X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FSupport%2FMathExtras.h;h=85e19acd9ea77dbf2e9a253969d040ec24800604;hb=bb2ead6e5f1f901b25cf79b7a8752dce3cfd5c23;hp=7f3c2432d0abb421373e3cbeeb58f1a64d56915a;hpb=c3c395cf5e401328836e81c18cb70eef1b9ea5ac;p=oota-llvm.git diff --git a/include/llvm/Support/MathExtras.h b/include/llvm/Support/MathExtras.h index 7f3c2432d0a..85e19acd9ea 100644 --- a/include/llvm/Support/MathExtras.h +++ b/include/llvm/Support/MathExtras.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -18,7 +18,7 @@ namespace llvm { -// NOTE: The following support functions use the _32/_64 extensions instead of +// NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity. @@ -33,53 +33,53 @@ inline uint32_t Lo_32(uint64_t Value) { } /// is?Type - these functions produce optimal testing for integer data types. -inline bool isInt8 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt8 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt8 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt8 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isInt16 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt16 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt16(int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt16(int64_t Value) { + return static_cast(Value) == Value; } -inline bool isInt32 (int64_t Value) { - return static_cast(Value) == Value; +inline bool isInt32 (int64_t Value) { + return static_cast(Value) == Value; } -inline bool isUInt32(int64_t Value) { - return static_cast(Value) == Value; +inline bool isUInt32(int64_t Value) { + return static_cast(Value) == Value; } /// isMask_32 - This function returns true if the argument is a sequence of ones /// starting at the least significant bit with the remainder zero (32 bit /// version). Ex. isMask_32(0x0000FFFFU) == true. -inline const bool isMask_32(uint32_t Value) { +inline bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; } /// isMask_64 - This function returns true if the argument is a sequence of ones /// starting at the least significant bit with the remainder zero (64 bit /// version). -inline const bool isMask_64(uint64_t Value) { +inline bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } -/// isShiftedMask_32 - This function returns true if the argument contains a +/// isShiftedMask_32 - This function returns true if the argument contains a /// sequence of ones with the remainder zero (32 bit version.) /// Ex. isShiftedMask_32(0x0000FF00U) == true. -inline const bool isShiftedMask_32(uint32_t Value) { +inline bool isShiftedMask_32(uint32_t Value) { return isMask_32((Value - 1) | Value); } -/// isShiftedMask_64 - This function returns true if the argument contains a +/// isShiftedMask_64 - This function returns true if the argument contains a /// sequence of ones with the remainder zero (64 bit version.) -inline const bool isShiftedMask_64(uint64_t Value) { +inline bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); } -/// isPowerOf2_32 - This function returns true if the argument is a power of +/// isPowerOf2_32 - This function returns true if the argument is a power of /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) inline bool isPowerOf2_32(uint32_t Value) { return Value && !(Value & (Value - 1)); @@ -109,7 +109,7 @@ inline uint16_t ByteSwap_16(uint16_t Value) { /// 32-bit argument, Value. inline uint32_t ByteSwap_32(uint32_t Value) { #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3) - return __builtin_bswap32(Value); + return __builtin_bswap32(Value); #elif defined(_MSC_VER) && !defined(_DEBUG) return _byteswap_ulong(Value); #else @@ -125,7 +125,7 @@ inline uint32_t ByteSwap_32(uint32_t Value) { /// 64-bit argument, Value. inline uint64_t ByteSwap_64(uint64_t Value) { #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3) - return __builtin_bswap64(Value); + return __builtin_bswap64(Value); #elif defined(_MSC_VER) && !defined(_DEBUG) return _byteswap_uint64(Value); #else @@ -163,8 +163,16 @@ inline unsigned CountLeadingZeros_32(uint32_t Value) { return Count; } +/// CountLeadingOnes_32 - this function performs the operation of +/// counting the number of ones from the most significant bit to the first zero +/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountLeadingOnes_32(uint32_t Value) { + return CountLeadingZeros_32(~Value); +} + /// CountLeadingZeros_64 - This function performs the platform optimal form -/// of counting the number of zeros from the most significant bit to the first +/// of counting the number of zeros from the most significant bit to the first /// one bit (64 bit edition.) /// Returns 64 if the word is zero. inline unsigned CountLeadingZeros_64(uint64_t Value) { @@ -207,6 +215,14 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) { return Count; } +/// CountLeadingOnes_64 - This function performs the operation +/// of counting the number of ones from the most significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountLeadingOnes_64(uint64_t Value) { + return CountLeadingZeros_64(~Value); +} + /// CountTrailingZeros_32 - this function performs the platform optimal form of /// counting the number of zeros from the least significant bit to the first one /// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. @@ -224,8 +240,16 @@ inline unsigned CountTrailingZeros_32(uint32_t Value) { #endif } +/// CountTrailingOnes_32 - this function performs the operation of +/// counting the number of ones from the least significant bit to the first zero +/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8. +/// Returns 32 if the word is all ones. +inline unsigned CountTrailingOnes_32(uint32_t Value) { + return CountTrailingZeros_32(~Value); +} + /// CountTrailingZeros_64 - This function performs the platform optimal form -/// of counting the number of zeros from the least significant bit to the first +/// of counting the number of zeros from the least significant bit to the first /// one bit (64 bit edition.) /// Returns 64 if the word is zero. inline unsigned CountTrailingZeros_64(uint64_t Value) { @@ -243,6 +267,14 @@ inline unsigned CountTrailingZeros_64(uint64_t Value) { #endif } +/// CountTrailingOnes_64 - This function performs the operation +/// of counting the number of ones from the least significant bit to the first +/// zero bit (64 bit edition.) +/// Returns 64 if the word is all ones. +inline unsigned CountTrailingOnes_64(uint64_t Value) { + return CountTrailingZeros_64(~Value); +} + /// CountPopulation_32 - this function counts the number of set bits in a value. /// Ex. CountPopulation(0xF000F000) = 8 /// Returns 0 if the word is zero. @@ -269,14 +301,14 @@ inline unsigned CountPopulation_64(uint64_t Value) { #endif } -/// Log2_32 - This function returns the floor log base 2 of the specified value, +/// Log2_32 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (32 bit edition.) /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 inline unsigned Log2_32(uint32_t Value) { return 31 - CountLeadingZeros_32(Value); } -/// Log2_64 - This function returns the floor log base 2 of the specified value, +/// Log2_64 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { return 63 - CountLeadingZeros_64(Value); @@ -289,8 +321,8 @@ inline unsigned Log2_32_Ceil(uint32_t Value) { return 32-CountLeadingZeros_32(Value-1); } -/// Log2_64 - This function returns the ceil log base 2 of the specified value, -/// 64 if the value is zero. (64 bit edition.) +/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified +/// value, 64 if the value is zero. (64 bit edition.) inline unsigned Log2_64_Ceil(uint64_t Value) { return 64-CountLeadingZeros_64(Value-1); } @@ -305,7 +337,7 @@ inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { } return A; } - + /// BitsToDouble - This function takes a 64-bit integer and returns the bit /// equivalent double. inline double BitsToDouble(uint64_t Bits) { @@ -329,7 +361,9 @@ inline float BitsToFloat(uint32_t Bits) { } /// DoubleToBits - This function takes a double and returns the bit -/// equivalent 64-bit integer. +/// equivalent 64-bit integer. Note that copying doubles around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint64_t DoubleToBits(double Double) { union { uint64_t L; @@ -340,7 +374,9 @@ inline uint64_t DoubleToBits(double Double) { } /// FloatToBits - This function takes a float and returns the bit -/// equivalent 32-bit integer. +/// equivalent 32-bit integer. Note that copying floats around +/// changes the bits of NaNs on some hosts, notably x86, so this +/// routine cannot be used if these bits are needed. inline uint32_t FloatToBits(float Float) { union { uint32_t I; @@ -358,6 +394,44 @@ int IsNAN(double d); int IsInf(float f); int IsInf(double d); +/// MinAlign - A and B are either alignments or offsets. Return the minimum +/// alignment that may be assumed after adding the two together. +static inline uint64_t MinAlign(uint64_t A, uint64_t B) { + // The largest power of 2 that divides both A and B. + return (A | B) & -(A | B); +} + +/// NextPowerOf2 - Returns the next power of two (in 64-bits) +/// that is strictly greater than A. Returns zero on overflow. +static inline uint64_t NextPowerOf2(uint64_t A) { + A |= (A >> 1); + A |= (A >> 2); + A |= (A >> 4); + A |= (A >> 8); + A |= (A >> 16); + A |= (A >> 32); + return A + 1; +} + +/// RoundUpToAlignment - Returns the next integer (mod 2**64) that is +/// greater than or equal to \arg Value and is a multiple of \arg +/// Align. Align must be non-zero. +/// +/// Examples: +/// RoundUpToAlignment(5, 8) = 8 +/// RoundUpToAlignment(17, 8) = 24 +/// RoundUpToAlignment(~0LL, 8) = 0 +inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { + return ((Value + Align - 1) / Align) * Align; +} + +/// abs64 - absolute value of a 64-bit int. Not all environments support +/// "abs" on whatever their name for the 64-bit int type is. The absolute +/// value of the largest negative number is undefined, as with "abs". +inline int64_t abs64(int64_t x) { + return (x < 0) ? -x : x; +} + } // End llvm namespace #endif