X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FValue.h;h=90bbe6fe91c5d4a4ce8354404e6e158569841e69;hb=ec285706aedd7027ec09a53bda9f2a8d919489cf;hp=7ffcf1b7507de2a8f37457a4635f71abc76b8dc6;hpb=42a695c2f2627a04b1fc8e2160d608c39f1dd6ac;p=oota-llvm.git diff --git a/include/llvm/Value.h b/include/llvm/Value.h index 7ffcf1b7507..90bbe6fe91c 100644 --- a/include/llvm/Value.h +++ b/include/llvm/Value.h @@ -1,8 +1,14 @@ -//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// +//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file defines the very important Value class. This is subclassed by a -// bunch of other important classes, like Instruction, Function, Module, Type, -// etc... +// bunch of other important classes, like Instruction, Function, Type, etc... // // This file also defines the Use<> template for users of value. // @@ -11,238 +17,203 @@ #ifndef LLVM_VALUE_H #define LLVM_VALUE_H -#include -#include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" -#include "Support/Casting.h" +#include "llvm/Use.h" +#include "llvm/Support/Casting.h" +#include + +namespace llvm { -class User; -class Type; class Constant; -class FunctionArgument; +class Argument; class Instruction; class BasicBlock; class GlobalValue; class Function; class GlobalVariable; -class Module; class SymbolTable; -template - class ValueHolder; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// -class Value : public Annotable, // Values are annotable - public AbstractTypeUser { // Values use potentially abstract types -public: - enum ValueTy { - TypeVal, // This is an instance of Type - ConstantVal, // This is an instance of Constant - FunctionArgumentVal, // This is an instance of FunctionArgument - InstructionVal, // This is an instance of Instruction - BasicBlockVal, // This is an instance of BasicBlock - FunctionVal, // This is an instance of Function - GlobalVariableVal, // This is an instance of GlobalVariable - ModuleVal, // This is an instance of Module - }; - -private: - std::vector Uses; +/// Value - The base class of all values computed by a program that may be used +/// as operands to other values. +/// +class Value { + unsigned SubclassID; // Subclass identifier (for isa/dyn_cast) + PATypeHolder Ty; + iplist Uses; std::string Name; - PATypeHandle Ty; - ValueTy VTy; + void operator=(const Value &); // Do not implement Value(const Value &); // Do not implement -protected: - inline void setType(const Type *ty) { Ty = ty; } + public: - Value(const Type *Ty, ValueTy vty, const std::string &name = ""); + Value(const Type *Ty, unsigned scid, const std::string &name = ""); virtual ~Value(); - // Support for debugging - void dump() const; + /// dump - Support for debugging, callable in GDB: V->dump() + // + virtual void dump() const; - // Implement operator<< on Value... + /// print - Implement operator<< on Value... + /// virtual void print(std::ostream &O) const = 0; - // All values can potentially be typed + /// All values are typed, get the type of this value. + /// inline const Type *getType() const { return Ty; } // All values can potentially be named... - inline bool hasName() const { return Name != ""; } + inline bool hasName() const { return !Name.empty(); } inline const std::string &getName() const { return Name; } virtual void setName(const std::string &name, SymbolTable * = 0) { Name = name; } - // Methods for determining the subtype of this Value. The getValueType() - // method returns the type of the value directly. The cast*() methods are - // equivalent to using dynamic_cast<>... if the cast is successful, this is - // returned, otherwise you get a null pointer. - // - // The family of functions Val->castAsserting() is used in the same - // way as the Val->cast() instructions, but they assert the expected - // type instead of checking it at runtime. - // - inline ValueTy getValueType() const { return VTy; } - - // replaceAllUsesWith - Go through the uses list for this definition and make - // each use point to "D" instead of "this". After this completes, 'this's - // use list should be empty. - // - void replaceAllUsesWith(Value *D); + /// replaceAllUsesWith - Go through the uses list for this definition and make + /// each use point to "V" instead of "this". After this completes, 'this's + /// use list is guaranteed to be empty. + /// + void replaceAllUsesWith(Value *V); + + // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous. + // Only use when in type resolution situations! + void uncheckedReplaceAllUsesWith(Value *V); - // refineAbstractType - This function is implemented because we use - // potentially abstract types, and these types may be resolved to more - // concrete types after we are constructed. - // - virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); - //---------------------------------------------------------------------- // Methods for handling the vector of uses of this Value. // - typedef std::vector::iterator use_iterator; - typedef std::vector::const_iterator use_const_iterator; - - inline unsigned use_size() const { return Uses.size(); } - inline bool use_empty() const { return Uses.empty(); } - inline use_iterator use_begin() { return Uses.begin(); } - inline use_const_iterator use_begin() const { return Uses.begin(); } - inline use_iterator use_end() { return Uses.end(); } - inline use_const_iterator use_end() const { return Uses.end(); } - inline User *use_back() { return Uses.back(); } - inline const User *use_back() const { return Uses.back(); } - - inline void use_push_back(User *I) { Uses.push_back(I); } - User *use_remove(use_iterator &I); - - inline void addUse(User *I) { Uses.push_back(I); } - void killUse(User *I); -}; + typedef UseListIteratorWrapper use_iterator; + typedef UseListConstIteratorWrapper use_const_iterator; + typedef iplist::size_type size_type; + + size_type use_size() const { return Uses.size(); } + bool use_empty() const { return Uses.empty(); } + use_iterator use_begin() { return Uses.begin(); } + use_const_iterator use_begin() const { return Uses.begin(); } + use_iterator use_end() { return Uses.end(); } + use_const_iterator use_end() const { return Uses.end(); } + User *use_back() { return Uses.back().getUser(); } + const User *use_back() const { return Uses.back().getUser(); } + + /// hasOneUse - Return true if there is exactly one user of this value. This + /// is specialized because it is a common request and does not require + /// traversing the whole use list. + /// + bool hasOneUse() const { + iplist::const_iterator I = Uses.begin(), E = Uses.end(); + if (I == E) return false; + return ++I == E; + } -inline std::ostream &operator<<(std::ostream &OS, const Value *V) { - if (V == 0) - OS << " value!\n"; - else - V->print(OS); - return OS; -} + /// addUse/killUse - These two methods should only be used by the Use class. + /// + void addUse(Use &U) { Uses.push_back(&U); } + void killUse(Use &U) { Uses.remove(&U); } + + /// getValueType - Return an ID for the concrete type of this object. This is + /// used to implement the classof checks. This should not be used for any + /// other purpose, as the values may change as LLVM evolves. Also, note that + /// starting with the InstructionVal value, the value stored is actually the + /// Instruction opcode, so there are more than just these values possible here + /// (and Instruction must be last). + /// + enum ValueTy { + ArgumentVal, // This is an instance of Argument + BasicBlockVal, // This is an instance of BasicBlock + FunctionVal, // This is an instance of Function + GlobalVariableVal, // This is an instance of GlobalVariable + UndefValueVal, // This is an instance of UndefValue + ConstantExprVal, // This is an instance of ConstantExpr + ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull + SimpleConstantVal, // This is some other type of Constant + InstructionVal, // This is an instance of Instruction + ValueListVal // This is for bcreader, a special ValTy + }; + unsigned getValueType() const { + return SubclassID; + } + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const Value *V) { + return true; // Values are always values. + } -//===----------------------------------------------------------------------===// -// UseTy Class -//===----------------------------------------------------------------------===// + /// getRawType - This should only be used to implement the vmcore library. + /// + const Type *getRawType() const { return Ty.getRawType(); } -// UseTy and it's friendly typedefs (Use) are here to make keeping the "use" -// list of a definition node up-to-date really easy. -// -template -class UseTy { - ValueSubclass *Val; - User *U; -public: - inline UseTy(ValueSubclass *v, User *user) { - Val = v; U = user; - if (Val) Val->addUse(U); - } +private: + /// FIXME: this is a gross hack, needed by another gross hack. Eliminate! + void setValueType(unsigned VT) { SubclassID = VT; } + friend class Instruction; +}; - inline ~UseTy() { if (Val) Val->killUse(U); } +inline std::ostream &operator<<(std::ostream &OS, const Value &V) { + V.print(OS); + return OS; +} - inline operator ValueSubclass *() const { return Val; } - inline UseTy(const UseTy &user) { - Val = 0; - U = user.U; - operator=(user.Val); - } - inline ValueSubclass *operator=(ValueSubclass *V) { - if (Val) Val->killUse(U); - Val = V; - if (V) V->addUse(U); - return V; - } +inline User *UseListIteratorWrapper::operator*() const { + return Super::operator*().getUser(); +} - inline ValueSubclass *operator->() { return Val; } - inline const ValueSubclass *operator->() const { return Val; } +inline const User *UseListConstIteratorWrapper::operator*() const { + return Super::operator*().getUser(); +} - inline ValueSubclass *get() { return Val; } - inline const ValueSubclass *get() const { return Val; } - inline UseTy &operator=(const UseTy &user) { - if (Val) Val->killUse(U); - Val = user.Val; - Val->addUse(U); - return *this; - } -}; +void Use::init(Value *v, User *user) { + Val = v; + U = user; + if (Val) Val->addUse(*this); +} -typedef UseTy Use; // Provide Use as a common UseTy type +Use::~Use() { + if (Val) Val->killUse(*this); +} -// Provide a specialization of real_type to work with use's... to make them a -// bit more transparent. -// -template class real_type > { typedef X *Type; }; +void Use::set(Value *V) { + if (Val) Val->killUse(*this); + Val = V; + if (V) V->addUse(*this); +} // isa - Provide some specializations of isa so that we don't have to include // the subtype header files to test to see if the value is a subclass... // -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::TypeVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::TypeVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ConstantVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ConstantVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::FunctionArgumentVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::FunctionArgumentVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::InstructionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::SimpleConstantVal || + Val.getValueType() == Value::FunctionVal || + Val.getValueType() == Value::GlobalVariableVal || + Val.getValueType() == Value::ConstantExprVal || + Val.getValueType() == Value::ConstantAggregateZeroVal || + Val.getValueType() == Value::UndefValueVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::InstructionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::ArgumentVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() >= Value::InstructionVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::BasicBlockVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::FunctionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::FunctionVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::FunctionVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::GlobalVariableVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; -} -template <> inline bool isa(const Value *Val) { - return isa(Val) || isa(Val); -} -template <> inline bool isa(Value *Val) { +template <> inline bool isa_impl(const Value &Val) { return isa(Val) || isa(Val); } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ModuleVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ModuleVal; -} + +} // End llvm namespace #endif