X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FType.h;h=f6d993db9b89aead037044a0ca6538bf78f76f5f;hb=a727d5502c8e23c090da658bf14c5ebc1169a070;hp=3ed2d2dd7abb611e22bd954c6b0bc8eac2f2fa3b;hpb=1bc33a5227d6d4b9e1da6fbde1c8369921e3fba5;p=oota-llvm.git diff --git a/include/llvm/Type.h b/include/llvm/Type.h index 3ed2d2dd7ab..f6d993db9b8 100644 --- a/include/llvm/Type.h +++ b/include/llvm/Type.h @@ -1,172 +1,214 @@ //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// // -// This file contains the declaration of the Type class. For more "Type" type -// stuff, look in DerivedTypes.h. +// The LLVM Compiler Infrastructure // -// Note that instances of the Type class are immutable: once they are created, -// they are never changed. Also note that only one instance of a particular -// type is ever created. Thus seeing if two types are equal is a matter of -// doing a trivial pointer comparison. -// -// Types, once allocated, are never free'd. -// -// Opaque types are simple derived types with no state. There may be many -// different Opaque type objects floating around, but two are only considered -// identical if they are pointer equals of each other. This allows us to have -// two opaque types that end up resolving to different concrete types later. -// -// Opaque types are also kinda wierd and scary and different because they have -// to keep a list of uses of the type. When, through linking, parsing, or -// bytecode reading, they become resolved, they need to find and update all -// users of the unknown type, causing them to reference a new, more concrete -// type. Opaque types are deleted when their use list dwindles to zero users. +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// + #ifndef LLVM_TYPE_H #define LLVM_TYPE_H -#include "llvm/Value.h" -#include "Support/GraphTraits.h" -#include "Support/iterator" +#include "llvm/AbstractTypeUser.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/Support/Streams.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/iterator" +#include +#include + +namespace llvm { class DerivedType; -class FunctionType; -class ArrayType; class PointerType; -class StructType; -class OpaqueType; - -struct Type : public Value { - ///===-------------------------------------------------------------------===// +class IntegerType; +class TypeMapBase; + +/// This file contains the declaration of the Type class. For more "Type" type +/// stuff, look in DerivedTypes.h. +/// +/// The instances of the Type class are immutable: once they are created, +/// they are never changed. Also note that only one instance of a particular +/// type is ever created. Thus seeing if two types are equal is a matter of +/// doing a trivial pointer comparison. To enforce that no two equal instances +/// are created, Type instances can only be created via static factory methods +/// in class Type and in derived classes. +/// +/// Once allocated, Types are never free'd, unless they are an abstract type +/// that is resolved to a more concrete type. +/// +/// Types themself don't have a name, and can be named either by: +/// - using SymbolTable instance, typically from some Module, +/// - using convenience methods in the Module class (which uses module's +/// SymbolTable too). +/// +/// Opaque types are simple derived types with no state. There may be many +/// different Opaque type objects floating around, but two are only considered +/// identical if they are pointer equals of each other. This allows us to have +/// two opaque types that end up resolving to different concrete types later. +/// +/// Opaque types are also kinda weird and scary and different because they have +/// to keep a list of uses of the type. When, through linking, parsing, or +/// bytecode reading, they become resolved, they need to find and update all +/// users of the unknown type, causing them to reference a new, more concrete +/// type. Opaque types are deleted when their use list dwindles to zero users. +/// +/// @brief Root of type hierarchy +class Type : public AbstractTypeUser { +public: + //===-------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) - /// Note: If you add an element to this, you need to add an element to the + /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! /// - enum PrimitiveID { - VoidTyID = 0 , BoolTyID, // 0, 1: Basics... - UByteTyID , SByteTyID, // 2, 3: 8 bit types... - UShortTyID , ShortTyID, // 4, 5: 16 bit types... - UIntTyID , IntTyID, // 6, 7: 32 bit types... - ULongTyID , LongTyID, // 8, 9: 64 bit types... - - FloatTyID , DoubleTyID, // 10,11: Floating point types... - - TypeTyID, // 12 : Type definitions - LabelTyID , // 13 : Labels... + enum TypeID { + // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date + VoidTyID = 0, ///< 0: type with no size + FloatTyID, ///< 1: 32 bit floating point type + DoubleTyID, ///< 2: 64 bit floating point type + LabelTyID, ///< 3: Labels // Derived types... see DerivedTypes.h file... // Make sure FirstDerivedTyID stays up to date!!! - FunctionTyID , StructTyID, // Functions... Structs... - ArrayTyID , PointerTyID, // Array... pointer... - OpaqueTyID, // Opaque type instances... - //PackedTyID , // SIMD 'packed' format... TODO - //... - - NumPrimitiveIDs, // Must remain as last defined ID - FirstDerivedTyID = FunctionTyID, + IntegerTyID, ///< 4: Arbitrary bit width integers + FunctionTyID, ///< 5: Functions + StructTyID, ///< 6: Structures + PackedStructTyID,///< 7: Packed Structure. This is for bytecode only + ArrayTyID, ///< 8: Arrays + PointerTyID, ///< 9: Pointers + OpaqueTyID, ///< 10: Opaque: type with unknown structure + VectorTyID, ///< 11: SIMD 'packed' format, or other vector type + + NumTypeIDs, // Must remain as last defined ID + LastPrimitiveTyID = LabelTyID, + FirstDerivedTyID = IntegerTyID }; private: - PrimitiveID ID; // The current base type of this type... - unsigned UID; // The unique ID number for this class - bool Abstract; // True if type contains an OpaqueType + TypeID ID : 8; // The current base type of this type. + bool Abstract : 1; // True if type contains an OpaqueType + unsigned SubclassData : 23; //Space for subclasses to store data + + /// RefCount - This counts the number of PATypeHolders that are pointing to + /// this type. When this number falls to zero, if the type is abstract and + /// has no AbstractTypeUsers, the type is deleted. This is only sensical for + /// derived types. + /// + mutable unsigned RefCount; const Type *getForwardedTypeInternal() const; -protected: - /// ctor is protected, so only subclasses can create Type objects... - Type(const std::string &Name, PrimitiveID id); - virtual ~Type() {} - /// setName - Associate the name with this type in the symbol table, but don't - /// set the local name to be equal specified name. - /// - virtual void setName(const std::string &Name, SymbolTable *ST = 0); + // Some Type instances are allocated as arrays, some aren't. So we provide + // this method to get the right kind of destruction for the type of Type. + void destroy() const; // const is a lie, this does "delete this"! + +protected: + explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0), + RefCount(0), ForwardType(0), NumContainedTys(0), + ContainedTys(0) {} + virtual ~Type() { + assert(AbstractTypeUsers.empty() && "Abstract types remain"); + } /// Types can become nonabstract later, if they are refined. /// inline void setAbstract(bool Val) { Abstract = Val; } - /// isTypeAbstract - This method is used to calculate the Abstract bit. - /// - bool isTypeAbstract(); + unsigned getRefCount() const { return RefCount; } + + unsigned getSubclassData() const { return SubclassData; } + void setSubclassData(unsigned val) { SubclassData = val; } /// ForwardType - This field is used to implement the union find scheme for /// abstract types. When types are refined to other types, this field is set /// to the more refined type. Only abstract types can be forwarded. mutable const Type *ForwardType; + + /// AbstractTypeUsers - Implement a list of the users that need to be notified + /// if I am a type, and I get resolved into a more concrete type. + /// + mutable std::vector AbstractTypeUsers; + + /// NumContainedTys - Keeps track of how many PATypeHandle instances there + /// are at the end of this type instance for the list of contained types. It + /// is the subclasses responsibility to set this up. Set to 0 if there are no + /// contained types in this type. + unsigned NumContainedTys; + + /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained + /// by this Type. For example, this includes the arguments of a function + /// type, the elements of a structure, the pointee of a pointer, the element + /// type of an array, etc. This pointer may be 0 for types that don't + /// contain other types (Integer, Double, Float). In general, the subclass + /// should arrange for space for the PATypeHandles to be included in the + /// allocation of the type object and set this pointer to the address of the + /// first element. This allows the Type class to manipulate the ContainedTys + /// without understanding the subclass's placement for this array. keeping + /// it here also allows the subtype_* members to be implemented MUCH more + /// efficiently, and dynamically very few types do not contain any elements. + PATypeHandle *ContainedTys; + public: - virtual void print(std::ostream &O) const; + void print(std::ostream &O) const; + void print(std::ostream *O) const { if (O) print(*O); } + + /// @brief Debugging support: print to stderr + void dump() const; //===--------------------------------------------------------------------===// // Property accessors for dealing with types... Some of these virtual methods // are defined in private classes defined in Type.cpp for primitive types. // - /// getPrimitiveID - Return the base type of the type. This will return one - /// of the PrimitiveID enum elements defined above. + /// getTypeID - Return the type id for the type. This will return one + /// of the TypeID enum elements defined above. /// - inline PrimitiveID getPrimitiveID() const { return ID; } - - /// getUniqueID - Returns the UID of the type. This can be thought of as a - /// small integer version of the pointer to the type class. Two types that - /// are structurally different have different UIDs. This can be used for - /// indexing types into an array. - /// - inline unsigned getUniqueID() const { return UID; } + inline TypeID getTypeID() const { return ID; } /// getDescription - Return the string representation of the type... const std::string &getDescription() const; - /// isSigned - Return whether an integral numeric type is signed. This is - /// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for - /// Float and Double. - // - virtual bool isSigned() const { return 0; } - - /// isUnsigned - Return whether a numeric type is unsigned. This is not quite - /// the complement of isSigned... nonnumeric types return false as they do - /// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and - /// ULongTy - /// - virtual bool isUnsigned() const { return 0; } - - /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a - /// single virtual function invocation. + /// isInteger - True if this is an instance of IntegerType. /// - virtual bool isInteger() const { return 0; } - - /// isIntegral - Returns true if this is an integral type, which is either - /// BoolTy or one of the Integer types. - /// - bool isIntegral() const { return isInteger() || this == BoolTy; } + bool isInteger() const { return ID == IntegerTyID; } /// isFloatingPoint - Return true if this is one of the two floating point /// types bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; } + /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types. + /// + bool isFPOrFPVector() const; + /// isAbstract - True if the type is either an Opaque type, or is a derived - /// type that includes an opaque type somewhere in it. + /// type that includes an opaque type somewhere in it. /// inline bool isAbstract() const { return Abstract; } - /// isLosslesslyConvertibleTo - Return true if this type can be converted to - /// 'Ty' without any reinterpretation of bits. For example, uint to int. - /// - bool isLosslesslyConvertibleTo(const Type *Ty) const; + /// canLosslesslyBitCastTo - Return true if this type could be converted + /// with a lossless BitCast to type 'Ty'. For example, uint to int. BitCasts + /// are valid for types of the same size only where no re-interpretation of + /// the bits is done. + /// @brief Determine if this type could be losslessly bitcast to Ty + bool canLosslesslyBitCastTo(const Type *Ty) const; /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// - inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; } + inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } /// isFirstClassType - Return true if the value is holdable in a register. + /// inline bool isFirstClassType() const { - return isPrimitiveType() || ID == PointerTyID; + return (ID != VoidTyID && ID <= LastPrimitiveTyID) || + ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID; } /// isSized - Return true if it makes sense to take the size of this type. To @@ -174,110 +216,153 @@ public: /// TargetData subsystem to do this. /// bool isSized() const { - return ID != VoidTyID && ID != TypeTyID && - ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID; + // If it's a primitive, it is always sized. + if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID) + return true; + // If it is not something that can have a size (e.g. a function or label), + // it doesn't have a size. + if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID && + ID != PackedStructTyID) + return false; + // If it is something that can have a size and it's concrete, it definitely + // has a size, otherwise we have to try harder to decide. + return !isAbstract() || isSizedDerivedType(); } - /// getPrimitiveSize - Return the basic size of this type if it is a primative + /// getPrimitiveSize - Return the basic size of this type if it is a primitive /// type. These are fixed by LLVM and are not target dependent. This will /// return zero if the type does not have a size or is not a primitive type. /// - unsigned getPrimitiveSize() const; + unsigned getPrimitiveSizeInBits() const; /// getForwaredType - Return the type that this type has been resolved to if /// it has been resolved to anything. This is used to implement the - /// union-find algorithm for type resolution. + /// union-find algorithm for type resolution, and shouldn't be used by general + /// purpose clients. const Type *getForwardedType() const { if (!ForwardType) return 0; return getForwardedTypeInternal(); } + /// getVAArgsPromotedType - Return the type an argument of this type + /// will be promoted to if passed through a variable argument + /// function. + const Type *getVAArgsPromotedType() const; + //===--------------------------------------------------------------------===// // Type Iteration support // - class TypeIterator; - typedef TypeIterator subtype_iterator; - inline subtype_iterator subtype_begin() const; // DEFINED BELOW - inline subtype_iterator subtype_end() const; // DEFINED BELOW + typedef PATypeHandle *subtype_iterator; + subtype_iterator subtype_begin() const { return ContainedTys; } + subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// - virtual const Type *getContainedType(unsigned i) const { - assert(0 && "No contained types!"); + const Type *getContainedType(unsigned i) const { + assert(i < NumContainedTys && "Index out of range!"); + return ContainedTys[i].get(); } - /// getNumContainedTypes - Return the number of types in the derived type - virtual unsigned getNumContainedTypes() const { return 0; } + /// getNumContainedTypes - Return the number of types in the derived type. + /// + unsigned getNumContainedTypes() const { return NumContainedTys; } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // - /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier. - static const Type *getPrimitiveType(PrimitiveID IDNumber); - static const Type *getUniqueIDType(unsigned UID); + /// getPrimitiveType - Return a type based on an identifier. + static const Type *getPrimitiveType(TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available... // - static Type *VoidTy , *BoolTy; - static Type *SByteTy, *UByteTy, - *ShortTy, *UShortTy, - *IntTy , *UIntTy, - *LongTy , *ULongTy; - static Type *FloatTy, *DoubleTy; - - static Type *TypeTy , *LabelTy; + static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy; + static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Type *T) { return true; } - static inline bool classof(const Value *V) { - return V->getValueType() == Value::TypeVal; + + void addRef() const { + assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); + ++RefCount; } -#include "llvm/Type.def" + void dropRef() const { + assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); + assert(RefCount && "No objects are currently referencing this object!"); + + // If this is the last PATypeHolder using this object, and there are no + // PATypeHandles using it, the type is dead, delete it now. + if (--RefCount == 0 && AbstractTypeUsers.empty()) + this->destroy(); + } + + /// addAbstractTypeUser - Notify an abstract type that there is a new user of + /// it. This function is called primarily by the PATypeHandle class. + /// + void addAbstractTypeUser(AbstractTypeUser *U) const { + assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); + AbstractTypeUsers.push_back(U); + } + + /// removeAbstractTypeUser - Notify an abstract type that a user of the class + /// no longer has a handle to the type. This function is called primarily by + /// the PATypeHandle class. When there are no users of the abstract type, it + /// is annihilated, because there is no way to get a reference to it ever + /// again. + /// + void removeAbstractTypeUser(AbstractTypeUser *U) const; private: - class TypeIterator : public bidirectional_iterator { - const Type * const Ty; - unsigned Idx; - - typedef TypeIterator _Self; - public: - inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {} - inline ~TypeIterator() {} - - inline bool operator==(const _Self& x) const { return Idx == x.Idx; } - inline bool operator!=(const _Self& x) const { return !operator==(x); } - - inline pointer operator*() const { return Ty->getContainedType(Idx); } - inline pointer operator->() const { return operator*(); } - - inline _Self& operator++() { ++Idx; return *this; } // Preincrement - inline _Self operator++(int) { // Postincrement - _Self tmp = *this; ++*this; return tmp; - } - - inline _Self& operator--() { --Idx; return *this; } // Predecrement - inline _Self operator--(int) { // Postdecrement - _Self tmp = *this; --*this; return tmp; - } - }; + /// isSizedDerivedType - Derived types like structures and arrays are sized + /// iff all of the members of the type are sized as well. Since asking for + /// their size is relatively uncommon, move this operation out of line. + bool isSizedDerivedType() const; + + virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); + virtual void typeBecameConcrete(const DerivedType *AbsTy); + +protected: + // PromoteAbstractToConcrete - This is an internal method used to calculate + // change "Abstract" from true to false when types are refined. + void PromoteAbstractToConcrete(); + friend class TypeMapBase; }; -inline Type::TypeIterator Type::subtype_begin() const { - return TypeIterator(this, 0); +//===----------------------------------------------------------------------===// +// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. +// These are defined here because they MUST be inlined, yet are dependent on +// the definition of the Type class. +// +inline void PATypeHandle::addUser() { + assert(Ty && "Type Handle has a null type!"); + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(User); +} +inline void PATypeHandle::removeUser() { + if (Ty->isAbstract()) + Ty->removeAbstractTypeUser(User); } -inline Type::TypeIterator Type::subtype_end() const { - return TypeIterator(this, getNumContainedTypes()); +// Define inline methods for PATypeHolder... + +inline void PATypeHolder::addRef() { + if (Ty->isAbstract()) + Ty->addRef(); +} + +inline void PATypeHolder::dropRef() { + if (Ty->isAbstract()) + Ty->dropRef(); } -// Provide specializations of GraphTraits to be able to treat a type as a +//===----------------------------------------------------------------------===// +// Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types... template <> struct GraphTraits { @@ -285,10 +370,10 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; @@ -298,16 +383,20 @@ template <> struct GraphTraits { typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } - static inline ChildIteratorType child_begin(NodeType *N) { - return N->subtype_begin(); + static inline ChildIteratorType child_begin(NodeType *N) { + return N->subtype_begin(); } - static inline ChildIteratorType child_end(NodeType *N) { + static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; -template <> inline bool isa_impl(const Type &Ty) { - return Ty.getPrimitiveID() == Type::PointerTyID; +template <> inline bool isa_impl(const Type &Ty) { + return Ty.getTypeID() == Type::PointerTyID; } +std::ostream &operator<<(std::ostream &OS, const Type &T); + +} // End llvm namespace + #endif