X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FType.h;h=43b7dc5788863caac08d36ef2070d15c0f396d87;hb=adf01b3f18442ae8db6b8948e70d82d9df415119;hp=e87ddb4e1d68e46204dc1040397d9e87c4facef1;hpb=cb9b9d52b42da0fd6f639a79f6096cf8cf509bf9;p=oota-llvm.git diff --git a/include/llvm/Type.h b/include/llvm/Type.h index e87ddb4e1d6..43b7dc57888 100644 --- a/include/llvm/Type.h +++ b/include/llvm/Type.h @@ -6,234 +6,218 @@ // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// - +// +// This file contains the declaration of the Type class. For more "Type" +// stuff, look in DerivedTypes.h. +// +//===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H -#include "llvm/AbstractTypeUser.h" #include "llvm/Support/Casting.h" -#include "llvm/Support/DataTypes.h" -#include "llvm/System/Atomic.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/iterator.h" -#include -#include namespace llvm { -class DerivedType; class PointerType; class IntegerType; -class TypeMapBase; class raw_ostream; class Module; +class LLVMContext; +class LLVMContextImpl; +template struct GraphTraits; -/// This file contains the declaration of the Type class. For more "Type" type -/// stuff, look in DerivedTypes.h. -/// /// The instances of the Type class are immutable: once they are created, /// they are never changed. Also note that only one instance of a particular /// type is ever created. Thus seeing if two types are equal is a matter of /// doing a trivial pointer comparison. To enforce that no two equal instances /// are created, Type instances can only be created via static factory methods -/// in class Type and in derived classes. -/// -/// Once allocated, Types are never free'd, unless they are an abstract type -/// that is resolved to a more concrete type. +/// in class Type and in derived classes. Once allocated, Types are never +/// free'd. /// -/// Types themself don't have a name, and can be named either by: -/// - using SymbolTable instance, typically from some Module, -/// - using convenience methods in the Module class (which uses module's -/// SymbolTable too). -/// -/// Opaque types are simple derived types with no state. There may be many -/// different Opaque type objects floating around, but two are only considered -/// identical if they are pointer equals of each other. This allows us to have -/// two opaque types that end up resolving to different concrete types later. -/// -/// Opaque types are also kinda weird and scary and different because they have -/// to keep a list of uses of the type. When, through linking, parsing, or -/// bitcode reading, they become resolved, they need to find and update all -/// users of the unknown type, causing them to reference a new, more concrete -/// type. Opaque types are deleted when their use list dwindles to zero users. -/// -/// @brief Root of type hierarchy -class Type : public AbstractTypeUser { +class Type { public: - //===-------------------------------------------------------------------===// + //===--------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this - /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) + /// value, you can cast to a class defined in DerivedTypes.h. /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! + /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. /// enum TypeID { - // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date + // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date. VoidTyID = 0, ///< 0: type with no size - FloatTyID, ///< 1: 32 bit floating point type - DoubleTyID, ///< 2: 64 bit floating point type - X86_FP80TyID, ///< 3: 80 bit floating point type (X87) - FP128TyID, ///< 4: 128 bit floating point type (112-bit mantissa) - PPC_FP128TyID, ///< 5: 128 bit floating point type (two 64-bits) + FloatTyID, ///< 1: 32-bit floating point type + DoubleTyID, ///< 2: 64-bit floating point type + X86_FP80TyID, ///< 3: 80-bit floating point type (X87) + FP128TyID, ///< 4: 128-bit floating point type (112-bit mantissa) + PPC_FP128TyID, ///< 5: 128-bit floating point type (two 64-bits, PowerPC) LabelTyID, ///< 6: Labels MetadataTyID, ///< 7: Metadata - - // Derived types... see DerivedTypes.h file... - // Make sure FirstDerivedTyID stays up to date!!! - IntegerTyID, ///< 8: Arbitrary bit width integers - FunctionTyID, ///< 9: Functions - StructTyID, ///< 10: Structures - ArrayTyID, ///< 11: Arrays - PointerTyID, ///< 12: Pointers - OpaqueTyID, ///< 13: Opaque: type with unknown structure + X86_MMXTyID, ///< 8: MMX vectors (64 bits, X86 specific) + + // Derived types... see DerivedTypes.h file. + // Make sure FirstDerivedTyID stays up to date! + IntegerTyID, ///< 9: Arbitrary bit width integers + FunctionTyID, ///< 10: Functions + StructTyID, ///< 11: Structures + ArrayTyID, ///< 12: Arrays + PointerTyID, ///< 13: Pointers VectorTyID, ///< 14: SIMD 'packed' format, or other vector type NumTypeIDs, // Must remain as last defined ID - LastPrimitiveTyID = LabelTyID, + LastPrimitiveTyID = X86_MMXTyID, FirstDerivedTyID = IntegerTyID }; private: - TypeID ID : 8; // The current base type of this type. - bool Abstract : 1; // True if type contains an OpaqueType - unsigned SubclassData : 23; //Space for subclasses to store data - - /// RefCount - This counts the number of PATypeHolders that are pointing to - /// this type. When this number falls to zero, if the type is abstract and - /// has no AbstractTypeUsers, the type is deleted. This is only sensical for - /// derived types. - /// - mutable sys::cas_flag RefCount; + /// Context - This refers to the LLVMContext in which this type was uniqued. + LLVMContext &Context; - const Type *getForwardedTypeInternal() const; - - // Some Type instances are allocated as arrays, some aren't. So we provide - // this method to get the right kind of destruction for the type of Type. - void destroy() const; // const is a lie, this does "delete this"! + TypeID ID : 8; // The current base type of this type. + unsigned SubclassData : 24; // Space for subclasses to store data protected: - explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0), - RefCount(0), ForwardType(0), NumContainedTys(0), - ContainedTys(0) {} - virtual ~Type() { - assert(AbstractTypeUsers.empty() && "Abstract types remain"); - } - - /// Types can become nonabstract later, if they are refined. - /// - inline void setAbstract(bool Val) { Abstract = Val; } - - unsigned getRefCount() const { return RefCount; } + friend class LLVMContextImpl; + explicit Type(LLVMContext &C, TypeID tid) + : Context(C), ID(tid), SubclassData(0), + NumContainedTys(0), ContainedTys(0) {} + ~Type() {} unsigned getSubclassData() const { return SubclassData; } - void setSubclassData(unsigned val) { SubclassData = val; } - - /// ForwardType - This field is used to implement the union find scheme for - /// abstract types. When types are refined to other types, this field is set - /// to the more refined type. Only abstract types can be forwarded. - mutable const Type *ForwardType; - - - /// AbstractTypeUsers - Implement a list of the users that need to be notified - /// if I am a type, and I get resolved into a more concrete type. - /// - mutable std::vector AbstractTypeUsers; + void setSubclassData(unsigned val) { + SubclassData = val; + // Ensure we don't have any accidental truncation. + assert(SubclassData == val && "Subclass data too large for field"); + } - /// NumContainedTys - Keeps track of how many PATypeHandle instances there - /// are at the end of this type instance for the list of contained types. It - /// is the subclasses responsibility to set this up. Set to 0 if there are no - /// contained types in this type. + /// NumContainedTys - Keeps track of how many Type*'s there are in the + /// ContainedTys list. unsigned NumContainedTys; - /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained - /// by this Type. For example, this includes the arguments of a function - /// type, the elements of a structure, the pointee of a pointer, the element - /// type of an array, etc. This pointer may be 0 for types that don't - /// contain other types (Integer, Double, Float). In general, the subclass - /// should arrange for space for the PATypeHandles to be included in the - /// allocation of the type object and set this pointer to the address of the - /// first element. This allows the Type class to manipulate the ContainedTys - /// without understanding the subclass's placement for this array. keeping - /// it here also allows the subtype_* members to be implemented MUCH more - /// efficiently, and dynamically very few types do not contain any elements. - PATypeHandle *ContainedTys; + /// ContainedTys - A pointer to the array of Types contained by this Type. + /// For example, this includes the arguments of a function type, the elements + /// of a structure, the pointee of a pointer, the element type of an array, + /// etc. This pointer may be 0 for types that don't contain other types + /// (Integer, Double, Float). + Type * const *ContainedTys; public: void print(raw_ostream &O) const; - void print(std::ostream &O) const; - - /// @brief Debugging support: print to stderr void dump() const; - /// @brief Debugging support: print to stderr (use type names from context - /// module). - void dump(const Module *Context) const; + /// getContext - Return the LLVMContext in which this type was uniqued. + LLVMContext &getContext() const { return Context; } //===--------------------------------------------------------------------===// - // Property accessors for dealing with types... Some of these virtual methods - // are defined in private classes defined in Type.cpp for primitive types. + // Accessors for working with types. // /// getTypeID - Return the type id for the type. This will return one /// of the TypeID enum elements defined above. /// - inline TypeID getTypeID() const { return ID; } + TypeID getTypeID() const { return ID; } - /// getDescription - Return the string representation of the type. - std::string getDescription() const; + /// isVoidTy - Return true if this is 'void'. + bool isVoidTy() const { return ID == VoidTyID; } - /// isInteger - True if this is an instance of IntegerType. + /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type. + bool isFloatTy() const { return ID == FloatTyID; } + + /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type. + bool isDoubleTy() const { return ID == DoubleTyID; } + + /// isX86_FP80Ty - Return true if this is x86 long double. + bool isX86_FP80Ty() const { return ID == X86_FP80TyID; } + + /// isFP128Ty - Return true if this is 'fp128'. + bool isFP128Ty() const { return ID == FP128TyID; } + + /// isPPC_FP128Ty - Return true if this is powerpc long double. + bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; } + + /// isFloatingPointTy - Return true if this is one of the five floating point + /// types + bool isFloatingPointTy() const { + return ID == FloatTyID || ID == DoubleTyID || + ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; + } + + /// isX86_MMXTy - Return true if this is X86 MMX. + bool isX86_MMXTy() const { return ID == X86_MMXTyID; } + + /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP. /// - bool isInteger() const { return ID == IntegerTyID; } + bool isFPOrFPVectorTy() const; + + /// isLabelTy - Return true if this is 'label'. + bool isLabelTy() const { return ID == LabelTyID; } + + /// isMetadataTy - Return true if this is 'metadata'. + bool isMetadataTy() const { return ID == MetadataTyID; } - /// isIntOrIntVector - Return true if this is an integer type or a vector of + /// isIntegerTy - True if this is an instance of IntegerType. + /// + bool isIntegerTy() const { return ID == IntegerTyID; } + + /// isIntegerTy - Return true if this is an IntegerType of the given width. + bool isIntegerTy(unsigned Bitwidth) const; + + /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of /// integer types. /// - bool isIntOrIntVector() const; + bool isIntOrIntVectorTy() const; - /// isFloatingPoint - Return true if this is one of the three floating point - /// types - bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID || - ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; } + /// isFunctionTy - True if this is an instance of FunctionType. + /// + bool isFunctionTy() const { return ID == FunctionTyID; } - /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types. + /// isStructTy - True if this is an instance of StructType. /// - bool isFPOrFPVector() const; - - /// isAbstract - True if the type is either an Opaque type, or is a derived - /// type that includes an opaque type somewhere in it. + bool isStructTy() const { return ID == StructTyID; } + + /// isArrayTy - True if this is an instance of ArrayType. + /// + bool isArrayTy() const { return ID == ArrayTyID; } + + /// isPointerTy - True if this is an instance of PointerType. /// - inline bool isAbstract() const { return Abstract; } + bool isPointerTy() const { return ID == PointerTyID; } + + /// isVectorTy - True if this is an instance of VectorType. + /// + bool isVectorTy() const { return ID == VectorTyID; } /// canLosslesslyBitCastTo - Return true if this type could be converted /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts /// are valid for types of the same size only where no re-interpretation of /// the bits is done. /// @brief Determine if this type could be losslessly bitcast to Ty - bool canLosslesslyBitCastTo(const Type *Ty) const; + bool canLosslesslyBitCastTo(Type *Ty) const; + /// isEmptyTy - Return true if this type is empty, that is, it has no + /// elements or all its elements are empty. + bool isEmptyTy() const; /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// - inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } - inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } + bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } + bool isDerivedType() const { return ID >= FirstDerivedTyID; } /// isFirstClassType - Return true if the type is "first class", meaning it /// is a valid type for a Value. /// - inline bool isFirstClassType() const { - // There are more first-class kinds than non-first-class kinds, so a - // negative test is simpler than a positive one. - return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID; + bool isFirstClassType() const { + return ID != FunctionTyID && ID != VoidTyID; } /// isSingleValueType - Return true if the type is a valid type for a - /// virtual register in codegen. This includes all first-class types - /// except struct and array types. + /// register in codegen. This includes all first-class types except struct + /// and array types. /// - inline bool isSingleValueType() const { - return (ID != VoidTyID && ID <= LastPrimitiveTyID) || + bool isSingleValueType() const { + return (ID != VoidTyID && isPrimitiveType()) || ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID; } @@ -242,7 +226,7 @@ public: /// extractvalue instruction. This includes struct and array types, but /// does not include vector types. /// - inline bool isAggregateType() const { + bool isAggregateType() const { return ID == StructTyID || ID == ArrayTyID; } @@ -252,15 +236,15 @@ public: /// bool isSized() const { // If it's a primitive, it is always sized. - if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID) + if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID || + ID == X86_MMXTyID) return true; // If it is not something that can have a size (e.g. a function or label), // it doesn't have a size. if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID) return false; - // If it is something that can have a size and it's concrete, it definitely - // has a size, otherwise we have to try harder to decide. - return !isAbstract() || isSizedDerivedType(); + // Otherwise we have to try harder to decide. + return isSizedDerivedType(); } /// getPrimitiveSizeInBits - Return the basic size of this type if it is a @@ -268,40 +252,31 @@ public: /// This will return zero if the type does not have a size or is not a /// primitive type. /// + /// Note that this may not reflect the size of memory allocated for an + /// instance of the type or the number of bytes that are written when an + /// instance of the type is stored to memory. The TargetData class provides + /// additional query functions to provide this information. + /// unsigned getPrimitiveSizeInBits() const; /// getScalarSizeInBits - If this is a vector type, return the /// getPrimitiveSizeInBits value for the element type. Otherwise return the /// getPrimitiveSizeInBits value for this type. - unsigned getScalarSizeInBits() const; + unsigned getScalarSizeInBits(); /// getFPMantissaWidth - Return the width of the mantissa of this type. This /// is only valid on floating point types. If the FP type does not /// have a stable mantissa (e.g. ppc long double), this method returns -1. int getFPMantissaWidth() const; - /// getForwardedType - Return the type that this type has been resolved to if - /// it has been resolved to anything. This is used to implement the - /// union-find algorithm for type resolution, and shouldn't be used by general - /// purpose clients. - const Type *getForwardedType() const { - if (!ForwardType) return 0; - return getForwardedTypeInternal(); - } - - /// getVAArgsPromotedType - Return the type an argument of this type - /// will be promoted to if passed through a variable argument - /// function. - const Type *getVAArgsPromotedType() const; - /// getScalarType - If this is a vector type, return the element type, - /// otherwise return this. - const Type *getScalarType() const; + /// otherwise return 'this'. + Type *getScalarType(); //===--------------------------------------------------------------------===// - // Type Iteration support + // Type Iteration support. // - typedef PATypeHandle *subtype_iterator; + typedef Type * const *subtype_iterator; subtype_iterator subtype_begin() const { return ContainedTys; } subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} @@ -309,9 +284,9 @@ public: /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// - const Type *getContainedType(unsigned i) const { + Type *getContainedType(unsigned i) const { assert(i < NumContainedTys && "Index out of range!"); - return ContainedTys[i].get(); + return ContainedTys[i]; } /// getNumContainedTypes - Return the number of types in the derived type. @@ -324,110 +299,76 @@ public: // /// getPrimitiveType - Return a type based on an identifier. - static const Type *getPrimitiveType(TypeID IDNumber); + static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); //===--------------------------------------------------------------------===// - // These are the builtin types that are always available... + // These are the builtin types that are always available. // - static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy, *MetadataTy; - static const Type *X86_FP80Ty, *FP128Ty, *PPC_FP128Ty; - static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty; + static Type *getVoidTy(LLVMContext &C); + static Type *getLabelTy(LLVMContext &C); + static Type *getFloatTy(LLVMContext &C); + static Type *getDoubleTy(LLVMContext &C); + static Type *getMetadataTy(LLVMContext &C); + static Type *getX86_FP80Ty(LLVMContext &C); + static Type *getFP128Ty(LLVMContext &C); + static Type *getPPC_FP128Ty(LLVMContext &C); + static Type *getX86_MMXTy(LLVMContext &C); + static IntegerType *getIntNTy(LLVMContext &C, unsigned N); + static IntegerType *getInt1Ty(LLVMContext &C); + static IntegerType *getInt8Ty(LLVMContext &C); + static IntegerType *getInt16Ty(LLVMContext &C); + static IntegerType *getInt32Ty(LLVMContext &C); + static IntegerType *getInt64Ty(LLVMContext &C); + + //===--------------------------------------------------------------------===// + // Convenience methods for getting pointer types with one of the above builtin + // types as pointee. + // + static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); + static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); + static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Type *) { return true; } - void addRef() const { - assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); - sys::AtomicIncrement(&RefCount); - } - - void dropRef() const { - assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); - assert(RefCount && "No objects are currently referencing this object!"); - - // If this is the last PATypeHolder using this object, and there are no - // PATypeHandles using it, the type is dead, delete it now. - sys::cas_flag OldCount = sys::AtomicDecrement(&RefCount); - if (OldCount == 0 && AbstractTypeUsers.empty()) - this->destroy(); - } - - /// addAbstractTypeUser - Notify an abstract type that there is a new user of - /// it. This function is called primarily by the PATypeHandle class. - /// - void addAbstractTypeUser(AbstractTypeUser *U) const; - - /// removeAbstractTypeUser - Notify an abstract type that a user of the class - /// no longer has a handle to the type. This function is called primarily by - /// the PATypeHandle class. When there are no users of the abstract type, it - /// is annihilated, because there is no way to get a reference to it ever - /// again. - /// - void removeAbstractTypeUser(AbstractTypeUser *U) const; - /// getPointerTo - Return a pointer to the current type. This is equivalent /// to PointerType::get(Foo, AddrSpace). - PointerType *getPointerTo(unsigned AddrSpace = 0) const; + PointerType *getPointerTo(unsigned AddrSpace = 0); private: /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool isSizedDerivedType() const; - - virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); - virtual void typeBecameConcrete(const DerivedType *AbsTy); - -protected: - // PromoteAbstractToConcrete - This is an internal method used to calculate - // change "Abstract" from true to false when types are refined. - void PromoteAbstractToConcrete(); - friend class TypeMapBase; }; -//===----------------------------------------------------------------------===// -// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. -// These are defined here because they MUST be inlined, yet are dependent on -// the definition of the Type class. -// -inline void PATypeHandle::addUser() { - assert(Ty && "Type Handle has a null type!"); - if (Ty->isAbstract()) - Ty->addAbstractTypeUser(User); -} -inline void PATypeHandle::removeUser() { - if (Ty->isAbstract()) - Ty->removeAbstractTypeUser(User); -} - -// Define inline methods for PATypeHolder. - -/// get - This implements the forwarding part of the union-find algorithm for -/// abstract types. Before every access to the Type*, we check to see if the -/// type we are pointing to is forwarding to a new type. If so, we drop our -/// reference to the type. -/// -inline Type* PATypeHolder::get() const { - const Type *NewTy = Ty->getForwardedType(); - if (!NewTy) return const_cast(Ty); - return *const_cast(this) = NewTy; -} - -inline void PATypeHolder::addRef() { - assert(Ty && "Type Holder has a null type!"); - if (Ty->isAbstract()) - Ty->addRef(); -} - -inline void PATypeHolder::dropRef() { - if (Ty->isAbstract()) - Ty->dropRef(); +// Printing of types. +static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) { + T.print(OS); + return OS; } +// allow isa(x) to work without DerivedTypes.h included. +template <> struct isa_impl { + static inline bool doit(const Type &Ty) { + return Ty.getTypeID() == Type::PointerTyID; + } +}; + //===----------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a type as a -// graph of sub types... +// graph of sub types. + template <> struct GraphTraits { typedef Type NodeType; @@ -446,7 +387,7 @@ template <> struct GraphTraits { typedef const Type NodeType; typedef Type::subtype_iterator ChildIteratorType; - static inline NodeType *getEntryNode(const Type *T) { return T; } + static inline NodeType *getEntryNode(NodeType *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } @@ -455,13 +396,6 @@ template <> struct GraphTraits { } }; -template <> inline bool isa_impl(const Type &Ty) { - return Ty.getTypeID() == Type::PointerTyID; -} - -std::ostream &operator<<(std::ostream &OS, const Type &T); -raw_ostream &operator<<(raw_ostream &OS, const Type &T); - } // End llvm namespace #endif