - unsigned Byte1 = Value & 0x0000FF00; - unsigned Byte2 = Value & 0x00FF0000; - unsigned Byte3 = Value & 0xFF000000; +inline uint32_t ByteSwap_32(uint32_t Value) { +#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3) + return __builtin_bswap32(Value); +#elif defined(_MSC_VER) && !defined(_DEBUG) + return _byteswap_ulong(Value); +#else + uint32_t Byte0 = Value & 0x000000FF; + uint32_t Byte1 = Value & 0x0000FF00; + uint32_t Byte2 = Value & 0x00FF0000; + uint32_t Byte3 = Value & 0xFF000000; return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); +#endif } /// ByteSwap_64 - This function returns a byte-swapped representation of the /// 64-bit argument, Value. inline uint64_t ByteSwap_64(uint64_t Value) { - uint64_t Hi = ByteSwap_32(unsigned(Value)); - uint64_t Lo = ByteSwap_32(unsigned(Value >> 32)); +#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3) + return __builtin_bswap64(Value); +#elif defined(_MSC_VER) && !defined(_DEBUG) + return _byteswap_uint64(Value); +#else + uint64_t Hi = ByteSwap_32(uint32_t(Value)); + uint32_t Lo = ByteSwap_32(uint32_t(Value >> 32)); return (Hi << 32) | Lo; +#endif } /// CountLeadingZeros_32 - this function performs the platform optimal form of /// counting the number of zeros from the most significant bit to the first one /// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8. /// Returns 32 if the word is zero. -inline unsigned CountLeadingZeros_32(unsigned Value) { +inline unsigned CountLeadingZeros_32(uint32_t Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clz(0) @@ -134,7 +152,7 @@ inline unsigned CountLeadingZeros_32(unsigned Value) { Count = 0; // bisecton method for count leading zeros for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { - unsigned Tmp = Value >> Shift; + uint32_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { @@ -145,8 +163,16 @@ inline unsigned CountLeadingZeros_32(unsigned Value) { return Count; } +/// CountLeadingOnes_32 - this function performs the operation of +/// counting the number of ones from the most significant bit to the first zero +/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountLeadingOnes_32(uint32_t Value) { + return CountLeadingZeros_32(~Value); +} + /// CountLeadingZeros_64 - This function performs the platform optimal form -/// of counting the number of zeros from the most significant bit to the first +/// of counting the number of zeros from the most significant bit to the first /// one bit (64 bit edition.) /// Returns 64 if the word is zero. inline unsigned CountLeadingZeros_64(uint64_t Value) { @@ -162,7 +188,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { if (!Value) return 64; Count = 0; // bisecton method for count leading zeros - for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) { + for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; @@ -172,7 +198,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { } } else { // get hi portion - unsigned Hi = Hi_32(Value); + uint32_t Hi = Hi_32(Value); // if some bits in hi portion if (Hi) { @@ -180,7 +206,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { Count = CountLeadingZeros_32(Hi); } else { // get lo portion - unsigned Lo = Lo_32(Value); + uint32_t Lo = Lo_32(Value); // same as 32 bit value Count = CountLeadingZeros_32(Lo)+32; } @@ -189,20 +215,64 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { return Count; } +/// CountLeadingOnes_64 - This function performs the operation +/// of counting the number of ones from the most significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountLeadingOnes_64(uint64_t Value) { + return CountLeadingZeros_64(~Value); +} + /// CountTrailingZeros_32 - this function performs the platform optimal form of /// counting the number of zeros from the least significant bit to the first one /// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. /// Returns 32 if the word is zero. -inline unsigned CountTrailingZeros_32(unsigned Value) { - return 32 - CountLeadingZeros_32(~Value & (Value - 1)); +inline unsigned CountTrailingZeros_32(uint32_t Value) { +#if __GNUC__ >= 4 + return Value ? __builtin_ctz(Value) : 32; +#else + static const unsigned Mod37BitPosition[] = { + 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, + 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, + 5, 20, 8, 19, 18 + }; + return Mod37BitPosition[(-Value & Value) % 37]; +#endif +} + +/// CountTrailingOnes_32 - this function performs the operation of +/// counting the number of ones from the least significant bit to the first zero +/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountTrailingOnes_32(uint32_t Value) { + return CountTrailingZeros_32(~Value); } /// CountTrailingZeros_64 - This function performs the platform optimal form -/// of counting the number of zeros from the least significant bit to the first +/// of counting the number of zeros from the least significant bit to the first /// one bit (64 bit edition.) /// Returns 64 if the word is zero. inline unsigned CountTrailingZeros_64(uint64_t Value) { - return 64 - CountLeadingZeros_64(~Value & (Value - 1)); +#if __GNUC__ >= 4 + return Value ? __builtin_ctzll(Value) : 64; +#else + static const unsigned Mod67Position[] = { + 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54, + 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55, + 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27, + 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56, + 7, 48, 35, 6, 34, 33, 0 + }; + return Mod67Position[(-Value & Value) % 67]; +#endif +} + +/// CountTrailingOnes_64 - This function performs the operation +/// of counting the number of ones from the least significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountTrailingOnes_64(uint64_t Value) { + return CountTrailingZeros_64(~Value); } /// CountPopulation_32 - this function counts the number of set bits in a value. @@ -212,9 +282,9 @@ inline unsigned CountPopulation_32(uint32_t Value) { #if __GNUC__ >= 4 return __builtin_popcount(Value); #else - uint32_t v = v - ((v >> 1) & 0x55555555); - v = (v & 0x33333333) + ((v >> 2) & 0x33333333); - return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; + uint32_t v = Value - ((Value >> 1) & 0x55555555); + v = (v & 0x33333333) + ((v >> 2) & 0x33333333); + return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; #endif } @@ -224,35 +294,35 @@ inline unsigned CountPopulation_64(uint64_t Value) { #if __GNUC__ >= 4 return __builtin_popcountll(Value); #else - uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); - v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); - v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; - return (uint64_t)(v * 0x0101010101010101ULL) >> 56; + uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); + v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); + v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; + return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); #endif } -/// Log2_32 - This function returns the floor log base 2 of the specified value, +/// Log2_32 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (32 bit edition.) /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 -inline unsigned Log2_32(unsigned Value) { - return 31 - CountLeadingZeros_32(Value); +inline unsigned Log2_32(uint32_t Value) { + return 31 - CountLeadingZeros_32(Value); } -/// Log2_64 - This function returns the floor log base 2 of the specified value, +/// Log2_64 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { - return 63 - CountLeadingZeros_64(Value); + return 63 - CountLeadingZeros_64(Value); } /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified /// value, 32 if the value is zero. (32 bit edition). /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 -inline unsigned Log2_32_Ceil(unsigned Value) { +inline unsigned Log2_32_Ceil(uint32_t Value) { return 32-CountLeadingZeros_32(Value-1); } -/// Log2_64 - This function returns the ceil log base 2 of the specified value, -/// 64 if the value is zero. (64 bit edition.) +/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified +/// value, 64 if the value is zero. (64 bit edition.) inline unsigned Log2_64_Ceil(uint64_t Value) { return 64-CountLeadingZeros_64(Value-1); } @@ -267,7 +337,7 @@ inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { } return A; } - + /// BitsToDouble - This function takes a 64-bit integer and returns the bit /// equivalent double. inline double BitsToDouble(uint64_t Bits) { @@ -291,7 +361,9 @@ inline float BitsToFloat(uint32_t Bits) { } /// DoubleToBits - This function takes a double and returns the bit -/// equivalent 64-bit integer. +/// equivalent 64-bit integer. Note that copying doubles around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint64_t DoubleToBits(double Double) { union { uint64_t L; @@ -302,7 +374,9 @@ inline uint64_t DoubleToBits(double Double) { } /// FloatToBits - This function takes a float and returns the bit -/// equivalent 32-bit integer. +/// equivalent 32-bit integer. Note that copying floats around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint32_t FloatToBits(float Float) { union { uint32_t I; @@ -320,6 +394,44 @@ int IsNAN(double d); int IsInf(float f); int IsInf(double d); +/// MinAlign - A and B are either alignments or offsets. Return the minimum +/// alignment that may be assumed after adding the two together. +static inline uint64_t MinAlign(uint64_t A, uint64_t B) { + // The largest power of 2 that divides both A and B. + return (A | B) & -(A | B); +} + +/// NextPowerOf2 - Returns the next power of two (in 64-bits) +/// that is strictly greater than A. Returns zero on overflow. +static inline uint64_t NextPowerOf2(uint64_t A) { + A |= (A >> 1); + A |= (A >> 2); + A |= (A >> 4); + A |= (A >> 8); + A |= (A >> 16); + A |= (A >> 32); + return A + 1; +} + +/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is +/// greater than or equal to \arg Value and is a multiple of \arg +/// Align. Align must be non-zero. +/// +/// Examples: +/// RoundUpToAlignment(5, 8) = 8 +/// RoundUpToAlignment(17, 8) = 24 +/// RoundUpToAlignment(~0LL, 8) = 0 +inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { + return ((Value + Align - 1) / Align) * Align; +} + +/// abs64 - absolute value of a 64-bit int. Not all environments support +/// "abs" on whatever their name for the 64-bit int type is. The absolute +/// value of the largest negative number is undefined, as with "abs". +inline int64_t abs64(int64_t x) { + return (x < 0) ? -x : x; +} + } // End llvm namespace #endif