X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FValue.h;h=f8eceb7ec05aac2f43a6fcae08acd175107ede89;hb=87944916a4764dabc2f89cbec0a6c7e439c28530;hp=0519bb736e8af5f8721b3d4bf427a1b423d59249;hpb=3ef77fcd5545f24773797ecfa0dfa24802c239e6;p=oota-llvm.git diff --git a/include/llvm/Value.h b/include/llvm/Value.h index 0519bb736e8..f8eceb7ec05 100644 --- a/include/llvm/Value.h +++ b/include/llvm/Value.h @@ -1,108 +1,105 @@ //===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// // // This file defines the very important Value class. This is subclassed by a -// bunch of other important classes, like Def, Method, Module, Type, etc... +// bunch of other important classes, like Instruction, Function, Type, etc... // // This file also defines the Use<> template for users of value. // -// This file also defines the isa(), cast(), and dyn_cast() templates. -// //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H -#include #include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" +#include "Support/Casting.h" +#include +#include class User; class Type; -class ConstPoolVal; -class MethodArgument; +class Constant; +class Argument; class Instruction; class BasicBlock; class GlobalValue; -class Method; +class Function; class GlobalVariable; -class Module; class SymbolTable; -template - class ValueHolder; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// +/// Value - The base class of all values computed by a program that may be used +/// as operands to other values. +/// class Value : public Annotable, // Values are annotable public AbstractTypeUser { // Values use potentially abstract types public: enum ValueTy { TypeVal, // This is an instance of Type - ConstantVal, // This is an instance of ConstPoolVal - MethodArgumentVal, // This is an instance of MethodArgument + ConstantVal, // This is an instance of Constant + ArgumentVal, // This is an instance of Argument InstructionVal, // This is an instance of Instruction BasicBlockVal, // This is an instance of BasicBlock - MethodVal, // This is an instance of Method + FunctionVal, // This is an instance of Function GlobalVariableVal, // This is an instance of GlobalVariable - ModuleVal, // This is an instance of Module }; private: - vector Uses; - string Name; + std::vector Uses; + std::string Name; PATypeHandle Ty; ValueTy VTy; + void operator=(const Value &); // Do not implement Value(const Value &); // Do not implement -protected: - inline void setType(const Type *ty) { Ty = ty; } public: - Value(const Type *Ty, ValueTy vty, const string &name = ""); + Value(const Type *Ty, ValueTy vty, const std::string &name = ""); virtual ~Value(); - // Support for debugging + /// dump - Support for debugging, callable in GDB: V->dump() + // void dump() const; + + /// print - Implement operator<< on Value... + /// + virtual void print(std::ostream &O) const = 0; - // All values can potentially be typed + /// All values are typed, get the type of this value. + /// inline const Type *getType() const { return Ty; } // All values can potentially be named... - inline bool hasName() const { return Name != ""; } - inline const string &getName() const { return Name; } + inline bool hasName() const { return Name != ""; } + inline const std::string &getName() const { return Name; } - virtual void setName(const string &name, SymbolTable * = 0) { + virtual void setName(const std::string &name, SymbolTable * = 0) { Name = name; } - // Methods for determining the subtype of this Value. The getValueType() - // method returns the type of the value directly. The cast*() methods are - // equivalent to using dynamic_cast<>... if the cast is successful, this is - // returned, otherwise you get a null pointer. - // - // The family of functions Val->castAsserting() is used in the same - // way as the Val->cast() instructions, but they assert the expected - // type instead of checking it at runtime. - // + /// getValueType - Return the immediate subclass of this Value. + /// inline ValueTy getValueType() const { return VTy; } - // replaceAllUsesWith - Go through the uses list for this definition and make - // each use point to "D" instead of "this". After this completes, 'this's - // use list should be empty. - // - void replaceAllUsesWith(Value *D); - - // refineAbstractType - This function is implemented because we use - // potentially abstract types, and these types may be resolved to more - // concrete types after we are constructed. - // + /// replaceAllUsesWith - Go through the uses list for this definition and make + /// each use point to "V" instead of "this". After this completes, 'this's + /// use list is guaranteed to be empty. + /// + void replaceAllUsesWith(Value *V); + + /// refineAbstractType - This function is implemented because we use + /// potentially abstract types, and these types may be resolved to more + /// concrete types after we are constructed. + /// virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); //---------------------------------------------------------------------- // Methods for handling the vector of uses of this Value. // - typedef vector::iterator use_iterator; - typedef vector::const_iterator use_const_iterator; + typedef std::vector::iterator use_iterator; + typedef std::vector::const_iterator use_const_iterator; inline unsigned use_size() const { return Uses.size(); } inline bool use_empty() const { return Uses.empty(); } @@ -120,6 +117,19 @@ public: void killUse(User *I); }; +inline std::ostream &operator<<(std::ostream &OS, const Value *V) { + if (V == 0) + OS << " value!\n"; + else + V->print(OS); + return OS; +} + +inline std::ostream &operator<<(std::ostream &OS, const Value &V) { + V.print(OS); + return OS; +} + //===----------------------------------------------------------------------===// // UseTy Class @@ -170,135 +180,47 @@ public: typedef UseTy Use; // Provide Use as a common UseTy type -// real_type - Provide a macro to get the real type of a value that might be -// a use. This provides a typedef 'Type' that is the argument type for all -// non UseTy types, and is the contained pointer type of the use if it is a -// UseTy. -// -template class real_type { typedef X Type; }; -template class real_type > { typedef X *Type; }; - -//===----------------------------------------------------------------------===// -// Type Checking Templates -//===----------------------------------------------------------------------===// - -// isa - Return true if the parameter to the template is an instance of the -// template type argument. Used like this: -// -// if (isa(myVal)) { ... } -// -template -inline bool isa(Y Val) { - assert(Val && "isa(NULL) invoked!"); - return X::classof(Val); -} - - -// cast - Return the argument parameter cast to the specified type. This -// casting operator asserts that the type is correct, so it does not return null -// on failure. But it will correctly return NULL when the input is NULL. -// Used Like this: -// -// cast< Instruction>(myVal)->getParent() -// cast(myVal)->getParent() -// -template -inline X *cast(Y Val) { - assert(isa(Val) && "cast() argument of uncompatible type!"); - return (X*)(real_type::Type)Val; -} - -// cast_or_null - Functionally identical to cast, except that a null value is -// accepted. -// -template -inline X *cast_or_null(Y Val) { - assert((Val == 0 || isa(Val)) && - "cast_or_null() argument of uncompatible type!"); - return (X*)(real_type::Type)Val; -} - - -// dyn_cast - Return the argument parameter cast to the specified type. This -// casting operator returns null if the argument is of the wrong type, so it can -// be used to test for a type as well as cast if successful. This should be -// used in the context of an if statement like this: -// -// if (const Instruction *I = dyn_cast(myVal)) { ... } -// - -template -inline X *dyn_cast(Y Val) { - return isa(Val) ? cast(Val) : 0; -} - -// dyn_cast_or_null - Functionally identical to dyn_cast, except that a null -// value is accepted. -// -template -inline X *dyn_cast_or_null(Y Val) { - assert((Val == 0 || isa(Val)) && - "cast_or_null() argument of uncompatible type!"); - return (Val && isa(Val)) ? cast(Val) : 0; -} - +template struct simplify_type > { + typedef typename simplify_type::SimpleType SimpleType; + + static SimpleType getSimplifiedValue(const UseTy &Val) { + return (SimpleType)Val.get(); + } +}; +template struct simplify_type > { + typedef typename simplify_type::SimpleType SimpleType; + + static SimpleType getSimplifiedValue(const UseTy &Val) { + return (SimpleType)Val.get(); + } +}; -// isa - Provide some specializations of isa so that we have to include the -// subtype header files to test to see if the value is a subclass... +// isa - Provide some specializations of isa so that we don't have to include +// the subtype header files to test to see if the value is a subclass... // -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::TypeVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::TypeVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ConstantVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ConstantVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::MethodArgumentVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::MethodArgumentVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::InstructionVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::InstructionVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; -} -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::BasicBlockVal; -} -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::MethodVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::TypeVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::MethodVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::ConstantVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::ArgumentVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::GlobalVariableVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::InstructionVal; } -template <> inline bool isa(const Value *Val) { - return isa(Val) || isa(Val); +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::BasicBlockVal; } -template <> inline bool isa(Value *Val) { - return isa(Val) || isa(Val); +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::FunctionVal; } -template <> inline bool isa(const Value *Val) { - return Val->getValueType() == Value::ModuleVal; +template <> inline bool isa_impl(const Value &Val) { + return Val.getValueType() == Value::GlobalVariableVal; } -template <> inline bool isa(Value *Val) { - return Val->getValueType() == Value::ModuleVal; +template <> inline bool isa_impl(const Value &Val) { + return isa(Val) || isa(Val); } #endif