X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FType.h;h=c79aed676d69f0607ef10417c8625b899249e07e;hb=c521409d4cf6c8edf4900dda36f6ef9b953f8951;hp=2c92e7411b4781b2f01dcfcea9486e584fd467e9;hpb=b44cacb647431b030702f099dea94fc5625041da;p=oota-llvm.git diff --git a/include/llvm/Type.h b/include/llvm/Type.h index 2c92e7411b4..c79aed676d6 100644 --- a/include/llvm/Type.h +++ b/include/llvm/Type.h @@ -1,117 +1,154 @@ -//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=// +//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// // -// This file contains the declaration of the Type class. For more "Type" type -// stuff, look in DerivedTypes.h. +// The LLVM Compiler Infrastructure // -// Note that instances of the Type class are immutable: once they are created, -// they are never changed. Also note that only one instance of a particular -// type is ever created. Thus seeing if two types are equal is a matter of -// doing a trivial pointer comparison. -// -// Types, once allocated, are never free'd. -// -// Opaque types are simple derived types with no state. There may be many -// different Opaque type objects floating around, but two are only considered -// identical if they are pointer equals of each other. This allows us to have -// two opaque types that end up resolving to different concrete types later. -// -// Opaque types are also kinda wierd and scary and different because they have -// to keep a list of uses of the type. When, through linking, parsing, or -// bytecode reading, they become resolved, they need to find and update all -// users of the unknown type, causing them to reference a new, more concrete -// type. Opaque types are deleted when their use list dwindles to zero users. +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// + #ifndef LLVM_TYPE_H #define LLVM_TYPE_H -#include "llvm/Value.h" -#include "Support/GraphTraits.h" -#include "Support/iterator" +#include "llvm/AbstractTypeUser.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/iterator" +#include +#include + +namespace llvm { +class ArrayType; class DerivedType; class FunctionType; -class ArrayType; +class OpaqueType; class PointerType; class StructType; -class OpaqueType; - -class Type : public Value { +class PackedType; +class TypeMapBase; + +/// This file contains the declaration of the Type class. For more "Type" type +/// stuff, look in DerivedTypes.h. +/// +/// The instances of the Type class are immutable: once they are created, +/// they are never changed. Also note that only one instance of a particular +/// type is ever created. Thus seeing if two types are equal is a matter of +/// doing a trivial pointer comparison. To enforce that no two equal instances +/// are created, Type instances can only be created via static factory methods +/// in class Type and in derived classes. +/// +/// Once allocated, Types are never free'd, unless they are an abstract type +/// that is resolved to a more concrete type. +/// +/// Types themself don't have a name, and can be named either by: +/// - using SymbolTable instance, typically from some Module, +/// - using convenience methods in the Module class (which uses module's +/// SymbolTable too). +/// +/// Opaque types are simple derived types with no state. There may be many +/// different Opaque type objects floating around, but two are only considered +/// identical if they are pointer equals of each other. This allows us to have +/// two opaque types that end up resolving to different concrete types later. +/// +/// Opaque types are also kinda weird and scary and different because they have +/// to keep a list of uses of the type. When, through linking, parsing, or +/// bytecode reading, they become resolved, they need to find and update all +/// users of the unknown type, causing them to reference a new, more concrete +/// type. Opaque types are deleted when their use list dwindles to zero users. +/// +/// @brief Root of type hierarchy +class Type : public AbstractTypeUser { public: ///===-------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) - /// Note: If you add an element to this, you need to add an element to the + /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! /// - enum PrimitiveID { + enum TypeID { + // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date VoidTyID = 0 , BoolTyID, // 0, 1: Basics... UByteTyID , SByteTyID, // 2, 3: 8 bit types... UShortTyID , ShortTyID, // 4, 5: 16 bit types... UIntTyID , IntTyID, // 6, 7: 32 bit types... ULongTyID , LongTyID, // 8, 9: 64 bit types... - FloatTyID , DoubleTyID, // 10,11: Floating point types... - - TypeTyID, // 12 : Type definitions - LabelTyID , // 13 : Labels... + LabelTyID , // 12 : Labels... // Derived types... see DerivedTypes.h file... // Make sure FirstDerivedTyID stays up to date!!! FunctionTyID , StructTyID, // Functions... Structs... ArrayTyID , PointerTyID, // Array... pointer... OpaqueTyID, // Opaque type instances... - //PackedTyID , // SIMD 'packed' format... TODO + PackedTyID, // SIMD 'packed' format... //... - NumPrimitiveIDs, // Must remain as last defined ID - FirstDerivedTyID = FunctionTyID, + NumTypeIDs, // Must remain as last defined ID + LastPrimitiveTyID = LabelTyID, + FirstDerivedTyID = FunctionTyID }; private: - PrimitiveID ID; // The current base type of this type... - unsigned UID; // The unique ID number for this class - bool Abstract; // True if type contains an OpaqueType - bool Recursive; // True if the type is recursive - -protected: - /// ctor is protected, so only subclasses can create Type objects... - Type(const std::string &Name, PrimitiveID id); - virtual ~Type() {} + TypeID ID : 8; // The current base type of this type. + bool Abstract : 1; // True if type contains an OpaqueType - /// setName - Associate the name with this type in the symbol table, but don't - /// set the local name to be equal specified name. + /// RefCount - This counts the number of PATypeHolders that are pointing to + /// this type. When this number falls to zero, if the type is abstract and + /// has no AbstractTypeUsers, the type is deleted. This is only sensical for + /// derived types. /// - virtual void setName(const std::string &Name, SymbolTable *ST = 0); + mutable unsigned RefCount; + + const Type *getForwardedTypeInternal() const; +protected: + Type(const char *Name, TypeID id); + Type(TypeID id) : ID(id), Abstract(false), RefCount(0), ForwardType(0) {} + virtual ~Type() { + assert(AbstractTypeUsers.empty()); + } /// Types can become nonabstract later, if they are refined. /// inline void setAbstract(bool Val) { Abstract = Val; } - /// Types can become recursive later, if they are refined. - /// - inline void setRecursive(bool Val) { Recursive = Val; } + unsigned getRefCount() const { return RefCount; } + /// ForwardType - This field is used to implement the union find scheme for + /// abstract types. When types are refined to other types, this field is set + /// to the more refined type. Only abstract types can be forwarded. + mutable const Type *ForwardType; + + /// ContainedTys - The list of types contained by this one. For example, this + /// includes the arguments of a function type, the elements of the structure, + /// the pointee of a pointer, etc. Note that keeping this vector in the Type + /// class wastes some space for types that do not contain anything (such as + /// primitive types). However, keeping it here allows the subtype_* members + /// to be implemented MUCH more efficiently, and dynamically very few types do + /// not contain any elements (most are derived). + std::vector ContainedTys; + + /// AbstractTypeUsers - Implement a list of the users that need to be notified + /// if I am a type, and I get resolved into a more concrete type. + /// + mutable std::vector AbstractTypeUsers; public: - virtual void print(std::ostream &O) const; + void print(std::ostream &O) const; + + /// @brief Debugging support: print to stderr + void dump() const; //===--------------------------------------------------------------------===// // Property accessors for dealing with types... Some of these virtual methods // are defined in private classes defined in Type.cpp for primitive types. // - /// getPrimitiveID - Return the base type of the type. This will return one - /// of the PrimitiveID enum elements defined above. + /// getTypeID - Return the type id for the type. This will return one + /// of the TypeID enum elements defined above. /// - inline PrimitiveID getPrimitiveID() const { return ID; } - - /// getUniqueID - Returns the UID of the type. This can be thought of as a - /// small integer version of the pointer to the type class. Two types that - /// are structurally different have different UIDs. This can be used for - /// indexing types into an array. - /// - inline unsigned getUniqueID() const { return UID; } + inline TypeID getTypeID() const { return ID; } /// getDescription - Return the string representation of the type... const std::string &getDescription() const; @@ -119,20 +156,25 @@ public: /// isSigned - Return whether an integral numeric type is signed. This is /// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for /// Float and Double. - // - virtual bool isSigned() const { return 0; } - + /// + bool isSigned() const { + return ID == SByteTyID || ID == ShortTyID || + ID == IntTyID || ID == LongTyID; + } + /// isUnsigned - Return whether a numeric type is unsigned. This is not quite /// the complement of isSigned... nonnumeric types return false as they do /// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and /// ULongTy - /// - virtual bool isUnsigned() const { return 0; } + /// + bool isUnsigned() const { + return ID == UByteTyID || ID == UShortTyID || + ID == UIntTyID || ID == ULongTyID; + } - /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a - /// single virtual function invocation. + /// isInteger - Equivalent to isSigned() || isUnsigned() /// - virtual bool isInteger() const { return 0; } + bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; } /// isIntegral - Returns true if this is an integral type, which is either /// BoolTy or one of the Integer types. @@ -144,14 +186,10 @@ public: bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; } /// isAbstract - True if the type is either an Opaque type, or is a derived - /// type that includes an opaque type somewhere in it. + /// type that includes an opaque type somewhere in it. /// inline bool isAbstract() const { return Abstract; } - /// isRecursive - True if the type graph contains a cycle. - /// - inline bool isRecursive() const { return Recursive; } - /// isLosslesslyConvertibleTo - Return true if this type can be converted to /// 'Ty' without any reinterpretation of bits. For example, uint to int. /// @@ -161,12 +199,14 @@ public: /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// - inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; } + inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } /// isFirstClassType - Return true if the value is holdable in a register. + /// inline bool isFirstClassType() const { - return isPrimitiveType() || ID == PointerTyID; + return (ID != VoidTyID && ID <= LastPrimitiveTyID) || + ID == PointerTyID || ID == PackedTyID; } /// isSized - Return true if it makes sense to take the size of this type. To @@ -174,44 +214,92 @@ public: /// TargetData subsystem to do this. /// bool isSized() const { - return ID != VoidTyID && ID != TypeTyID && - ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID; + // If it's a primitive, it is always sized. + if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID) + return true; + // If it is not something that can have a size (e.g. a function or label), + // it doesn't have a size. + if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID) + return false; + // If it is something that can have a size and it's concrete, it definitely + // has a size, otherwise we have to try harder to decide. + return !isAbstract() || isSizedDerivedType(); } - /// getPrimitiveSize - Return the basic size of this type if it is a primative + /// getPrimitiveSize - Return the basic size of this type if it is a primitive /// type. These are fixed by LLVM and are not target dependent. This will /// return zero if the type does not have a size or is not a primitive type. /// unsigned getPrimitiveSize() const; + unsigned getPrimitiveSizeInBits() const; + /// getUnsignedVersion - If this is an integer type, return the unsigned + /// variant of this type. For example int -> uint. + const Type *getUnsignedVersion() const; + + /// getSignedVersion - If this is an integer type, return the signed variant + /// of this type. For example uint -> int. + const Type *getSignedVersion() const; + + /// getIntegralTypeMask - Return a bitmask with ones set for all of the bits + /// that can be set by an unsigned version of this type. This is 0xFF for + /// sbyte/ubyte, 0xFFFF for shorts, etc. + uint64_t getIntegralTypeMask() const { + assert(isIntegral() && "This only works for integral types!"); + return ~uint64_t(0UL) >> (64-getPrimitiveSizeInBits()); + } + + /// getForwaredType - Return the type that this type has been resolved to if + /// it has been resolved to anything. This is used to implement the + /// union-find algorithm for type resolution, and shouldn't be used by general + /// purpose clients. + const Type *getForwardedType() const { + if (!ForwardType) return 0; + return getForwardedTypeInternal(); + } + + /// getVAArgsPromotedType - Return the type an argument of this type + /// will be promoted to if passed through a variable argument + /// function. + const Type *getVAArgsPromotedType() const { + if (ID == BoolTyID || ID == UByteTyID || ID == UShortTyID) + return Type::UIntTy; + else if (ID == SByteTyID || ID == ShortTyID) + return Type::IntTy; + else if (ID == FloatTyID) + return Type::DoubleTy; + else + return this; + } //===--------------------------------------------------------------------===// // Type Iteration support // - class TypeIterator; - typedef TypeIterator subtype_iterator; - inline subtype_iterator subtype_begin() const; // DEFINED BELOW - inline subtype_iterator subtype_end() const; // DEFINED BELOW + typedef std::vector::const_iterator subtype_iterator; + subtype_iterator subtype_begin() const { return ContainedTys.begin(); } + subtype_iterator subtype_end() const { return ContainedTys.end(); } /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the - /// types 'contained' in the derived type, returning 0 when 'i' becomes - /// invalid. This allows the user to iterate over the types in a struct, for - /// example, really easily. + /// types 'contained' in the derived type. /// - virtual const Type *getContainedType(unsigned i) const { return 0; } + const Type *getContainedType(unsigned i) const { + assert(i < ContainedTys.size() && "Index out of range!"); + return ContainedTys[i]; + } - /// getNumContainedTypes - Return the number of types in the derived type - virtual unsigned getNumContainedTypes() const { return 0; } + /// getNumContainedTypes - Return the number of types in the derived type. + /// + typedef std::vector::size_type size_type; + size_type getNumContainedTypes() const { return ContainedTys.size(); } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // - /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier. - static const Type *getPrimitiveType(PrimitiveID IDNumber); - static const Type *getUniqueIDType(unsigned UID); + /// getPrimitiveType - Return a type based on an identifier. + static const Type *getPrimitiveType(TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available... @@ -219,58 +307,115 @@ public: static Type *VoidTy , *BoolTy; static Type *SByteTy, *UByteTy, *ShortTy, *UShortTy, - *IntTy , *UIntTy, + *IntTy , *UIntTy, *LongTy , *ULongTy; static Type *FloatTy, *DoubleTy; - static Type *TypeTy , *LabelTy; + static Type* LabelTy; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Type *T) { return true; } - static inline bool classof(const Value *V) { - return V->getValueType() == Value::TypeVal; + + void addRef() const { + assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); + ++RefCount; } -#include "llvm/Type.def" + void dropRef() const { + assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); + assert(RefCount && "No objects are currently referencing this object!"); + + // If this is the last PATypeHolder using this object, and there are no + // PATypeHandles using it, the type is dead, delete it now. + if (--RefCount == 0 && AbstractTypeUsers.empty()) + delete this; + } + + /// addAbstractTypeUser - Notify an abstract type that there is a new user of + /// it. This function is called primarily by the PATypeHandle class. + /// + void addAbstractTypeUser(AbstractTypeUser *U) const { + assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); + AbstractTypeUsers.push_back(U); + } + + /// removeAbstractTypeUser - Notify an abstract type that a user of the class + /// no longer has a handle to the type. This function is called primarily by + /// the PATypeHandle class. When there are no users of the abstract type, it + /// is annihilated, because there is no way to get a reference to it ever + /// again. + /// + void removeAbstractTypeUser(AbstractTypeUser *U) const; + + /// clearAllTypeMaps - This method frees all internal memory used by the + /// type subsystem, which can be used in environments where this memory is + /// otherwise reported as a leak. + static void clearAllTypeMaps(); private: - class TypeIterator : public bidirectional_iterator { - const Type * const Ty; - unsigned Idx; - - typedef TypeIterator _Self; - public: - inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {} - inline ~TypeIterator() {} - - inline bool operator==(const _Self& x) const { return Idx == x.Idx; } - inline bool operator!=(const _Self& x) const { return !operator==(x); } - - inline pointer operator*() const { return Ty->getContainedType(Idx); } - inline pointer operator->() const { return operator*(); } - - inline _Self& operator++() { ++Idx; return *this; } // Preincrement - inline _Self operator++(int) { // Postincrement - _Self tmp = *this; ++*this; return tmp; - } - - inline _Self& operator--() { --Idx; return *this; } // Predecrement - inline _Self operator--(int) { // Postdecrement - _Self tmp = *this; --*this; return tmp; - } - }; + /// isSizedDerivedType - Derived types like structures and arrays are sized + /// iff all of the members of the type are sized as well. Since asking for + /// their size is relatively uncommon, move this operation out of line. + bool isSizedDerivedType() const; + + virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); + virtual void typeBecameConcrete(const DerivedType *AbsTy); + +protected: + // PromoteAbstractToConcrete - This is an internal method used to calculate + // change "Abstract" from true to false when types are refined. + void PromoteAbstractToConcrete(); + friend class TypeMapBase; }; -inline Type::TypeIterator Type::subtype_begin() const { - return TypeIterator(this, 0); +//===----------------------------------------------------------------------===// +// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. +// These are defined here because they MUST be inlined, yet are dependent on +// the definition of the Type class. Of course Type derives from Value, which +// contains an AbstractTypeUser instance, so there is no good way to factor out +// the code. Hence this bit of uglyness. +// +// In the long term, Type should not derive from Value, allowing +// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this +// nastyness entirely. +// +inline void PATypeHandle::addUser() { + assert(Ty && "Type Handle has a null type!"); + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(User); } +inline void PATypeHandle::removeUser() { + if (Ty->isAbstract()) + Ty->removeAbstractTypeUser(User); +} + +// Define inline methods for PATypeHolder... -inline Type::TypeIterator Type::subtype_end() const { - return TypeIterator(this, getNumContainedTypes()); +inline void PATypeHolder::addRef() { + if (Ty->isAbstract()) + Ty->addRef(); +} + +inline void PATypeHolder::dropRef() { + if (Ty->isAbstract()) + Ty->dropRef(); +} + +/// get - This implements the forwarding part of the union-find algorithm for +/// abstract types. Before every access to the Type*, we check to see if the +/// type we are pointing to is forwarding to a new type. If so, we drop our +/// reference to the type. +/// +inline Type* PATypeHolder::get() const { + const Type *NewTy = Ty->getForwardedType(); + if (!NewTy) return const_cast(Ty); + return *const_cast(this) = NewTy; } -// Provide specializations of GraphTraits to be able to treat a type as a + +//===----------------------------------------------------------------------===// +// Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types... template <> struct GraphTraits { @@ -278,10 +423,10 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; @@ -291,16 +436,20 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; -template <> inline bool isa_impl(const Type &Ty) { - return Ty.getPrimitiveID() == Type::PointerTyID; +template <> inline bool isa_impl(const Type &Ty) { + return Ty.getTypeID() == Type::PointerTyID; } +std::ostream &operator<<(std::ostream &OS, const Type &T); + +} // End llvm namespace + #endif