X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FConstantFolding.cpp;h=cd8d52c1c465beb5a6d5b64575631f4167a5b371;hb=4dbe200b2d3da0dfd1c788c9650b8b8075c241aa;hp=dda1fbad64f01f2284545c4ce0cc459eb5bbfadb;hpb=faa75f6e47350f491a44d5e8773acd9457185d51;p=oota-llvm.git diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp index dda1fbad64f..cd8d52c1c46 100644 --- a/lib/Analysis/ConstantFolding.cpp +++ b/lib/Analysis/ConstantFolding.cpp @@ -30,6 +30,7 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/FEnv.h" #include #include using namespace llvm; @@ -53,7 +54,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, // vector so the code below can handle it uniformly. if (isa(C) || isa(C)) { Constant *Ops = C; // don't take the address of C! - return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD); + return FoldBitCast(ConstantVector::get(Ops), DestTy, TD); } // If this is a bitcast from constant vector -> vector, fold it. @@ -166,7 +167,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, } } - return ConstantVector::get(Result.data(), Result.size()); + return ConstantVector::get(Result); } @@ -208,7 +209,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, i != e; ++i, ++GTI) { ConstantInt *CI = dyn_cast(*i); if (!CI) return false; // Index isn't a simple constant? - if (CI->getZExtValue() == 0) continue; // Not adding anything. + if (CI->isZero()) continue; // Not adding anything. if (const StructType *ST = dyn_cast(*GTI)) { // N = N + Offset @@ -339,6 +340,13 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, return true; } + if (ConstantExpr *CE = dyn_cast(C)) { + if (CE->getOpcode() == Instruction::IntToPtr && + CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) + return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, + BytesLeft, TD); + } + // Otherwise, unknown initializer type. return false; } @@ -401,7 +409,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]); for (unsigned i = 1; i != BytesLoaded; ++i) { ResultVal <<= 8; - ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]); + ResultVal |= RawBytes[BytesLoaded-1-i]; } return ConstantInt::get(IntType->getContext(), ResultVal); @@ -436,8 +444,10 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, unsigned StrLen = Str.length(); const Type *Ty = cast(CE->getType())->getElementType(); unsigned NumBits = Ty->getPrimitiveSizeInBits(); - // Replace LI with immediate integer store. - if ((NumBits >> 3) == StrLen + 1) { + // Replace load with immediate integer if the result is an integer or fp + // value. + if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && + (isa(Ty) || Ty->isFloatingPointTy())) { APInt StrVal(NumBits, 0); APInt SingleChar(NumBits, 0); if (TD->isLittleEndian()) { @@ -454,13 +464,18 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, SingleChar = 0; StrVal = (StrVal << 8) | SingleChar; } - return ConstantInt::get(CE->getContext(), StrVal); + + Constant *Res = ConstantInt::get(CE->getContext(), StrVal); + if (Ty->isFloatingPointTy()) + Res = ConstantExpr::getBitCast(Res, Ty); + return Res; } } // If this load comes from anywhere in a constant global, and if the global // is all undef or zero, we know what it loads. - if (GlobalVariable *GV = dyn_cast(CE->getUnderlyingObject())){ + if (GlobalVariable *GV = + dyn_cast(GetUnderlyingObject(CE, TD))) { if (GV->isConstant() && GV->hasDefinitiveInitializer()) { const Type *ResTy = cast(C->getType())->getElementType(); if (GV->getInitializer()->isNullValue()) @@ -531,7 +546,7 @@ static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps, for (unsigned i = 1; i != NumOps; ++i) { if ((i == 1 || !isa(GetElementPtrInst::getIndexedType(Ops[0]->getType(), - reinterpret_cast(Ops+1), + reinterpret_cast(Ops+1), i-1))) && Ops[i]->getType() != IntPtrTy) { Any = true; @@ -561,16 +576,35 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps, Constant *Ptr = Ops[0]; if (!TD || !cast(Ptr->getType())->getElementType()->isSized()) return 0; - - unsigned BitWidth = - TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext())); + + const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext()); // If this is a constant expr gep that is effectively computing an // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' for (unsigned i = 1; i != NumOps; ++i) - if (!isa(Ops[i])) + if (!isa(Ops[i])) { + + // If this is "gep i8* Ptr, (sub 0, V)", fold this as: + // "inttoptr (sub (ptrtoint Ptr), V)" + if (NumOps == 2 && + cast(ResultTy)->getElementType()->isIntegerTy(8)) { + ConstantExpr *CE = dyn_cast(Ops[1]); + assert((CE == 0 || CE->getType() == IntPtrTy) && + "CastGEPIndices didn't canonicalize index types!"); + if (CE && CE->getOpcode() == Instruction::Sub && + CE->getOperand(0)->isNullValue()) { + Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); + Res = ConstantExpr::getSub(Res, CE->getOperand(1)); + Res = ConstantExpr::getIntToPtr(Res, ResultTy); + if (ConstantExpr *ResCE = dyn_cast(Res)) + Res = ConstantFoldConstantExpression(ResCE, TD); + return Res; + } + } return 0; + } + unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy); APInt Offset = APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(), (Value**)Ops+1, NumOps-1)); @@ -603,10 +637,8 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps, APInt BasePtr(BitWidth, 0); if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->getOpcode() == Instruction::IntToPtr) - if (ConstantInt *Base = dyn_cast(CE->getOperand(0))) { - BasePtr = Base->getValue(); - BasePtr.zextOrTrunc(BitWidth); - } + if (ConstantInt *Base = dyn_cast(CE->getOperand(0))) + BasePtr = Base->getValue().zextOrTrunc(BitWidth); if (Ptr->isNullValue() || BasePtr != 0) { Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr); return ConstantExpr::getIntToPtr(C, ResultTy); @@ -632,12 +664,19 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps, // Determine which element of the array the offset points into. APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType())); + const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext()); if (ElemSize == 0) - return 0; - APInt NewIdx = Offset.udiv(ElemSize); - Offset -= NewIdx * ElemSize; - NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()), - NewIdx)); + // The element size is 0. This may be [0 x Ty]*, so just use a zero + // index for this level and proceed to the next level to see if it can + // accommodate the offset. + NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); + else { + // The element size is non-zero divide the offset by the element + // size (rounding down), to compute the index at this level. + APInt NewIdx = Offset.udiv(ElemSize); + Offset -= NewIdx * ElemSize; + NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); + } Ty = ATy->getElementType(); } else if (const StructType *STy = dyn_cast(Ty)) { // Determine which field of the struct the offset points into. The @@ -681,27 +720,34 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps, // Constant Folding public APIs //===----------------------------------------------------------------------===// - -/// ConstantFoldInstruction - Attempt to constant fold the specified -/// instruction. If successful, the constant result is returned, if not, null -/// is returned. Note that this function can only fail when attempting to fold -/// instructions like loads and stores, which have no constant expression form. -/// +/// ConstantFoldInstruction - Try to constant fold the specified instruction. +/// If successful, the constant result is returned, if not, null is returned. +/// Note that this fails if not all of the operands are constant. Otherwise, +/// this function can only fail when attempting to fold instructions like loads +/// and stores, which have no constant expression form. Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) { + // Handle PHI nodes quickly here... if (PHINode *PN = dyn_cast(I)) { - if (PN->getNumIncomingValues() == 0) - return UndefValue::get(PN->getType()); - - Constant *Result = dyn_cast(PN->getIncomingValue(0)); - if (Result == 0) return 0; - - // Handle PHI nodes specially here... - for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) - if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN) - return 0; // Not all the same incoming constants... + Constant *CommonValue = 0; + + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *Incoming = PN->getIncomingValue(i); + // If the incoming value is undef then skip it. Note that while we could + // skip the value if it is equal to the phi node itself we choose not to + // because that would break the rule that constant folding only applies if + // all operands are constants. + if (isa(Incoming)) + continue; + // If the incoming value is not a constant, or is a different constant to + // the one we saw previously, then give up. + Constant *C = dyn_cast(Incoming); + if (!C || (CommonValue && C != CommonValue)) + return 0; + CommonValue = C; + } - // If we reach here, all incoming values are the same constant. - return Result; + // If we reach here, all incoming values are the same constant or undef. + return CommonValue ? CommonValue : UndefValue::get(PN->getType()); } // Scan the operand list, checking to see if they are all constants, if so, @@ -719,7 +765,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) { if (const LoadInst *LI = dyn_cast(I)) return ConstantFoldLoadInst(LI, TD); - + + if (InsertValueInst *IVI = dyn_cast(I)) + return ConstantExpr::getInsertValue( + cast(IVI->getAggregateOperand()), + cast(IVI->getInsertedValueOperand()), + IVI->idx_begin(), IVI->getNumIndices()); + + if (ExtractValueInst *EVI = dyn_cast(I)) + return ConstantExpr::getExtractValue( + cast(EVI->getAggregateOperand()), + EVI->idx_begin(), EVI->getNumIndices()); + return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops.data(), Ops.size(), TD); } @@ -730,7 +787,8 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) { Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE, const TargetData *TD) { SmallVector Ops; - for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) { + for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); + i != e; ++i) { Constant *NewC = cast(*i); // Recursively fold the ConstantExpr's operands. if (ConstantExpr *NewCE = dyn_cast(NewC)) @@ -772,9 +830,9 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, case Instruction::ICmp: case Instruction::FCmp: assert(0 && "Invalid for compares"); case Instruction::Call: - if (Function *F = dyn_cast(Ops[0])) + if (Function *F = dyn_cast(Ops[NumOps - 1])) if (canConstantFoldCallTo(F)) - return ConstantFoldCall(F, Ops+1, NumOps-1); + return ConstantFoldCall(F, Ops, NumOps - 1); return 0; case Instruction::PtrToInt: // If the input is a inttoptr, eliminate the pair. This requires knowing @@ -994,8 +1052,17 @@ llvm::canConstantFoldCallTo(const Function *F) { case Intrinsic::usub_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: + case Intrinsic::smul_with_overflow: case Intrinsic::convert_from_fp16: case Intrinsic::convert_to_fp16: + case Intrinsic::x86_sse_cvtss2si: + case Intrinsic::x86_sse_cvtss2si64: + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse2_cvtsd2si: + case Intrinsic::x86_sse2_cvtsd2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: return true; default: return false; @@ -1033,10 +1100,10 @@ llvm::canConstantFoldCallTo(const Function *F) { static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, const Type *Ty) { - errno = 0; + sys::llvm_fenv_clearexcept(); V = NativeFP(V); - if (errno != 0) { - errno = 0; + if (sys::llvm_fenv_testexcept()) { + sys::llvm_fenv_clearexcept(); return 0; } @@ -1050,10 +1117,10 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, double W, const Type *Ty) { - errno = 0; + sys::llvm_fenv_clearexcept(); V = NativeFP(V, W); - if (errno != 0) { - errno = 0; + if (sys::llvm_fenv_testexcept()) { + sys::llvm_fenv_clearexcept(); return 0; } @@ -1065,6 +1132,36 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), return 0; // dummy return to suppress warning } +/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer +/// conversion of a constant floating point. If roundTowardZero is false, the +/// default IEEE rounding is used (toward nearest, ties to even). This matches +/// the behavior of the non-truncating SSE instructions in the default rounding +/// mode. The desired integer type Ty is used to select how many bits are +/// available for the result. Returns null if the conversion cannot be +/// performed, otherwise returns the Constant value resulting from the +/// conversion. +static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero, + const Type *Ty) { + assert(Op && "Called with NULL operand"); + APFloat Val(Op->getValueAPF()); + + // All of these conversion intrinsics form an integer of at most 64bits. + unsigned ResultWidth = cast(Ty)->getBitWidth(); + assert(ResultWidth <= 64 && + "Can only constant fold conversions to 64 and 32 bit ints"); + + uint64_t UIntVal; + bool isExact = false; + APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero + : APFloat::rmNearestTiesToEven; + APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth, + /*isSigned=*/true, mode, + &isExact); + if (status != APFloat::opOK && status != APFloat::opInexact) + return 0; + return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true); +} + /// ConstantFoldCall - Attempt to constant fold a call to the specified function /// with the specified arguments, returning null if unsuccessful. Constant * @@ -1076,7 +1173,7 @@ llvm::ConstantFoldCall(Function *F, const Type *Ty = F->getReturnType(); if (NumOperands == 1) { if (ConstantFP *Op = dyn_cast(Operands[0])) { - if (Name == "llvm.convert.to.fp16") { + if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) { APFloat Val(Op->getValueAPF()); bool lost = false; @@ -1087,6 +1184,13 @@ llvm::ConstantFoldCall(Function *F, if (!Ty->isFloatTy() && !Ty->isDoubleTy()) return 0; + + /// We only fold functions with finite arguments. Folding NaN and inf is + /// likely to be aborted with an exception anyway, and some host libms + /// have known errors raising exceptions. + if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) + return 0; + /// Currently APFloat versions of these functions do not exist, so we use /// the host native double versions. Float versions are not called /// directly but for all these it is true (float)(f((double)arg)) == @@ -1127,8 +1231,8 @@ llvm::ConstantFoldCall(Function *F, return ConstantFoldFP(log, V, Ty); else if (Name == "log10" && V > 0) return ConstantFoldFP(log10, V, Ty); - else if (Name == "llvm.sqrt.f32" || - Name == "llvm.sqrt.f64") { + else if (F->getIntrinsicID() == Intrinsic::sqrt && + (Ty->isFloatTy() || Ty->isDoubleTy())) { if (V >= -0.0) return ConstantFoldFP(sqrt, V, Ty); else // Undefined @@ -1158,18 +1262,18 @@ llvm::ConstantFoldCall(Function *F, } return 0; } - - + if (ConstantInt *Op = dyn_cast(Operands[0])) { - if (Name.startswith("llvm.bswap")) + switch (F->getIntrinsicID()) { + case Intrinsic::bswap: return ConstantInt::get(F->getContext(), Op->getValue().byteSwap()); - else if (Name.startswith("llvm.ctpop")) + case Intrinsic::ctpop: return ConstantInt::get(Ty, Op->getValue().countPopulation()); - else if (Name.startswith("llvm.cttz")) + case Intrinsic::cttz: return ConstantInt::get(Ty, Op->getValue().countTrailingZeros()); - else if (Name.startswith("llvm.ctlz")) + case Intrinsic::ctlz: return ConstantInt::get(Ty, Op->getValue().countLeadingZeros()); - else if (Name == "llvm.convert.from.fp16") { + case Intrinsic::convert_from_fp16: { APFloat Val(Op->getValue()); bool lost = false; @@ -1177,24 +1281,44 @@ llvm::ConstantFoldCall(Function *F, Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost); // Conversion is always precise. - status = status; + (void)status; assert(status == APFloat::opOK && !lost && "Precision lost during fp16 constfolding"); return ConstantFP::get(F->getContext(), Val); } - return 0; + default: + return 0; + } } - + + if (ConstantVector *Op = dyn_cast(Operands[0])) { + switch (F->getIntrinsicID()) { + default: break; + case Intrinsic::x86_sse_cvtss2si: + case Intrinsic::x86_sse_cvtss2si64: + case Intrinsic::x86_sse2_cvtsd2si: + case Intrinsic::x86_sse2_cvtsd2si64: + if (ConstantFP *FPOp = dyn_cast(Op->getOperand(0))) + return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty); + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: + if (ConstantFP *FPOp = dyn_cast(Op->getOperand(0))) + return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty); + } + } + if (isa(Operands[0])) { - if (Name.startswith("llvm.bswap")) + if (F->getIntrinsicID() == Intrinsic::bswap) return Operands[0]; return 0; } return 0; } - + if (NumOperands == 2) { if (ConstantFP *Op1 = dyn_cast(Operands[0])) { if (!Ty->isFloatTy() && !Ty->isDoubleTy()) @@ -1217,11 +1341,11 @@ llvm::ConstantFoldCall(Function *F, if (Name == "atan2") return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); } else if (ConstantInt *Op2C = dyn_cast(Operands[1])) { - if (Name == "llvm.powi.f32") + if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy()) return ConstantFP::get(F->getContext(), APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); - if (Name == "llvm.powi.f64") + if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy()) return ConstantFP::get(F->getContext(), APFloat((double)std::pow((double)Op1V, (int)Op2C->getZExtValue()))); @@ -1234,42 +1358,37 @@ llvm::ConstantFoldCall(Function *F, if (ConstantInt *Op2 = dyn_cast(Operands[1])) { switch (F->getIntrinsicID()) { default: break; - case Intrinsic::uadd_with_overflow: { - Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result. - Constant *Ops[] = { - Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow. - }; - return ConstantStruct::get(F->getContext(), Ops, 2, false); - } - case Intrinsic::usub_with_overflow: { - Constant *Res = ConstantExpr::getSub(Op1, Op2); // result. + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::smul_with_overflow: { + APInt Res; + bool Overflow; + switch (F->getIntrinsicID()) { + default: assert(0 && "Invalid case"); + case Intrinsic::sadd_with_overflow: + Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow); + break; + case Intrinsic::uadd_with_overflow: + Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow); + break; + case Intrinsic::ssub_with_overflow: + Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow); + break; + case Intrinsic::usub_with_overflow: + Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow); + break; + case Intrinsic::smul_with_overflow: + Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow); + break; + } Constant *Ops[] = { - Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow. + ConstantInt::get(F->getContext(), Res), + ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow) }; return ConstantStruct::get(F->getContext(), Ops, 2, false); } - case Intrinsic::sadd_with_overflow: { - Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result. - Constant *Overflow = ConstantExpr::getSelect( - ConstantExpr::getICmp(CmpInst::ICMP_SGT, - ConstantInt::get(Op1->getType(), 0), Op1), - ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2), - ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow. - - Constant *Ops[] = { Res, Overflow }; - return ConstantStruct::get(F->getContext(), Ops, 2, false); - } - case Intrinsic::ssub_with_overflow: { - Constant *Res = ConstantExpr::getSub(Op1, Op2); // result. - Constant *Overflow = ConstantExpr::getSelect( - ConstantExpr::getICmp(CmpInst::ICMP_SGT, - ConstantInt::get(Op2->getType(), 0), Op2), - ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1), - ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow. - - Constant *Ops[] = { Res, Overflow }; - return ConstantStruct::get(F->getContext(), Ops, 2, false); - } } } @@ -1279,4 +1398,3 @@ llvm::ConstantFoldCall(Function *F, } return 0; } -