X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FType.h;h=43b7dc5788863caac08d36ef2070d15c0f396d87;hb=adf01b3f18442ae8db6b8948e70d82d9df415119;hp=e4ceb548a4ff631fc3169c4c3f6b11f69ad3b03e;hpb=ab0e04c2f20aabff800ea84197ff4b4b9d892fb2;p=oota-llvm.git diff --git a/include/llvm/Type.h b/include/llvm/Type.h index e4ceb548a4f..43b7dc57888 100644 --- a/include/llvm/Type.h +++ b/include/llvm/Type.h @@ -2,204 +2,232 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // -// This file contains the declaration of the Type class. For more "Type" type +// This file contains the declaration of the Type class. For more "Type" // stuff, look in DerivedTypes.h. // -// Note that instances of the Type class are immutable: once they are created, -// they are never changed. Also note that only one instance of a particular -// type is ever created. Thus seeing if two types are equal is a matter of -// doing a trivial pointer comparison. -// -// Types, once allocated, are never free'd, unless they are an abstract type -// that is resolved to a more concrete type. -// -// Opaque types are simple derived types with no state. There may be many -// different Opaque type objects floating around, but two are only considered -// identical if they are pointer equals of each other. This allows us to have -// two opaque types that end up resolving to different concrete types later. -// -// Opaque types are also kinda weird and scary and different because they have -// to keep a list of uses of the type. When, through linking, parsing, or -// bytecode reading, they become resolved, they need to find and update all -// users of the unknown type, causing them to reference a new, more concrete -// type. Opaque types are deleted when their use list dwindles to zero users. -// //===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H -#include "AbstractTypeUser.h" #include "llvm/Support/Casting.h" -#include "llvm/Support/DataTypes.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/iterator" -#include -#include namespace llvm { -class ArrayType; -class DerivedType; -class FunctionType; -class OpaqueType; class PointerType; -class StructType; -class PackedType; -class TypeMapBase; - -class Type : public AbstractTypeUser { +class IntegerType; +class raw_ostream; +class Module; +class LLVMContext; +class LLVMContextImpl; +template struct GraphTraits; + +/// The instances of the Type class are immutable: once they are created, +/// they are never changed. Also note that only one instance of a particular +/// type is ever created. Thus seeing if two types are equal is a matter of +/// doing a trivial pointer comparison. To enforce that no two equal instances +/// are created, Type instances can only be created via static factory methods +/// in class Type and in derived classes. Once allocated, Types are never +/// free'd. +/// +class Type { public: - ///===-------------------------------------------------------------------===// + //===--------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this - /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) + /// value, you can cast to a class defined in DerivedTypes.h. /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! + /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. /// enum TypeID { - // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date - VoidTyID = 0 , BoolTyID, // 0, 1: Basics... - UByteTyID , SByteTyID, // 2, 3: 8 bit types... - UShortTyID , ShortTyID, // 4, 5: 16 bit types... - UIntTyID , IntTyID, // 6, 7: 32 bit types... - ULongTyID , LongTyID, // 8, 9: 64 bit types... - FloatTyID , DoubleTyID, // 10,11: Floating point types... - LabelTyID , // 12 : Labels... - - // Derived types... see DerivedTypes.h file... - // Make sure FirstDerivedTyID stays up to date!!! - FunctionTyID , StructTyID, // Functions... Structs... - ArrayTyID , PointerTyID, // Array... pointer... - OpaqueTyID, // Opaque type instances... - PackedTyID, // SIMD 'packed' format... - //... + // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date. + VoidTyID = 0, ///< 0: type with no size + FloatTyID, ///< 1: 32-bit floating point type + DoubleTyID, ///< 2: 64-bit floating point type + X86_FP80TyID, ///< 3: 80-bit floating point type (X87) + FP128TyID, ///< 4: 128-bit floating point type (112-bit mantissa) + PPC_FP128TyID, ///< 5: 128-bit floating point type (two 64-bits, PowerPC) + LabelTyID, ///< 6: Labels + MetadataTyID, ///< 7: Metadata + X86_MMXTyID, ///< 8: MMX vectors (64 bits, X86 specific) + + // Derived types... see DerivedTypes.h file. + // Make sure FirstDerivedTyID stays up to date! + IntegerTyID, ///< 9: Arbitrary bit width integers + FunctionTyID, ///< 10: Functions + StructTyID, ///< 11: Structures + ArrayTyID, ///< 12: Arrays + PointerTyID, ///< 13: Pointers + VectorTyID, ///< 14: SIMD 'packed' format, or other vector type NumTypeIDs, // Must remain as last defined ID - LastPrimitiveTyID = LabelTyID, - FirstDerivedTyID = FunctionTyID + LastPrimitiveTyID = X86_MMXTyID, + FirstDerivedTyID = IntegerTyID }; private: - TypeID ID : 8; // The current base type of this type. - bool Abstract : 1; // True if type contains an OpaqueType + /// Context - This refers to the LLVMContext in which this type was uniqued. + LLVMContext &Context; - /// RefCount - This counts the number of PATypeHolders that are pointing to - /// this type. When this number falls to zero, if the type is abstract and - /// has no AbstractTypeUsers, the type is deleted. This is only sensical for - /// derived types. - /// - mutable unsigned RefCount; + TypeID ID : 8; // The current base type of this type. + unsigned SubclassData : 24; // Space for subclasses to store data - const Type *getForwardedTypeInternal() const; protected: - Type(const char *Name, TypeID id); - Type(TypeID id) : ID(id), Abstract(false), RefCount(0), ForwardType(0) {} - virtual ~Type() { - assert(AbstractTypeUsers.empty()); + friend class LLVMContextImpl; + explicit Type(LLVMContext &C, TypeID tid) + : Context(C), ID(tid), SubclassData(0), + NumContainedTys(0), ContainedTys(0) {} + ~Type() {} + + unsigned getSubclassData() const { return SubclassData; } + void setSubclassData(unsigned val) { + SubclassData = val; + // Ensure we don't have any accidental truncation. + assert(SubclassData == val && "Subclass data too large for field"); } - /// Types can become nonabstract later, if they are refined. - /// - inline void setAbstract(bool Val) { Abstract = Val; } - - unsigned getRefCount() const { return RefCount; } - - /// ForwardType - This field is used to implement the union find scheme for - /// abstract types. When types are refined to other types, this field is set - /// to the more refined type. Only abstract types can be forwarded. - mutable const Type *ForwardType; - - /// ContainedTys - The list of types contained by this one. For example, this - /// includes the arguments of a function type, the elements of the structure, - /// the pointee of a pointer, etc. Note that keeping this vector in the Type - /// class wastes some space for types that do not contain anything (such as - /// primitive types). However, keeping it here allows the subtype_* members - /// to be implemented MUCH more efficiently, and dynamically very few types do - /// not contain any elements (most are derived). - std::vector ContainedTys; - - /// AbstractTypeUsers - Implement a list of the users that need to be notified - /// if I am a type, and I get resolved into a more concrete type. - /// - mutable std::vector AbstractTypeUsers; -public: - void print(std::ostream &O) const; + /// NumContainedTys - Keeps track of how many Type*'s there are in the + /// ContainedTys list. + unsigned NumContainedTys; - /// @brief Debugging support: print to stderr + /// ContainedTys - A pointer to the array of Types contained by this Type. + /// For example, this includes the arguments of a function type, the elements + /// of a structure, the pointee of a pointer, the element type of an array, + /// etc. This pointer may be 0 for types that don't contain other types + /// (Integer, Double, Float). + Type * const *ContainedTys; + +public: + void print(raw_ostream &O) const; void dump() const; + /// getContext - Return the LLVMContext in which this type was uniqued. + LLVMContext &getContext() const { return Context; } + //===--------------------------------------------------------------------===// - // Property accessors for dealing with types... Some of these virtual methods - // are defined in private classes defined in Type.cpp for primitive types. + // Accessors for working with types. // /// getTypeID - Return the type id for the type. This will return one /// of the TypeID enum elements defined above. /// - inline TypeID getTypeID() const { return ID; } + TypeID getTypeID() const { return ID; } - /// getDescription - Return the string representation of the type... - const std::string &getDescription() const; + /// isVoidTy - Return true if this is 'void'. + bool isVoidTy() const { return ID == VoidTyID; } - /// isSigned - Return whether an integral numeric type is signed. This is - /// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for - /// Float and Double. - /// - bool isSigned() const { - return ID == SByteTyID || ID == ShortTyID || - ID == IntTyID || ID == LongTyID; + /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type. + bool isFloatTy() const { return ID == FloatTyID; } + + /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type. + bool isDoubleTy() const { return ID == DoubleTyID; } + + /// isX86_FP80Ty - Return true if this is x86 long double. + bool isX86_FP80Ty() const { return ID == X86_FP80TyID; } + + /// isFP128Ty - Return true if this is 'fp128'. + bool isFP128Ty() const { return ID == FP128TyID; } + + /// isPPC_FP128Ty - Return true if this is powerpc long double. + bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; } + + /// isFloatingPointTy - Return true if this is one of the five floating point + /// types + bool isFloatingPointTy() const { + return ID == FloatTyID || ID == DoubleTyID || + ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; } - /// isUnsigned - Return whether a numeric type is unsigned. This is not quite - /// the complement of isSigned... nonnumeric types return false as they do - /// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and - /// ULongTy + /// isX86_MMXTy - Return true if this is X86 MMX. + bool isX86_MMXTy() const { return ID == X86_MMXTyID; } + + /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP. /// - bool isUnsigned() const { - return ID == UByteTyID || ID == UShortTyID || - ID == UIntTyID || ID == ULongTyID; - } + bool isFPOrFPVectorTy() const; + + /// isLabelTy - Return true if this is 'label'. + bool isLabelTy() const { return ID == LabelTyID; } + + /// isMetadataTy - Return true if this is 'metadata'. + bool isMetadataTy() const { return ID == MetadataTyID; } + + /// isIntegerTy - True if this is an instance of IntegerType. + /// + bool isIntegerTy() const { return ID == IntegerTyID; } - /// isInteger - Equivalent to isSigned() || isUnsigned() + /// isIntegerTy - Return true if this is an IntegerType of the given width. + bool isIntegerTy(unsigned Bitwidth) const; + + /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of + /// integer types. + /// + bool isIntOrIntVectorTy() const; + + /// isFunctionTy - True if this is an instance of FunctionType. /// - bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; } + bool isFunctionTy() const { return ID == FunctionTyID; } - /// isIntegral - Returns true if this is an integral type, which is either - /// BoolTy or one of the Integer types. + /// isStructTy - True if this is an instance of StructType. /// - bool isIntegral() const { return isInteger() || this == BoolTy; } + bool isStructTy() const { return ID == StructTyID; } - /// isFloatingPoint - Return true if this is one of the two floating point - /// types - bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; } + /// isArrayTy - True if this is an instance of ArrayType. + /// + bool isArrayTy() const { return ID == ArrayTyID; } - /// isAbstract - True if the type is either an Opaque type, or is a derived - /// type that includes an opaque type somewhere in it. + /// isPointerTy - True if this is an instance of PointerType. /// - inline bool isAbstract() const { return Abstract; } + bool isPointerTy() const { return ID == PointerTyID; } - /// isLosslesslyConvertibleTo - Return true if this type can be converted to - /// 'Ty' without any reinterpretation of bits. For example, uint to int. + /// isVectorTy - True if this is an instance of VectorType. /// - bool isLosslesslyConvertibleTo(const Type *Ty) const; + bool isVectorTy() const { return ID == VectorTyID; } + /// canLosslesslyBitCastTo - Return true if this type could be converted + /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts + /// are valid for types of the same size only where no re-interpretation of + /// the bits is done. + /// @brief Determine if this type could be losslessly bitcast to Ty + bool canLosslesslyBitCastTo(Type *Ty) const; + + /// isEmptyTy - Return true if this type is empty, that is, it has no + /// elements or all its elements are empty. + bool isEmptyTy() const; /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// - inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } - inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } + bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } + bool isDerivedType() const { return ID >= FirstDerivedTyID; } - /// isFirstClassType - Return true if the value is holdable in a register. + /// isFirstClassType - Return true if the type is "first class", meaning it + /// is a valid type for a Value. /// - inline bool isFirstClassType() const { - return (ID != VoidTyID && ID <= LastPrimitiveTyID) || - ID == PointerTyID || ID == PackedTyID; + bool isFirstClassType() const { + return ID != FunctionTyID && ID != VoidTyID; + } + + /// isSingleValueType - Return true if the type is a valid type for a + /// register in codegen. This includes all first-class types except struct + /// and array types. + /// + bool isSingleValueType() const { + return (ID != VoidTyID && isPrimitiveType()) || + ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID; + } + + /// isAggregateType - Return true if the type is an aggregate type. This + /// means it is valid as the first operand of an insertvalue or + /// extractvalue instruction. This includes struct and array types, but + /// does not include vector types. + /// + bool isAggregateType() const { + return ID == StructTyID || ID == ArrayTyID; } /// isSized - Return true if it makes sense to take the size of this type. To @@ -208,83 +236,62 @@ public: /// bool isSized() const { // If it's a primitive, it is always sized. - if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID) + if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID || + ID == X86_MMXTyID) return true; // If it is not something that can have a size (e.g. a function or label), // it doesn't have a size. - if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID) + if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID) return false; - // If it is something that can have a size and it's concrete, it definitely - // has a size, otherwise we have to try harder to decide. - return !isAbstract() || isSizedDerivedType(); + // Otherwise we have to try harder to decide. + return isSizedDerivedType(); } - /// getPrimitiveSize - Return the basic size of this type if it is a primitive - /// type. These are fixed by LLVM and are not target dependent. This will - /// return zero if the type does not have a size or is not a primitive type. + /// getPrimitiveSizeInBits - Return the basic size of this type if it is a + /// primitive type. These are fixed by LLVM and are not target dependent. + /// This will return zero if the type does not have a size or is not a + /// primitive type. + /// + /// Note that this may not reflect the size of memory allocated for an + /// instance of the type or the number of bytes that are written when an + /// instance of the type is stored to memory. The TargetData class provides + /// additional query functions to provide this information. /// - unsigned getPrimitiveSize() const; unsigned getPrimitiveSizeInBits() const; - /// getUnsignedVersion - If this is an integer type, return the unsigned - /// variant of this type. For example int -> uint. - const Type *getUnsignedVersion() const; + /// getScalarSizeInBits - If this is a vector type, return the + /// getPrimitiveSizeInBits value for the element type. Otherwise return the + /// getPrimitiveSizeInBits value for this type. + unsigned getScalarSizeInBits(); - /// getSignedVersion - If this is an integer type, return the signed variant - /// of this type. For example uint -> int. - const Type *getSignedVersion() const; - - /// getIntegralTypeMask - Return a bitmask with ones set for all of the bits - /// that can be set by an unsigned version of this type. This is 0xFF for - /// sbyte/ubyte, 0xFFFF for shorts, etc. - uint64_t getIntegralTypeMask() const { - assert(isIntegral() && "This only works for integral types!"); - return ~0ULL >> (64-getPrimitiveSizeInBits()); - } + /// getFPMantissaWidth - Return the width of the mantissa of this type. This + /// is only valid on floating point types. If the FP type does not + /// have a stable mantissa (e.g. ppc long double), this method returns -1. + int getFPMantissaWidth() const; - /// getForwaredType - Return the type that this type has been resolved to if - /// it has been resolved to anything. This is used to implement the - /// union-find algorithm for type resolution, and shouldn't be used by general - /// purpose clients. - const Type *getForwardedType() const { - if (!ForwardType) return 0; - return getForwardedTypeInternal(); - } - - /// getVAArgsPromotedType - Return the type an argument of this type - /// will be promoted to if passed through a variable argument - /// function. - const Type *getVAArgsPromotedType() const { - if (ID == BoolTyID || ID == UByteTyID || ID == UShortTyID) - return Type::UIntTy; - else if (ID == SByteTyID || ID == ShortTyID) - return Type::IntTy; - else if (ID == FloatTyID) - return Type::DoubleTy; - else - return this; - } + /// getScalarType - If this is a vector type, return the element type, + /// otherwise return 'this'. + Type *getScalarType(); //===--------------------------------------------------------------------===// - // Type Iteration support + // Type Iteration support. // - typedef std::vector::const_iterator subtype_iterator; - subtype_iterator subtype_begin() const { return ContainedTys.begin(); } - subtype_iterator subtype_end() const { return ContainedTys.end(); } + typedef Type * const *subtype_iterator; + subtype_iterator subtype_begin() const { return ContainedTys; } + subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// - const Type *getContainedType(unsigned i) const { - assert(i < ContainedTys.size() && "Index out of range!"); + Type *getContainedType(unsigned i) const { + assert(i < NumContainedTys && "Index out of range!"); return ContainedTys[i]; } /// getNumContainedTypes - Return the number of types in the derived type. /// - typedef std::vector::size_type size_type; - size_type getNumContainedTypes() const { return ContainedTys.size(); } + unsigned getNumContainedTypes() const { return NumContainedTys; } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting @@ -292,124 +299,76 @@ public: // /// getPrimitiveType - Return a type based on an identifier. - static const Type *getPrimitiveType(TypeID IDNumber); + static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); //===--------------------------------------------------------------------===// - // These are the builtin types that are always available... + // These are the builtin types that are always available. // - static Type *VoidTy , *BoolTy; - static Type *SByteTy, *UByteTy, - *ShortTy, *UShortTy, - *IntTy , *UIntTy, - *LongTy , *ULongTy; - static Type *FloatTy, *DoubleTy; + static Type *getVoidTy(LLVMContext &C); + static Type *getLabelTy(LLVMContext &C); + static Type *getFloatTy(LLVMContext &C); + static Type *getDoubleTy(LLVMContext &C); + static Type *getMetadataTy(LLVMContext &C); + static Type *getX86_FP80Ty(LLVMContext &C); + static Type *getFP128Ty(LLVMContext &C); + static Type *getPPC_FP128Ty(LLVMContext &C); + static Type *getX86_MMXTy(LLVMContext &C); + static IntegerType *getIntNTy(LLVMContext &C, unsigned N); + static IntegerType *getInt1Ty(LLVMContext &C); + static IntegerType *getInt8Ty(LLVMContext &C); + static IntegerType *getInt16Ty(LLVMContext &C); + static IntegerType *getInt32Ty(LLVMContext &C); + static IntegerType *getInt64Ty(LLVMContext &C); - static Type* LabelTy; + //===--------------------------------------------------------------------===// + // Convenience methods for getting pointer types with one of the above builtin + // types as pointee. + // + static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); + static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); /// Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const Type *T) { return true; } - - void addRef() const { - assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); - ++RefCount; - } + static inline bool classof(const Type *) { return true; } - void dropRef() const { - assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); - assert(RefCount && "No objects are currently referencing this object!"); - - // If this is the last PATypeHolder using this object, and there are no - // PATypeHandles using it, the type is dead, delete it now. - if (--RefCount == 0 && AbstractTypeUsers.empty()) - delete this; - } - - /// addAbstractTypeUser - Notify an abstract type that there is a new user of - /// it. This function is called primarily by the PATypeHandle class. - /// - void addAbstractTypeUser(AbstractTypeUser *U) const { - assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); - AbstractTypeUsers.push_back(U); - } - - /// removeAbstractTypeUser - Notify an abstract type that a user of the class - /// no longer has a handle to the type. This function is called primarily by - /// the PATypeHandle class. When there are no users of the abstract type, it - /// is annihilated, because there is no way to get a reference to it ever - /// again. - /// - void removeAbstractTypeUser(AbstractTypeUser *U) const; - - /// clearAllTypeMaps - This method frees all internal memory used by the - /// type subsystem, which can be used in environments where this memory is - /// otherwise reported as a leak. - static void clearAllTypeMaps(); + /// getPointerTo - Return a pointer to the current type. This is equivalent + /// to PointerType::get(Foo, AddrSpace). + PointerType *getPointerTo(unsigned AddrSpace = 0); private: /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool isSizedDerivedType() const; - - virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); - virtual void typeBecameConcrete(const DerivedType *AbsTy); - -protected: - // PromoteAbstractToConcrete - This is an internal method used to calculate - // change "Abstract" from true to false when types are refined. - void PromoteAbstractToConcrete(); - friend class TypeMapBase; }; -//===----------------------------------------------------------------------===// -// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. -// These are defined here because they MUST be inlined, yet are dependent on -// the definition of the Type class. Of course Type derives from Value, which -// contains an AbstractTypeUser instance, so there is no good way to factor out -// the code. Hence this bit of uglyness. -// -// In the long term, Type should not derive from Value, allowing -// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this -// nastyness entirely. -// -inline void PATypeHandle::addUser() { - assert(Ty && "Type Handle has a null type!"); - if (Ty->isAbstract()) - Ty->addAbstractTypeUser(User); -} -inline void PATypeHandle::removeUser() { - if (Ty->isAbstract()) - Ty->removeAbstractTypeUser(User); -} - -// Define inline methods for PATypeHolder... - -inline void PATypeHolder::addRef() { - if (Ty->isAbstract()) - Ty->addRef(); +// Printing of types. +static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) { + T.print(OS); + return OS; } -inline void PATypeHolder::dropRef() { - if (Ty->isAbstract()) - Ty->dropRef(); -} - -/// get - This implements the forwarding part of the union-find algorithm for -/// abstract types. Before every access to the Type*, we check to see if the -/// type we are pointing to is forwarding to a new type. If so, we drop our -/// reference to the type. -/// -inline Type* PATypeHolder::get() const { - const Type *NewTy = Ty->getForwardedType(); - if (!NewTy) return const_cast(Ty); - return *const_cast(this) = NewTy; -} - - +// allow isa(x) to work without DerivedTypes.h included. +template <> struct isa_impl { + static inline bool doit(const Type &Ty) { + return Ty.getTypeID() == Type::PointerTyID; + } +}; + //===----------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a type as a -// graph of sub types... +// graph of sub types. + template <> struct GraphTraits { typedef Type NodeType; @@ -428,7 +387,7 @@ template <> struct GraphTraits { typedef const Type NodeType; typedef Type::subtype_iterator ChildIteratorType; - static inline NodeType *getEntryNode(const Type *T) { return T; } + static inline NodeType *getEntryNode(NodeType *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } @@ -437,12 +396,6 @@ template <> struct GraphTraits { } }; -template <> inline bool isa_impl(const Type &Ty) { - return Ty.getTypeID() == Type::PointerTyID; -} - -std::ostream &operator<<(std::ostream &OS, const Type &T); - } // End llvm namespace #endif