X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FType.h;h=617ef69de467a3511e06e2de833d970642d5036e;hb=4d440bd786ae4dad7035c30fd09044a9efc8dccd;hp=9602fd5a57abf2791edc585692823206812912bd;hpb=481d56c5deac8d0bcbd7136420b9fac47da28805;p=oota-llvm.git diff --git a/include/llvm/Type.h b/include/llvm/Type.h index 9602fd5a57a..617ef69de46 100644 --- a/include/llvm/Type.h +++ b/include/llvm/Type.h @@ -1,89 +1,102 @@ //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the declaration of the Type class. For more "Type" type -// stuff, look in DerivedTypes.h. // -// Note that instances of the Type class are immutable: once they are created, -// they are never changed. Also note that only one instance of a particular -// type is ever created. Thus seeing if two types are equal is a matter of -// doing a trivial pointer comparison. -// -// Types, once allocated, are never free'd, unless they are an abstract type -// that is resolved to a more concrete type. -// -// Opaque types are simple derived types with no state. There may be many -// different Opaque type objects floating around, but two are only considered -// identical if they are pointer equals of each other. This allows us to have -// two opaque types that end up resolving to different concrete types later. +// The LLVM Compiler Infrastructure // -// Opaque types are also kinda wierd and scary and different because they have -// to keep a list of uses of the type. When, through linking, parsing, or -// bytecode reading, they become resolved, they need to find and update all -// users of the unknown type, causing them to reference a new, more concrete -// type. Opaque types are deleted when their use list dwindles to zero users. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H -#include "AbstractTypeUser.h" +#include "llvm/AbstractTypeUser.h" #include "llvm/Support/Casting.h" +#include "llvm/System/DataTypes.h" #include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/iterator" +#include #include namespace llvm { -class ArrayType; class DerivedType; -class FunctionType; -class OpaqueType; class PointerType; -class StructType; -class PackedType; - -class Type { +class IntegerType; +class TypeMapBase; +class raw_ostream; +class Module; +class LLVMContext; + +/// This file contains the declaration of the Type class. For more "Type" type +/// stuff, look in DerivedTypes.h. +/// +/// The instances of the Type class are immutable: once they are created, +/// they are never changed. Also note that only one instance of a particular +/// type is ever created. Thus seeing if two types are equal is a matter of +/// doing a trivial pointer comparison. To enforce that no two equal instances +/// are created, Type instances can only be created via static factory methods +/// in class Type and in derived classes. +/// +/// Once allocated, Types are never free'd, unless they are an abstract type +/// that is resolved to a more concrete type. +/// +/// Types themself don't have a name, and can be named either by: +/// - using SymbolTable instance, typically from some Module, +/// - using convenience methods in the Module class (which uses module's +/// SymbolTable too). +/// +/// Opaque types are simple derived types with no state. There may be many +/// different Opaque type objects floating around, but two are only considered +/// identical if they are pointer equals of each other. This allows us to have +/// two opaque types that end up resolving to different concrete types later. +/// +/// Opaque types are also kinda weird and scary and different because they have +/// to keep a list of uses of the type. When, through linking, parsing, or +/// bitcode reading, they become resolved, they need to find and update all +/// users of the unknown type, causing them to reference a new, more concrete +/// type. Opaque types are deleted when their use list dwindles to zero users. +/// +/// @brief Root of type hierarchy +class Type : public AbstractTypeUser { public: - ///===-------------------------------------------------------------------===// + //===-------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) - /// Note: If you add an element to this, you need to add an element to the + /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! + /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. /// enum TypeID { // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date - VoidTyID = 0 , BoolTyID, // 0, 1: Basics... - UByteTyID , SByteTyID, // 2, 3: 8 bit types... - UShortTyID , ShortTyID, // 4, 5: 16 bit types... - UIntTyID , IntTyID, // 6, 7: 32 bit types... - ULongTyID , LongTyID, // 8, 9: 64 bit types... - FloatTyID , DoubleTyID, // 10,11: Floating point types... - LabelTyID , // 12 : Labels... + VoidTyID = 0, ///< 0: type with no size + FloatTyID, ///< 1: 32 bit floating point type + DoubleTyID, ///< 2: 64 bit floating point type + X86_FP80TyID, ///< 3: 80 bit floating point type (X87) + FP128TyID, ///< 4: 128 bit floating point type (112-bit mantissa) + PPC_FP128TyID, ///< 5: 128 bit floating point type (two 64-bits) + LabelTyID, ///< 6: Labels + MetadataTyID, ///< 7: Metadata // Derived types... see DerivedTypes.h file... // Make sure FirstDerivedTyID stays up to date!!! - FunctionTyID , StructTyID, // Functions... Structs... - ArrayTyID , PointerTyID, // Array... pointer... - OpaqueTyID, // Opaque type instances... - PackedTyID, // SIMD 'packed' format... - //... + IntegerTyID, ///< 8: Arbitrary bit width integers + FunctionTyID, ///< 9: Functions + StructTyID, ///< 10: Structures + UnionTyID, ///< 11: Unions + ArrayTyID, ///< 12: Arrays + PointerTyID, ///< 13: Pointers + OpaqueTyID, ///< 14: Opaque: type with unknown structure + VectorTyID, ///< 15: SIMD 'packed' format, or other vector type NumTypeIDs, // Must remain as last defined ID - LastPrimitiveTyID = LabelTyID, - FirstDerivedTyID = FunctionTyID, + LastPrimitiveTyID = MetadataTyID, + FirstDerivedTyID = IntegerTyID }; private: TypeID ID : 8; // The current base type of this type. - bool Abstract; // True if type contains an OpaqueType + bool Abstract : 1; // True if type contains an OpaqueType + unsigned SubclassData : 23; //Space for subclasses to store data /// RefCount - This counts the number of PATypeHolders that are pointing to /// this type. When this number falls to zero, if the type is abstract and @@ -92,95 +105,175 @@ private: /// mutable unsigned RefCount; + /// Context - This refers to the LLVMContext in which this type was uniqued. + LLVMContext &Context; + friend class LLVMContextImpl; + const Type *getForwardedTypeInternal() const; + + // Some Type instances are allocated as arrays, some aren't. So we provide + // this method to get the right kind of destruction for the type of Type. + void destroy() const; // const is a lie, this does "delete this"! + protected: - Type(const std::string& Name, TypeID id); - virtual ~Type() {} + explicit Type(LLVMContext &C, TypeID id) : + ID(id), Abstract(false), SubclassData(0), + RefCount(0), Context(C), + ForwardType(0), NumContainedTys(0), + ContainedTys(0) {} + virtual ~Type() { + assert(AbstractTypeUsers.empty() && "Abstract types remain"); + } /// Types can become nonabstract later, if they are refined. /// inline void setAbstract(bool Val) { Abstract = Val; } - // PromoteAbstractToConcrete - This is an internal method used to calculate - // change "Abstract" from true to false when types are refined. - void PromoteAbstractToConcrete(); - unsigned getRefCount() const { return RefCount; } + unsigned getSubclassData() const { return SubclassData; } + void setSubclassData(unsigned val) { SubclassData = val; } + /// ForwardType - This field is used to implement the union find scheme for /// abstract types. When types are refined to other types, this field is set /// to the more refined type. Only abstract types can be forwarded. mutable const Type *ForwardType; - /// ContainedTys - The list of types contained by this one. For example, this - /// includes the arguments of a function type, the elements of the structure, - /// the pointee of a pointer, etc. Note that keeping this vector in the Type - /// class wastes some space for types that do not contain anything (such as - /// primitive types). However, keeping it here allows the subtype_* members - /// to be implemented MUCH more efficiently, and dynamically very few types do - /// not contain any elements (most are derived). - std::vector ContainedTys; + + /// AbstractTypeUsers - Implement a list of the users that need to be notified + /// if I am a type, and I get resolved into a more concrete type. + /// + mutable std::vector AbstractTypeUsers; + + /// NumContainedTys - Keeps track of how many PATypeHandle instances there + /// are at the end of this type instance for the list of contained types. It + /// is the subclasses responsibility to set this up. Set to 0 if there are no + /// contained types in this type. + unsigned NumContainedTys; + + /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained + /// by this Type. For example, this includes the arguments of a function + /// type, the elements of a structure, the pointee of a pointer, the element + /// type of an array, etc. This pointer may be 0 for types that don't + /// contain other types (Integer, Double, Float). In general, the subclass + /// should arrange for space for the PATypeHandles to be included in the + /// allocation of the type object and set this pointer to the address of the + /// first element. This allows the Type class to manipulate the ContainedTys + /// without understanding the subclass's placement for this array. keeping + /// it here also allows the subtype_* members to be implemented MUCH more + /// efficiently, and dynamically very few types do not contain any elements. + PATypeHandle *ContainedTys; public: - virtual void print(std::ostream &O) const; + void print(raw_ostream &O) const; /// @brief Debugging support: print to stderr - virtual void dump() const; + void dump() const; + + /// @brief Debugging support: print to stderr (use type names from context + /// module). + void dump(const Module *Context) const; + + /// getContext - Fetch the LLVMContext in which this type was uniqued. + LLVMContext &getContext() const { return Context; } //===--------------------------------------------------------------------===// // Property accessors for dealing with types... Some of these virtual methods // are defined in private classes defined in Type.cpp for primitive types. // + /// getDescription - Return the string representation of the type. + std::string getDescription() const; + /// getTypeID - Return the type id for the type. This will return one /// of the TypeID enum elements defined above. /// inline TypeID getTypeID() const { return ID; } - /// getDescription - Return the string representation of the type... - const std::string &getDescription() const; + /// isVoidTy - Return true if this is 'void'. + bool isVoidTy() const { return ID == VoidTyID; } - /// isSigned - Return whether an integral numeric type is signed. This is - /// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for - /// Float and Double. + /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type. + bool isFloatTy() const { return ID == FloatTyID; } + + /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type. + bool isDoubleTy() const { return ID == DoubleTyID; } + + /// isX86_FP80Ty - Return true if this is x86 long double. + bool isX86_FP80Ty() const { return ID == X86_FP80TyID; } + + /// isFP128Ty - Return true if this is 'fp128'. + bool isFP128Ty() const { return ID == FP128TyID; } + + /// isPPC_FP128Ty - Return true if this is powerpc long double. + bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; } + + /// isFloatingPointTy - Return true if this is one of the five floating point + /// types + bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID || + ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; } + + /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP. /// - bool isSigned() const { - return ID == SByteTyID || ID == ShortTyID || - ID == IntTyID || ID == LongTyID; - } + bool isFPOrFPVectorTy() const; + + /// isLabelTy - Return true if this is 'label'. + bool isLabelTy() const { return ID == LabelTyID; } + + /// isMetadataTy - Return true if this is 'metadata'. + bool isMetadataTy() const { return ID == MetadataTyID; } + + /// isIntegerTy - True if this is an instance of IntegerType. + /// + bool isIntegerTy() const { return ID == IntegerTyID; } + + /// isIntegerTy - Return true if this is an IntegerType of the given width. + bool isIntegerTy(unsigned Bitwidth) const; + + /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of + /// integer types. + /// + bool isIntOrIntVectorTy() const; - /// isUnsigned - Return whether a numeric type is unsigned. This is not quite - /// the complement of isSigned... nonnumeric types return false as they do - /// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and - /// ULongTy - /// - bool isUnsigned() const { - return ID == UByteTyID || ID == UShortTyID || - ID == UIntTyID || ID == ULongTyID; - } + /// isFunctionTy - True if this is an instance of FunctionType. + /// + bool isFunctionTy() const { return ID == FunctionTyID; } - /// isInteger - Equivalent to isSigned() || isUnsigned() + /// isStructTy - True if this is an instance of StructType. /// - bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; } + bool isStructTy() const { return ID == StructTyID; } - /// isIntegral - Returns true if this is an integral type, which is either - /// BoolTy or one of the Integer types. + /// isUnionTy - True if this is an instance of UnionType. /// - bool isIntegral() const { return isInteger() || this == BoolTy; } + bool isUnionTy() const { return ID == UnionTyID; } - /// isFloatingPoint - Return true if this is one of the two floating point - /// types - bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; } + /// isArrayTy - True if this is an instance of ArrayType. + /// + bool isArrayTy() const { return ID == ArrayTyID; } + + /// isPointerTy - True if this is an instance of PointerType. + /// + bool isPointerTy() const { return ID == PointerTyID; } + + /// isOpaqueTy - True if this is an instance of OpaqueType. + /// + bool isOpaqueTy() const { return ID == OpaqueTyID; } + + /// isVectorTy - True if this is an instance of VectorType. + /// + bool isVectorTy() const { return ID == VectorTyID; } /// isAbstract - True if the type is either an Opaque type, or is a derived - /// type that includes an opaque type somewhere in it. + /// type that includes an opaque type somewhere in it. /// inline bool isAbstract() const { return Abstract; } - /// isLosslesslyConvertibleTo - Return true if this type can be converted to - /// 'Ty' without any reinterpretation of bits. For example, uint to int. - /// - bool isLosslesslyConvertibleTo(const Type *Ty) const; + /// canLosslesslyBitCastTo - Return true if this type could be converted + /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts + /// are valid for types of the same size only where no re-interpretation of + /// the bits is done. + /// @brief Determine if this type could be losslessly bitcast to Ty + bool canLosslesslyBitCastTo(const Type *Ty) const; /// Here are some useful little methods to query what type derived types are @@ -189,11 +282,31 @@ public: inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } - /// isFirstClassType - Return true if the value is holdable in a register. + /// isFirstClassType - Return true if the type is "first class", meaning it + /// is a valid type for a Value. /// inline bool isFirstClassType() const { - return (ID != VoidTyID && ID <= LastPrimitiveTyID) || - ID == PointerTyID || ID == PackedTyID; + // There are more first-class kinds than non-first-class kinds, so a + // negative test is simpler than a positive one. + return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID; + } + + /// isSingleValueType - Return true if the type is a valid type for a + /// virtual register in codegen. This includes all first-class types + /// except struct and array types. + /// + inline bool isSingleValueType() const { + return (ID != VoidTyID && ID <= LastPrimitiveTyID) || + ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID; + } + + /// isAggregateType - Return true if the type is an aggregate type. This + /// means it is valid as the first operand of an insertvalue or + /// extractvalue instruction. This includes struct and array types, but + /// does not include vector types. + /// + inline bool isAggregateType() const { + return ID == StructTyID || ID == ArrayTyID || ID == UnionTyID; } /// isSized - Return true if it makes sense to take the size of this type. To @@ -201,25 +314,42 @@ public: /// TargetData subsystem to do this. /// bool isSized() const { - return (ID >= BoolTyID && ID <= DoubleTyID) || ID == PointerTyID || - isSizedDerivedType(); + // If it's a primitive, it is always sized. + if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID) + return true; + // If it is not something that can have a size (e.g. a function or label), + // it doesn't have a size. + if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID && + ID != UnionTyID) + return false; + // If it is something that can have a size and it's concrete, it definitely + // has a size, otherwise we have to try harder to decide. + return !isAbstract() || isSizedDerivedType(); } - /// getPrimitiveSize - Return the basic size of this type if it is a primitive - /// type. These are fixed by LLVM and are not target dependent. This will - /// return zero if the type does not have a size or is not a primitive type. + /// getPrimitiveSizeInBits - Return the basic size of this type if it is a + /// primitive type. These are fixed by LLVM and are not target dependent. + /// This will return zero if the type does not have a size or is not a + /// primitive type. + /// + /// Note that this may not reflect the size of memory allocated for an + /// instance of the type or the number of bytes that are written when an + /// instance of the type is stored to memory. The TargetData class provides + /// additional query functions to provide this information. /// - unsigned getPrimitiveSize() const; + unsigned getPrimitiveSizeInBits() const; - /// getUnsignedVersion - If this is an integer type, return the unsigned - /// variant of this type. For example int -> uint. - const Type *getUnsignedVersion() const; + /// getScalarSizeInBits - If this is a vector type, return the + /// getPrimitiveSizeInBits value for the element type. Otherwise return the + /// getPrimitiveSizeInBits value for this type. + unsigned getScalarSizeInBits() const; - /// getSignedVersion - If this is an integer type, return the signed variant - /// of this type. For example uint -> int. - const Type *getSignedVersion() const; + /// getFPMantissaWidth - Return the width of the mantissa of this type. This + /// is only valid on floating point types. If the FP type does not + /// have a stable mantissa (e.g. ppc long double), this method returns -1. + int getFPMantissaWidth() const; - /// getForwaredType - Return the type that this type has been resolved to if + /// getForwardedType - Return the type that this type has been resolved to if /// it has been resolved to anything. This is used to implement the /// union-find algorithm for type resolution, and shouldn't be used by general /// purpose clients. @@ -228,25 +358,34 @@ public: return getForwardedTypeInternal(); } + /// getVAArgsPromotedType - Return the type an argument of this type + /// will be promoted to if passed through a variable argument + /// function. + const Type *getVAArgsPromotedType(LLVMContext &C) const; + + /// getScalarType - If this is a vector type, return the element type, + /// otherwise return this. + const Type *getScalarType() const; + //===--------------------------------------------------------------------===// // Type Iteration support // - typedef std::vector::const_iterator subtype_iterator; - subtype_iterator subtype_begin() const { return ContainedTys.begin(); } - subtype_iterator subtype_end() const { return ContainedTys.end(); } + typedef PATypeHandle *subtype_iterator; + subtype_iterator subtype_begin() const { return ContainedTys; } + subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// const Type *getContainedType(unsigned i) const { - assert(i < ContainedTys.size() && "Index out of range!"); - return ContainedTys[i]; + assert(i < NumContainedTys && "Index out of range!"); + return ContainedTys[i].get(); } /// getNumContainedTypes - Return the number of types in the derived type. /// - unsigned getNumContainedTypes() const { return ContainedTys.size(); } + unsigned getNumContainedTypes() const { return NumContainedTys; } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting @@ -254,70 +393,98 @@ public: // /// getPrimitiveType - Return a type based on an identifier. - static const Type *getPrimitiveType(TypeID IDNumber); + static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available... // - static Type *VoidTy , *BoolTy; - static Type *SByteTy, *UByteTy, - *ShortTy, *UShortTy, - *IntTy , *UIntTy, - *LongTy , *ULongTy; - static Type *FloatTy, *DoubleTy; + static const Type *getVoidTy(LLVMContext &C); + static const Type *getLabelTy(LLVMContext &C); + static const Type *getFloatTy(LLVMContext &C); + static const Type *getDoubleTy(LLVMContext &C); + static const Type *getMetadataTy(LLVMContext &C); + static const Type *getX86_FP80Ty(LLVMContext &C); + static const Type *getFP128Ty(LLVMContext &C); + static const Type *getPPC_FP128Ty(LLVMContext &C); + static const IntegerType *getIntNTy(LLVMContext &C, unsigned N); + static const IntegerType *getInt1Ty(LLVMContext &C); + static const IntegerType *getInt8Ty(LLVMContext &C); + static const IntegerType *getInt16Ty(LLVMContext &C); + static const IntegerType *getInt32Ty(LLVMContext &C); + static const IntegerType *getInt64Ty(LLVMContext &C); - static Type* LabelTy; + //===--------------------------------------------------------------------===// + // Convenience methods for getting pointer types with one of the above builtin + // types as pointee. + // + static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, + unsigned AS = 0); + static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); + static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); /// Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const Type *T) { return true; } - -#include "llvm/Type.def" - - // Virtual methods used by callbacks below. These should only be implemented - // in the DerivedType class. - virtual void addAbstractTypeUser(AbstractTypeUser *U) const { - abort(); // Only on derived types! - } - virtual void removeAbstractTypeUser(AbstractTypeUser *U) const { - abort(); // Only on derived types! - } + static inline bool classof(const Type *) { return true; } void addRef() const { assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); ++RefCount; } - + void dropRef() const { - assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!"); + assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); assert(RefCount && "No objects are currently referencing this object!"); // If this is the last PATypeHolder using this object, and there are no // PATypeHandles using it, the type is dead, delete it now. - if (--RefCount == 0) - RefCountIsZero(); + if (--RefCount == 0 && AbstractTypeUsers.empty()) + this->destroy(); } + + /// addAbstractTypeUser - Notify an abstract type that there is a new user of + /// it. This function is called primarily by the PATypeHandle class. + /// + void addAbstractTypeUser(AbstractTypeUser *U) const; + + /// removeAbstractTypeUser - Notify an abstract type that a user of the class + /// no longer has a handle to the type. This function is called primarily by + /// the PATypeHandle class. When there are no users of the abstract type, it + /// is annihilated, because there is no way to get a reference to it ever + /// again. + /// + void removeAbstractTypeUser(AbstractTypeUser *U) const; + + /// getPointerTo - Return a pointer to the current type. This is equivalent + /// to PointerType::get(Foo, AddrSpace). + const PointerType *getPointerTo(unsigned AddrSpace = 0) const; + private: /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool isSizedDerivedType() const; - virtual void RefCountIsZero() const { - abort(); // only on derived types! - } + virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); + virtual void typeBecameConcrete(const DerivedType *AbsTy); +protected: + // PromoteAbstractToConcrete - This is an internal method used to calculate + // change "Abstract" from true to false when types are refined. + void PromoteAbstractToConcrete(); + friend class TypeMapBase; }; //===----------------------------------------------------------------------===// // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. -// These are defined here because they MUST be inlined, yet are dependent on -// the definition of the Type class. Of course Type derives from Value, which -// contains an AbstractTypeUser instance, so there is no good way to factor out -// the code. Hence this bit of uglyness. -// -// In the long term, Type should not derive from Value, allowing -// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this -// nastyness entirely. +// These are defined here because they MUST be inlined, yet are dependent on +// the definition of the Type class. // inline void PATypeHandle::addUser() { assert(Ty && "Type Handle has a null type!"); @@ -329,22 +496,7 @@ inline void PATypeHandle::removeUser() { Ty->removeAbstractTypeUser(User); } -inline void PATypeHandle::removeUserFromConcrete() { - if (!Ty->isAbstract()) - Ty->removeAbstractTypeUser(User); -} - -// Define inline methods for PATypeHolder... - -inline void PATypeHolder::addRef() { - if (Ty->isAbstract()) - Ty->addRef(); -} - -inline void PATypeHolder::dropRef() { - if (Ty->isAbstract()) - Ty->dropRef(); -} +// Define inline methods for PATypeHolder. /// get - This implements the forwarding part of the union-find algorithm for /// abstract types. Before every access to the Type*, we check to see if the @@ -352,15 +504,25 @@ inline void PATypeHolder::dropRef() { /// reference to the type. /// inline Type* PATypeHolder::get() const { + if (Ty == 0) return 0; const Type *NewTy = Ty->getForwardedType(); if (!NewTy) return const_cast(Ty); return *const_cast(this) = NewTy; } +inline void PATypeHolder::addRef() { + if (Ty && Ty->isAbstract()) + Ty->addRef(); +} + +inline void PATypeHolder::dropRef() { + if (Ty && Ty->isAbstract()) + Ty->dropRef(); +} //===----------------------------------------------------------------------===// -// Provide specializations of GraphTraits to be able to treat a type as a +// Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types... template <> struct GraphTraits { @@ -368,10 +530,10 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; @@ -381,19 +543,21 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; -template <> inline bool isa_impl(const Type &Ty) { - return Ty.getTypeID() == Type::PointerTyID; -} +template <> struct isa_impl { + static inline bool doit(const Type &Ty) { + return Ty.getTypeID() == Type::PointerTyID; + } +}; -std::ostream &operator<<(std::ostream &OS, const Type &T); +raw_ostream &operator<<(raw_ostream &OS, const Type &T); } // End llvm namespace