X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FConstantFolding.cpp;h=8dc94219027ffd965d664ef7d8546b76803defd0;hb=1cb132f921c55f9584d06787b849ef0f255403b2;hp=22f36e56bcf222db78810a7cbfe900a2aba83ee9;hpb=2334b0e8023bc382585a08386510cf29b3d541a6;p=oota-llvm.git diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp index 22f36e56bcf..8dc94219027 100644 --- a/lib/Analysis/ConstantFolding.cpp +++ b/lib/Analysis/ConstantFolding.cpp @@ -21,21 +21,26 @@ #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/FEnv.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLibraryInfo.h" #include #include + +#ifdef HAVE_FENV_H +#include +#endif + using namespace llvm; //===----------------------------------------------------------------------===// @@ -56,7 +61,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, // Handle a vector->integer cast. if (IntegerType *IT = dyn_cast(DestTy)) { VectorType *VTy = dyn_cast(C->getType()); - if (VTy == 0) + if (!VTy) return ConstantExpr::getBitCast(C, DestTy); unsigned NumSrcElts = VTy->getNumElements(); @@ -73,7 +78,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, } ConstantDataVector *CDV = dyn_cast(C); - if (CDV == 0) + if (!CDV) return ConstantExpr::getBitCast(C, DestTy); // Now that we know that the input value is a vector of integers, just shift @@ -93,7 +98,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, // The code below only handles casts to vectors currently. VectorType *DestVTy = dyn_cast(DestTy); - if (DestVTy == 0) + if (!DestVTy) return ConstantExpr::getBitCast(C, DestTy); // If this is a scalar -> vector cast, convert the input into a <1 x scalar> @@ -224,7 +229,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &TD) { // Trivial case, constant is the global. if ((GV = dyn_cast(C))) { - Offset.clearAllBits(); + unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType()); + Offset = APInt(BitWidth, 0); return true; } @@ -234,20 +240,28 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, // Look through ptr->int and ptr->ptr casts. if (CE->getOpcode() == Instruction::PtrToInt || - CE->getOpcode() == Instruction::BitCast) + CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::AddrSpaceCast) return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD); // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) - if (GEPOperator *GEP = dyn_cast(CE)) { - // If the base isn't a global+constant, we aren't either. - if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD)) - return false; + GEPOperator *GEP = dyn_cast(CE); + if (!GEP) + return false; - // Otherwise, add any offset that our operands provide. - return GEP->accumulateConstantOffset(TD, Offset); - } + unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType()); + APInt TmpOffset(BitWidth, 0); - return false; + // If the base isn't a global+constant, we aren't either. + if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD)) + return false; + + // Otherwise, add any offset that our operands provide. + if (!GEP->accumulateConstantOffset(TD, TmpOffset)) + return false; + + Offset = TmpOffset; + return true; } /// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the @@ -403,32 +417,32 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, TD.getTypeAllocSizeInBits(LoadTy), AS); } else - return 0; + return nullptr; C = FoldBitCast(C, MapTy, TD); if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD)) return FoldBitCast(Res, LoadTy, TD); - return 0; + return nullptr; } unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; if (BytesLoaded > 32 || BytesLoaded == 0) - return 0; + return nullptr; GlobalValue *GVal; - APInt Offset(TD.getPointerTypeSizeInBits(PTy), 0); + APInt Offset; if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD)) - return 0; + return nullptr; GlobalVariable *GV = dyn_cast(GVal); if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || !GV->getInitializer()->getType()->isSized()) - return 0; + return nullptr; // If we're loading off the beginning of the global, some bytes may be valid, // but we don't try to handle this. if (Offset.isNegative()) - return 0; + return nullptr; // If we're not accessing anything in this constant, the result is undefined. if (Offset.getZExtValue() >= @@ -438,7 +452,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, unsigned char RawBytes[32] = {0}; if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes, BytesLoaded, TD)) - return 0; + return nullptr; APInt ResultVal = APInt(IntType->getBitWidth(), 0); if (TD.isLittleEndian()) { @@ -458,6 +472,52 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, return ConstantInt::get(IntType->getContext(), ResultVal); } +static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, + const DataLayout *DL) { + if (!DL) + return nullptr; + auto *DestPtrTy = dyn_cast(CE->getType()); + if (!DestPtrTy) + return nullptr; + Type *DestTy = DestPtrTy->getElementType(); + + Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL); + if (!C) + return nullptr; + + do { + Type *SrcTy = C->getType(); + + // If the type sizes are the same and a cast is legal, just directly + // cast the constant. + if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) { + Instruction::CastOps Cast = Instruction::BitCast; + // If we are going from a pointer to int or vice versa, we spell the cast + // differently. + if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) + Cast = Instruction::IntToPtr; + else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) + Cast = Instruction::PtrToInt; + + if (CastInst::castIsValid(Cast, C, DestTy)) + return ConstantExpr::getCast(Cast, C, DestTy); + } + + // If this isn't an aggregate type, there is nothing we can do to drill down + // and find a bitcastable constant. + if (!SrcTy->isAggregateType()) + return nullptr; + + // We're simulating a load through a pointer that was bitcast to point to + // a different type, so we can try to walk down through the initial + // elements of an aggregate to see if some part of th e aggregate is + // castable to implement the "load" semantic model. + C = C->getAggregateElement(0u); + } while (C); + + return nullptr; +} + /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would /// produce if it is constant and determinable. If this is not determinable, /// return null. @@ -471,7 +531,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, // If the loaded value isn't a constant expr, we can't handle it. ConstantExpr *CE = dyn_cast(C); if (!CE) - return 0; + return nullptr; if (CE->getOpcode() == Instruction::GetElementPtr) { if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) { @@ -483,6 +543,10 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, } } + if (CE->getOpcode() == Instruction::BitCast) + if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD)) + return LoadedC; + // Instead of loading constant c string, use corresponding integer value // directly if string length is small enough. StringRef Str; @@ -534,16 +598,16 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, // Try hard to fold loads from bitcasted strange and non-type-safe things. if (TD) return FoldReinterpretLoadFromConstPtr(CE, *TD); - return 0; + return nullptr; } static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){ - if (LI->isVolatile()) return 0; + if (LI->isVolatile()) return nullptr; if (Constant *C = dyn_cast(LI->getOperand(0))) return ConstantFoldLoadFromConstPtr(C, TD); - return 0; + return nullptr; } /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression. @@ -563,8 +627,8 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType()); APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0); APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0); - ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL); - ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL); + computeKnownBits(Op0, KnownZero0, KnownOne0, DL); + computeKnownBits(Op1, KnownZero1, KnownOne1, DL); if ((KnownOne1 | KnownZero0).isAllOnesValue()) { // All the bits of Op0 that the 'and' could be masking are already zero. return Op0; @@ -585,8 +649,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, // constant. This happens frequently when iterating over a global array. if (Opc == Instruction::Sub && DL) { GlobalValue *GV1, *GV2; - unsigned PtrSize = DL->getPointerSizeInBits(); - APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0); + APInt Offs1, Offs2; if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL)) if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) && @@ -601,7 +664,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, } } - return 0; + return nullptr; } /// CastGEPIndices - If array indices are not pointer-sized integers, @@ -611,7 +674,7 @@ static Constant *CastGEPIndices(ArrayRef Ops, Type *ResultTy, const DataLayout *TD, const TargetLibraryInfo *TLI) { if (!TD) - return 0; + return nullptr; Type *IntPtrTy = TD->getIntPtrType(ResultTy); @@ -634,7 +697,7 @@ static Constant *CastGEPIndices(ArrayRef Ops, } if (!Any) - return 0; + return nullptr; Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs); if (ConstantExpr *CE = dyn_cast(C)) { @@ -649,14 +712,14 @@ static Constant *CastGEPIndices(ArrayRef Ops, static Constant* StripPtrCastKeepAS(Constant* Ptr) { assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); PointerType *OldPtrTy = cast(Ptr->getType()); - Ptr = cast(Ptr->stripPointerCasts()); + Ptr = Ptr->stripPointerCasts(); PointerType *NewPtrTy = cast(Ptr->getType()); // Preserve the address space number of the pointer. if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { NewPtrTy = NewPtrTy->getElementType()->getPointerTo( OldPtrTy->getAddressSpace()); - Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy); + Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); } return Ptr; } @@ -669,7 +732,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef Ops, Constant *Ptr = Ops[0]; if (!TD || !Ptr->getType()->getPointerElementType()->isSized() || !Ptr->getType()->isPointerTy()) - return 0; + return nullptr; Type *IntPtrTy = TD->getIntPtrType(Ptr->getType()); Type *ResultElementTy = ResultTy->getPointerElementType(); @@ -683,7 +746,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef Ops, // "inttoptr (sub (ptrtoint Ptr), V)" if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) { ConstantExpr *CE = dyn_cast(Ops[1]); - assert((CE == 0 || CE->getType() == IntPtrTy) && + assert((!CE || CE->getType() == IntPtrTy) && "CastGEPIndices didn't canonicalize index types!"); if (CE && CE->getOpcode() == Instruction::Sub && CE->getOperand(0)->isNullValue()) { @@ -695,7 +758,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef Ops, return Res; } } - return 0; + return nullptr; } unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy); @@ -758,7 +821,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef Ops, // Only handle pointers to sized types, not pointers to functions. if (!ATy->getElementType()->isSized()) - return 0; + return nullptr; } // Determine which element of the array the offset points into. @@ -803,7 +866,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef Ops, // type, then the offset is pointing into the middle of an indivisible // member, so we can't simplify it. if (Offset != 0) - return 0; + return nullptr; // Create a GEP. Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs); @@ -834,7 +897,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetLibraryInfo *TLI) { // Handle PHI nodes quickly here... if (PHINode *PN = dyn_cast(I)) { - Constant *CommonValue = 0; + Constant *CommonValue = nullptr; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = PN->getIncomingValue(i); @@ -847,14 +910,14 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, // If the incoming value is not a constant, then give up. Constant *C = dyn_cast(Incoming); if (!C) - return 0; + return nullptr; // Fold the PHI's operands. if (ConstantExpr *NewC = dyn_cast(C)) C = ConstantFoldConstantExpression(NewC, TD, TLI); // If the incoming value is a different constant to // the one we saw previously, then give up. if (CommonValue && C != CommonValue) - return 0; + return nullptr; CommonValue = C; } @@ -869,7 +932,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { Constant *Op = dyn_cast(*i); if (!Op) - return 0; // All operands not constant! + return nullptr; // All operands not constant! // Fold the Instruction's operands. if (ConstantExpr *NewCE = dyn_cast(Op)) @@ -959,14 +1022,14 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, } switch (Opcode) { - default: return 0; + default: return nullptr; case Instruction::ICmp: case Instruction::FCmp: llvm_unreachable("Invalid for compares"); case Instruction::Call: if (Function *F = dyn_cast(Ops.back())) if (canConstantFoldCallTo(F)) return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI); - return 0; + return nullptr; case Instruction::PtrToInt: // If the input is a inttoptr, eliminate the pair. This requires knowing // the width of a pointer, so it can't be done in ConstantExpr::getCast. @@ -988,8 +1051,9 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, return ConstantExpr::getCast(Opcode, Ops[0], DestTy); case Instruction::IntToPtr: // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if - // the int size is >= the ptr size. This requires knowing the width of a - // pointer, so it can't be done in ConstantExpr::getCast. + // the int size is >= the ptr size and the address spaces are the same. + // This requires knowing the width of a pointer, so it can't be done in + // ConstantExpr::getCast. if (ConstantExpr *CE = dyn_cast(Ops[0])) { if (TD && CE->getOpcode() == Instruction::PtrToInt) { Constant *SrcPtr = CE->getOperand(0); @@ -997,8 +1061,8 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); if (MidIntSize >= SrcPtrSize) { - unsigned DestPtrSize = TD->getPointerTypeSizeInBits(DestTy); - if (SrcPtrSize == DestPtrSize) + unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); + if (SrcAS == DestTy->getPointerAddressSpace()) return FoldBitCast(CE->getOperand(0), DestTy, *TD); } } @@ -1014,6 +1078,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: + case Instruction::AddrSpaceCast: return ConstantExpr::getCast(Opcode, Ops[0], DestTy); case Instruction::BitCast: if (TD) @@ -1133,14 +1198,14 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE) { if (!CE->getOperand(1)->isNullValue()) - return 0; // Do not allow stepping over the value! + return nullptr; // Do not allow stepping over the value! // Loop over all of the operands, tracking down which value we are // addressing. for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { C = C->getAggregateElement(CE->getOperand(i)); - if (C == 0) - return 0; + if (!C) + return nullptr; } return C; } @@ -1155,8 +1220,8 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, // addressing. for (unsigned i = 0, e = Indices.size(); i != e; ++i) { C = C->getAggregateElement(Indices[i]); - if (C == 0) - return 0; + if (!C) + return nullptr; } return C; } @@ -1177,6 +1242,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) { case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::floor: + case Intrinsic::ceil: case Intrinsic::sqrt: case Intrinsic::pow: case Intrinsic::powi: @@ -1184,6 +1250,10 @@ bool llvm::canConstantFoldCallTo(const Function *F) { case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: + case Intrinsic::fma: + case Intrinsic::fmuladd: + case Intrinsic::copysign: + case Intrinsic::round: case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: @@ -1235,15 +1305,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) { } } -static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, - Type *Ty) { - sys::llvm_fenv_clearexcept(); - V = NativeFP(V); - if (sys::llvm_fenv_testexcept()) { - sys::llvm_fenv_clearexcept(); - return 0; - } - +static Constant *GetConstantFoldFPValue(double V, Type *Ty) { if (Ty->isHalfTy()) { APFloat APF(V); bool unused; @@ -1255,28 +1317,53 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, if (Ty->isDoubleTy()) return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold half/float/double"); + +} + +namespace { +/// llvm_fenv_clearexcept - Clear the floating-point exception state. +static inline void llvm_fenv_clearexcept() { +#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT + feclearexcept(FE_ALL_EXCEPT); +#endif + errno = 0; +} + +/// llvm_fenv_testexcept - Test if a floating-point exception was raised. +static inline bool llvm_fenv_testexcept() { + int errno_val = errno; + if (errno_val == ERANGE || errno_val == EDOM) + return true; +#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT + if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) + return true; +#endif + return false; +} +} // End namespace + +static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, + Type *Ty) { + llvm_fenv_clearexcept(); + V = NativeFP(V); + if (llvm_fenv_testexcept()) { + llvm_fenv_clearexcept(); + return nullptr; + } + + return GetConstantFoldFPValue(V, Ty); } static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, double W, Type *Ty) { - sys::llvm_fenv_clearexcept(); + llvm_fenv_clearexcept(); V = NativeFP(V, W); - if (sys::llvm_fenv_testexcept()) { - sys::llvm_fenv_clearexcept(); - return 0; + if (llvm_fenv_testexcept()) { + llvm_fenv_clearexcept(); + return nullptr; } - if (Ty->isHalfTy()) { - APFloat APF(V); - bool unused; - APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused); - return ConstantFP::get(Ty->getContext(), APF); - } - if (Ty->isFloatTy()) - return ConstantFP::get(Ty->getContext(), APFloat((float)V)); - if (Ty->isDoubleTy()) - return ConstantFP::get(Ty->getContext(), APFloat(V)); - llvm_unreachable("Can only constant fold half/float/double"); + return GetConstantFoldFPValue(V, Ty); } /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer @@ -1302,59 +1389,61 @@ static Constant *ConstantFoldConvertToInt(const APFloat &Val, /*isSigned=*/true, mode, &isExact); if (status != APFloat::opOK && status != APFloat::opInexact) - return 0; + return nullptr; return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true); } -/// ConstantFoldCall - Attempt to constant fold a call to the specified function -/// with the specified arguments, returning null if unsuccessful. -Constant * -llvm::ConstantFoldCall(Function *F, ArrayRef Operands, - const TargetLibraryInfo *TLI) { - if (!F->hasName()) - return 0; - StringRef Name = F->getName(); +static double getValueAsDouble(ConstantFP *Op) { + Type *Ty = Op->getType(); - Type *Ty = F->getReturnType(); + if (Ty->isFloatTy()) + return Op->getValueAPF().convertToFloat(); + + if (Ty->isDoubleTy()) + return Op->getValueAPF().convertToDouble(); + + bool unused; + APFloat APF = Op->getValueAPF(); + APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused); + return APF.convertToDouble(); +} + +static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, + Type *Ty, ArrayRef Operands, + const TargetLibraryInfo *TLI) { if (Operands.size() == 1) { if (ConstantFP *Op = dyn_cast(Operands[0])) { - if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) { + if (IntrinsicID == Intrinsic::convert_to_fp16) { APFloat Val(Op->getValueAPF()); bool lost = false; Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost); - return ConstantInt::get(F->getContext(), Val.bitcastToAPInt()); + return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); } - if (!TLI) - return 0; if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) - return 0; + return nullptr; + + if (IntrinsicID == Intrinsic::round) { + APFloat V = Op->getValueAPF(); + V.roundToIntegral(APFloat::rmNearestTiesToAway); + return ConstantFP::get(Ty->getContext(), V); + } /// We only fold functions with finite arguments. Folding NaN and inf is /// likely to be aborted with an exception anyway, and some host libms /// have known errors raising exceptions. if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) - return 0; + return nullptr; /// Currently APFloat versions of these functions do not exist, so we use /// the host native double versions. Float versions are not called /// directly but for all these it is true (float)(f((double)arg)) == /// f(arg). Long double not supported yet. - double V; - if (Ty->isFloatTy()) - V = Op->getValueAPF().convertToFloat(); - else if (Ty->isDoubleTy()) - V = Op->getValueAPF().convertToDouble(); - else { - bool unused; - APFloat APF = Op->getValueAPF(); - APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused); - V = APF.convertToDouble(); - } + double V = getValueAsDouble(Op); - switch (F->getIntrinsicID()) { + switch (IntrinsicID) { default: break; case Intrinsic::fabs: return ConstantFoldFP(fabs, V, Ty); @@ -1380,8 +1469,13 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, #endif case Intrinsic::floor: return ConstantFoldFP(floor, V, Ty); + case Intrinsic::ceil: + return ConstantFoldFP(ceil, V, Ty); } + if (!TLI) + return nullptr; + switch (Name[0]) { case 'a': if (Name == "acos" && TLI->has(LibFunc::acos)) @@ -1422,7 +1516,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, return ConstantFoldFP(log, V, Ty); else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) return ConstantFoldFP(log10, V, Ty); - else if (F->getIntrinsicID() == Intrinsic::sqrt && + else if (IntrinsicID == Intrinsic::sqrt && (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) { if (V >= -0.0) return ConstantFoldFP(sqrt, V, Ty); @@ -1451,13 +1545,13 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, default: break; } - return 0; + return nullptr; } if (ConstantInt *Op = dyn_cast(Operands[0])) { - switch (F->getIntrinsicID()) { + switch (IntrinsicID) { case Intrinsic::bswap: - return ConstantInt::get(F->getContext(), Op->getValue().byteSwap()); + return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); case Intrinsic::ctpop: return ConstantInt::get(Ty, Op->getValue().countPopulation()); case Intrinsic::convert_from_fp16: { @@ -1472,10 +1566,10 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, assert(status == APFloat::opOK && !lost && "Precision lost during fp16 constfolding"); - return ConstantFP::get(F->getContext(), Val); + return ConstantFP::get(Ty->getContext(), Val); } default: - return 0; + return nullptr; } } @@ -1483,7 +1577,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, if (isa(Operands[0]) || isa(Operands[0])) { Constant *Op = cast(Operands[0]); - switch (F->getIntrinsicID()) { + switch (IntrinsicID) { default: break; case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: @@ -1505,51 +1599,36 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, } if (isa(Operands[0])) { - if (F->getIntrinsicID() == Intrinsic::bswap) + if (IntrinsicID == Intrinsic::bswap) return Operands[0]; - return 0; + return nullptr; } - return 0; + return nullptr; } if (Operands.size() == 2) { if (ConstantFP *Op1 = dyn_cast(Operands[0])) { if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) - return 0; - double Op1V; - if (Ty->isFloatTy()) - Op1V = Op1->getValueAPF().convertToFloat(); - else if (Ty->isDoubleTy()) - Op1V = Op1->getValueAPF().convertToDouble(); - else { - bool unused; - APFloat APF = Op1->getValueAPF(); - APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused); - Op1V = APF.convertToDouble(); - } + return nullptr; + double Op1V = getValueAsDouble(Op1); if (ConstantFP *Op2 = dyn_cast(Operands[1])) { if (Op2->getType() != Op1->getType()) - return 0; - - double Op2V; - if (Ty->isFloatTy()) - Op2V = Op2->getValueAPF().convertToFloat(); - else if (Ty->isDoubleTy()) - Op2V = Op2->getValueAPF().convertToDouble(); - else { - bool unused; - APFloat APF = Op2->getValueAPF(); - APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused); - Op2V = APF.convertToDouble(); - } + return nullptr; - if (F->getIntrinsicID() == Intrinsic::pow) { + double Op2V = getValueAsDouble(Op2); + if (IntrinsicID == Intrinsic::pow) { return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); } + if (IntrinsicID == Intrinsic::copysign) { + APFloat V1 = Op1->getValueAPF(); + APFloat V2 = Op2->getValueAPF(); + V1.copySign(V2); + return ConstantFP::get(Ty->getContext(), V1); + } if (!TLI) - return 0; + return nullptr; if (Name == "pow" && TLI->has(LibFunc::pow)) return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); if (Name == "fmod" && TLI->has(LibFunc::fmod)) @@ -1557,25 +1636,25 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, if (Name == "atan2" && TLI->has(LibFunc::atan2)) return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); } else if (ConstantInt *Op2C = dyn_cast(Operands[1])) { - if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy()) - return ConstantFP::get(F->getContext(), + if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) + return ConstantFP::get(Ty->getContext(), APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); - if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy()) - return ConstantFP::get(F->getContext(), + if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) + return ConstantFP::get(Ty->getContext(), APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); - if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy()) - return ConstantFP::get(F->getContext(), + if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) + return ConstantFP::get(Ty->getContext(), APFloat((double)std::pow((double)Op1V, (int)Op2C->getZExtValue()))); } - return 0; + return nullptr; } if (ConstantInt *Op1 = dyn_cast(Operands[0])) { if (ConstantInt *Op2 = dyn_cast(Operands[1])) { - switch (F->getIntrinsicID()) { + switch (IntrinsicID) { default: break; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: @@ -1585,7 +1664,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, case Intrinsic::umul_with_overflow: { APInt Res; bool Overflow; - switch (F->getIntrinsicID()) { + switch (IntrinsicID) { default: llvm_unreachable("Invalid case"); case Intrinsic::sadd_with_overflow: Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow); @@ -1607,10 +1686,10 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, break; } Constant *Ops[] = { - ConstantInt::get(F->getContext(), Res), - ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow) + ConstantInt::get(Ty->getContext(), Res), + ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) }; - return ConstantStruct::get(cast(F->getReturnType()), Ops); + return ConstantStruct::get(cast(Ty), Ops); } case Intrinsic::cttz: if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef. @@ -1623,9 +1702,79 @@ llvm::ConstantFoldCall(Function *F, ArrayRef Operands, } } - return 0; + return nullptr; } - return 0; + return nullptr; } - return 0; + + if (Operands.size() != 3) + return nullptr; + + if (const ConstantFP *Op1 = dyn_cast(Operands[0])) { + if (const ConstantFP *Op2 = dyn_cast(Operands[1])) { + if (const ConstantFP *Op3 = dyn_cast(Operands[2])) { + switch (IntrinsicID) { + default: break; + case Intrinsic::fma: + case Intrinsic::fmuladd: { + APFloat V = Op1->getValueAPF(); + APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), + Op3->getValueAPF(), + APFloat::rmNearestTiesToEven); + if (s != APFloat::opInvalidOp) + return ConstantFP::get(Ty->getContext(), V); + + return nullptr; + } + } + } + } + } + + return nullptr; +} + +static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, + VectorType *VTy, + ArrayRef Operands, + const TargetLibraryInfo *TLI) { + SmallVector Result(VTy->getNumElements()); + SmallVector Lane(Operands.size()); + Type *Ty = VTy->getElementType(); + + for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { + // Gather a column of constants. + for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { + Constant *Agg = Operands[J]->getAggregateElement(I); + if (!Agg) + return nullptr; + + Lane[J] = Agg; + } + + // Use the regular scalar folding to simplify this column. + Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI); + if (!Folded) + return nullptr; + Result[I] = Folded; + } + + return ConstantVector::get(Result); +} + +/// ConstantFoldCall - Attempt to constant fold a call to the specified function +/// with the specified arguments, returning null if unsuccessful. +Constant * +llvm::ConstantFoldCall(Function *F, ArrayRef Operands, + const TargetLibraryInfo *TLI) { + if (!F->hasName()) + return nullptr; + StringRef Name = F->getName(); + + Type *Ty = F->getReturnType(); + + if (VectorType *VTy = dyn_cast(Ty)) + return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI); + + return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI); }