X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FValue.h;h=44c4453b04a045577ec5181f8f692023c406f4d0;hb=d743f0e8f2c1f878f578a928157dbe75d643b5bb;hp=bb321df71b29a48a335be70d4c2057c1b6711f78;hpb=e7506a366e8bd56c97d10beb68e4db953aebaeca;p=oota-llvm.git diff --git a/include/llvm/Value.h b/include/llvm/Value.h index bb321df71b2..44c4453b04a 100644 --- a/include/llvm/Value.h +++ b/include/llvm/Value.h @@ -1,303 +1,262 @@ -//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// +//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// // -// This file defines the very important Value class. This is subclassed by a -// bunch of other important classes, like Def, Method, Module, Type, etc... +// The LLVM Compiler Infrastructure // -// This file also defines the Use<> template for users of value. +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. // -// This file also defines the isa(), cast(), and dyn_cast() templates. +//===----------------------------------------------------------------------===// +// +// This file declares the Value class. +// This file also defines the Use<> template for users of value. // //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H -#include -#include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" +#include "llvm/Use.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Streams.h" +#include + +namespace llvm { -class User; -class Type; class Constant; -class MethodArgument; +class Argument; class Instruction; class BasicBlock; class GlobalValue; class Function; -typedef Function Method; class GlobalVariable; -class Module; -class SymbolTable; -template - class ValueHolder; +class GlobalAlias; +class InlineAsm; +class ValueSymbolTable; +class TypeSymbolTable; +template class StringMapEntry; +typedef StringMapEntry ValueName; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// -class Value : public Annotable, // Values are annotable - public AbstractTypeUser { // Values use potentially abstract types -public: - enum ValueTy { - TypeVal, // This is an instance of Type - ConstantVal, // This is an instance of Constant - MethodArgumentVal, // This is an instance of MethodArgument - InstructionVal, // This is an instance of Instruction - BasicBlockVal, // This is an instance of BasicBlock - MethodVal, // This is an instance of Method - GlobalVariableVal, // This is an instance of GlobalVariable - ModuleVal, // This is an instance of Module - }; - +/// This is a very important LLVM class. It is the base class of all values +/// computed by a program that may be used as operands to other values. Value is +/// the super class of other important classes such as Instruction and Function. +/// All Values have a Type. Type is not a subclass of Value. All types can have +/// a name and they should belong to some Module. Setting the name on the Value +/// automatically update's the module's symbol table. +/// +/// Every value has a "use list" that keeps track of which other Values are +/// using this Value. +/// @brief LLVM Value Representation +class Value { + const unsigned short SubclassID; // Subclass identifier (for isa/dyn_cast) +protected: + /// SubclassData - This member is defined by this class, but is not used for + /// anything. Subclasses can use it to hold whatever state they find useful. + /// This field is initialized to zero by the ctor. + unsigned short SubclassData; private: - std::vector Uses; - std::string Name; - PATypeHandle Ty; - ValueTy VTy; + PATypeHolder Ty; + Use *UseList; + friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name. + friend class SymbolTable; // Allow SymbolTable to directly poke Name. + ValueName *Name; + + void operator=(const Value &); // Do not implement Value(const Value &); // Do not implement -protected: - inline void setType(const Type *ty) { Ty = ty; } + public: - Value(const Type *Ty, ValueTy vty, const std::string &name = ""); + Value(const Type *Ty, unsigned scid); virtual ~Value(); - - // Support for debugging - void dump() const; - - // All values can potentially be typed - inline const Type *getType() const { return Ty; } - - // All values can potentially be named... - inline bool hasName() const { return Name != ""; } - inline const std::string &getName() const { return Name; } - virtual void setName(const std::string &name, SymbolTable * = 0) { - Name = name; - } - - // Methods for determining the subtype of this Value. The getValueType() - // method returns the type of the value directly. The cast*() methods are - // equivalent to using dynamic_cast<>... if the cast is successful, this is - // returned, otherwise you get a null pointer. - // - // The family of functions Val->castAsserting() is used in the same - // way as the Val->cast() instructions, but they assert the expected - // type instead of checking it at runtime. + /// dump - Support for debugging, callable in GDB: V->dump() // - inline ValueTy getValueType() const { return VTy; } - - // replaceAllUsesWith - Go through the uses list for this definition and make - // each use point to "D" instead of "this". After this completes, 'this's - // use list should be empty. - // - void replaceAllUsesWith(Value *D); + virtual void dump() const; - // refineAbstractType - This function is implemented because we use - // potentially abstract types, and these types may be resolved to more - // concrete types after we are constructed. - // - virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); - - //---------------------------------------------------------------------- - // Methods for handling the vector of uses of this Value. - // - typedef std::vector::iterator use_iterator; - typedef std::vector::const_iterator use_const_iterator; - - inline unsigned use_size() const { return Uses.size(); } - inline bool use_empty() const { return Uses.empty(); } - inline use_iterator use_begin() { return Uses.begin(); } - inline use_const_iterator use_begin() const { return Uses.begin(); } - inline use_iterator use_end() { return Uses.end(); } - inline use_const_iterator use_end() const { return Uses.end(); } - inline User *use_back() { return Uses.back(); } - inline const User *use_back() const { return Uses.back(); } - - inline void use_push_back(User *I) { Uses.push_back(I); } - User *use_remove(use_iterator &I); - - inline void addUse(User *I) { Uses.push_back(I); } - void killUse(User *I); -}; + /// print - Implement operator<< on Value... + /// + virtual void print(std::ostream &O) const = 0; + void print(std::ostream *O) const { if (O) print(*O); } + /// All values are typed, get the type of this value. + /// + inline const Type *getType() const { return Ty; } -//===----------------------------------------------------------------------===// -// UseTy Class -//===----------------------------------------------------------------------===// + // All values can potentially be named... + inline bool hasName() const { return Name != 0; } + std::string getName() const { return getNameStr(); } + std::string getNameStr() const; + ValueName *getValueName() const { return Name; } -// UseTy and it's friendly typedefs (Use) are here to make keeping the "use" -// list of a definition node up-to-date really easy. -// -template -class UseTy { - ValueSubclass *Val; - User *U; -public: - inline UseTy(ValueSubclass *v, User *user) { - Val = v; U = user; - if (Val) Val->addUse(U); - } + void setName(const std::string &name); + void setName(const char *Name, unsigned NameLen); + void setName(const char *Name); // Takes a null-terminated string. - inline ~UseTy() { if (Val) Val->killUse(U); } + + /// takeName - transfer the name from V to this value, setting V's name to + /// empty. It is an error to call V->takeName(V). + void takeName(Value *V); - inline operator ValueSubclass *() const { return Val; } + /// replaceAllUsesWith - Go through the uses list for this definition and make + /// each use point to "V" instead of "this". After this completes, 'this's + /// use list is guaranteed to be empty. + /// + void replaceAllUsesWith(Value *V); - inline UseTy(const UseTy &user) { - Val = 0; - U = user.U; - operator=(user.Val); - } - inline ValueSubclass *operator=(ValueSubclass *V) { - if (Val) Val->killUse(U); - Val = V; - if (V) V->addUse(U); - return V; + // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous. + // Only use when in type resolution situations! + void uncheckedReplaceAllUsesWith(Value *V); + + //---------------------------------------------------------------------- + // Methods for handling the vector of uses of this Value. + // + typedef value_use_iterator use_iterator; + typedef value_use_iterator use_const_iterator; + + bool use_empty() const { return UseList == 0; } + use_iterator use_begin() { return use_iterator(UseList); } + use_const_iterator use_begin() const { return use_const_iterator(UseList); } + use_iterator use_end() { return use_iterator(0); } + use_const_iterator use_end() const { return use_const_iterator(0); } + User *use_back() { return *use_begin(); } + const User *use_back() const { return *use_begin(); } + + /// hasOneUse - Return true if there is exactly one user of this value. This + /// is specialized because it is a common request and does not require + /// traversing the whole use list. + /// + bool hasOneUse() const { + use_const_iterator I = use_begin(), E = use_end(); + if (I == E) return false; + return ++I == E; } - inline ValueSubclass *operator->() { return Val; } - inline const ValueSubclass *operator->() const { return Val; } + /// hasNUses - Return true if this Value has exactly N users. + /// + bool hasNUses(unsigned N) const; - inline ValueSubclass *get() { return Val; } - inline const ValueSubclass *get() const { return Val; } + /// hasNUsesOrMore - Return true if this value has N users or more. This is + /// logically equivalent to getNumUses() >= N. + /// + bool hasNUsesOrMore(unsigned N) const; - inline UseTy &operator=(const UseTy &user) { - if (Val) Val->killUse(U); - Val = user.Val; - Val->addUse(U); - return *this; - } -}; + /// getNumUses - This method computes the number of uses of this Value. This + /// is a linear time operation. Use hasOneUse, hasNUses, or hasMoreThanNUses + /// to check for specific values. + unsigned getNumUses() const; -typedef UseTy Use; // Provide Use as a common UseTy type + /// addUse/killUse - These two methods should only be used by the Use class. + /// + void addUse(Use &U) { U.addToList(&UseList); } -// real_type - Provide a macro to get the real type of a value that might be -// a use. This provides a typedef 'Type' that is the argument type for all -// non UseTy types, and is the contained pointer type of the use if it is a -// UseTy. -// -template class real_type { typedef X Type; }; -template class real_type > { typedef X *Type; }; + /// An enumeration for keeping track of the concrete subclass of Value that + /// is actually instantiated. Values of this enumeration are kept in the + /// Value classes SubclassID field. They are used for concrete type + /// identification. + enum ValueTy { + ArgumentVal, // This is an instance of Argument + BasicBlockVal, // This is an instance of BasicBlock + FunctionVal, // This is an instance of Function + GlobalAliasVal, // This is an instance of GlobalAlias + GlobalVariableVal, // This is an instance of GlobalVariable + UndefValueVal, // This is an instance of UndefValue + ConstantExprVal, // This is an instance of ConstantExpr + ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull + ConstantIntVal, // This is an instance of ConstantInt + ConstantFPVal, // This is an instance of ConstantFP + ConstantArrayVal, // This is an instance of ConstantArray + ConstantStructVal, // This is an instance of ConstantStruct + ConstantVectorVal, // This is an instance of ConstantVector + ConstantPointerNullVal, // This is an instance of ConstantPointerNull + InlineAsmVal, // This is an instance of InlineAsm + InstructionVal, // This is an instance of Instruction + + // Markers: + ConstantFirstVal = FunctionVal, + ConstantLastVal = ConstantPointerNullVal + }; -//===----------------------------------------------------------------------===// -// Type Checking Templates -//===----------------------------------------------------------------------===// + /// getValueID - Return an ID for the concrete type of this object. This is + /// used to implement the classof checks. This should not be used for any + /// other purpose, as the values may change as LLVM evolves. Also, note that + /// for instructions, the Instruction's opcode is added to InstructionVal. So + /// this means three things: + /// # there is no value with code InstructionVal (no opcode==0). + /// # there are more possible values for the value type than in ValueTy enum. + /// # the InstructionVal enumerator must be the highest valued enumerator in + /// the ValueTy enum. + unsigned getValueID() const { + return SubclassID; + } -// isa - Return true if the parameter to the template is an instance of the -// template type argument. Used like this: -// -// if (isa(myVal)) { ... } -// -template -inline bool isa(Y Val) { - assert(Val && "isa(NULL) invoked!"); - return X::classof(Val); -} + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Value *) { + return true; // Values are always values. + } + /// getRawType - This should only be used to implement the vmcore library. + /// + const Type *getRawType() const { return Ty.getRawType(); } +}; -// cast - Return the argument parameter cast to the specified type. This -// casting operator asserts that the type is correct, so it does not return null -// on failure. But it will correctly return NULL when the input is NULL. -// Used Like this: -// -// cast< Instruction>(myVal)->getParent() -// cast(myVal)->getParent() -// -template -inline X *cast(Y Val) { - assert(isa(Val) && "cast() argument of uncompatible type!"); - return (X*)(real_type::Type)Val; +inline std::ostream &operator<<(std::ostream &OS, const Value &V) { + V.print(OS); + return OS; } -// cast_or_null - Functionally identical to cast, except that a null value is -// accepted. -// -template -inline X *cast_or_null(Y Val) { - assert((Val == 0 || isa(Val)) && - "cast_or_null() argument of uncompatible type!"); - return (X*)(real_type::Type)Val; +void Use::init(Value *v, User *user) { + Val = v; + U = user; + if (Val) Val->addUse(*this); } - -// dyn_cast - Return the argument parameter cast to the specified type. This -// casting operator returns null if the argument is of the wrong type, so it can -// be used to test for a type as well as cast if successful. This should be -// used in the context of an if statement like this: -// -// if (const Instruction *I = dyn_cast(myVal)) { ... } -// - -template -inline X *dyn_cast(Y Val) { - return isa(Val) ? cast(Val) : 0; +Use::~Use() { + if (Val) removeFromList(); } -// dyn_cast_or_null - Functionally identical to dyn_cast, except that a null -// value is accepted. -// -template -inline X *dyn_cast_or_null(Y Val) { - return (Val && isa(Val)) ? cast(Val) : 0; +void Use::set(Value *V) { + if (Val) removeFromList(); + Val = V; + if (V) V->addUse(*this); } -// isa - Provide some specializations of isa so that we have to include the -// subtype header files to test to see if the value is a subclass... +// isa - Provide some specializations of isa so that we don't have to include +// the subtype header files to test to see if the value is a subclass... // -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::TypeVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::TypeVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() >= Value::ConstantFirstVal && + Val.getValueID() <= Value::ConstantLastVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ConstantVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::ArgumentVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ConstantVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::InlineAsmVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::MethodArgumentVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() >= Value::InstructionVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::MethodArgumentVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::BasicBlockVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::InstructionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::FunctionVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::InstructionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::GlobalVariableVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueID() == Value::GlobalAliasVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::MethodVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::MethodVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; -} -template <> inline bool isa(const Value *Val) { - return isa(Val) || isa(Val); -} -template <> inline bool isa(Value *Val) { - return isa(Val) || isa(Val); -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ModuleVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ModuleVal; +template <> inline bool isa_impl(const Value &Val) { + return isa(Val) || isa(Val) || isa(Val); } +} // End llvm namespace + #endif