X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FInlineCost.cpp;h=b103897977b30e0f2b1bec30be0797911d10b747;hb=12bf43bc4f86602a5677d5e1662cb4e40562351b;hp=f74d712576ec5159818e5d50613f719bb7d40cdc;hpb=43cda021d9425f53443b3d56bcf81afe99353ee9;p=oota-llvm.git diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/InlineCost.cpp index f74d712576e..b103897977b 100644 --- a/lib/Analysis/InlineCost.cpp +++ b/lib/Analysis/InlineCost.cpp @@ -18,99 +18,10 @@ #include "llvm/ADT/SmallPtrSet.h" using namespace llvm; -// CountCodeReductionForConstant - Figure out an approximation for how many -// instructions will be constant folded if the specified value is constant. -// -unsigned InlineCostAnalyzer::FunctionInfo:: - CountCodeReductionForConstant(Value *V) { - unsigned Reduction = 0; - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) - if (isa(*UI) || isa(*UI)) { - // We will be able to eliminate all but one of the successors. - const TerminatorInst &TI = cast(**UI); - const unsigned NumSucc = TI.getNumSuccessors(); - unsigned Instrs = 0; - for (unsigned I = 0; I != NumSucc; ++I) - Instrs += TI.getSuccessor(I)->size(); - // We don't know which blocks will be eliminated, so use the average size. - Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; - } else if (CallInst *CI = dyn_cast(*UI)) { - // Turning an indirect call into a direct call is a BIG win - if (CI->getCalledValue() == V) - Reduction += InlineConstants::IndirectCallBonus; - } else if (InvokeInst *II = dyn_cast(*UI)) { - // Turning an indirect call into a direct call is a BIG win - if (II->getCalledValue() == V) - Reduction += InlineConstants::IndirectCallBonus; - } else { - // Figure out if this instruction will be removed due to simple constant - // propagation. - Instruction &Inst = cast(**UI); - - // We can't constant propagate instructions which have effects or - // read memory. - // - // FIXME: It would be nice to capture the fact that a load from a - // pointer-to-constant-global is actually a *really* good thing to zap. - // Unfortunately, we don't know the pointer that may get propagated here, - // so we can't make this decision. - if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || - isa(Inst)) - continue; - - bool AllOperandsConstant = true; - for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) - if (!isa(Inst.getOperand(i)) && Inst.getOperand(i) != V) { - AllOperandsConstant = false; - break; - } - - if (AllOperandsConstant) { - // We will get to remove this instruction... - Reduction += InlineConstants::InstrCost; - - // And any other instructions that use it which become constants - // themselves. - Reduction += CountCodeReductionForConstant(&Inst); - } - } - - return Reduction; -} - -// CountCodeReductionForAlloca - Figure out an approximation of how much smaller -// the function will be if it is inlined into a context where an argument -// becomes an alloca. -// -unsigned InlineCostAnalyzer::FunctionInfo:: - CountCodeReductionForAlloca(Value *V) { - if (!isa(V->getType())) return 0; // Not a pointer - unsigned Reduction = 0; - for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ - Instruction *I = cast(*UI); - if (isa(I) || isa(I)) - Reduction += InlineConstants::InstrCost; - else if (GetElementPtrInst *GEP = dyn_cast(I)) { - // If the GEP has variable indices, we won't be able to do much with it. - if (GEP->hasAllConstantIndices()) - Reduction += CountCodeReductionForAlloca(GEP); - } else if (BitCastInst *BCI = dyn_cast(I)) { - // Track pointer through bitcasts. - Reduction += CountCodeReductionForAlloca(BCI); - } else { - // If there is some other strange instruction, we're not going to be able - // to do much if we inline this. - return 0; - } - } - - return Reduction; -} - -// callIsSmall - If a call is likely to lower to a single target instruction, or -// is otherwise deemed small return true. -// TODO: Perhaps calls like memcpy, strcpy, etc? -static bool callIsSmall(const Function *F) { +/// callIsSmall - If a call is likely to lower to a single target instruction, +/// or is otherwise deemed small return true. +/// TODO: Perhaps calls like memcpy, strcpy, etc? +bool llvm::callIsSmall(const Function *F) { if (!F) return false; if (F->hasLocalLinkage()) return false; @@ -120,7 +31,7 @@ static bool callIsSmall(const Function *F) { StringRef Name = F->getName(); // These will all likely lower to a single selection DAG node. - if (Name == "copysign" || Name == "copysignf" || + if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || Name == "cosl" || @@ -142,7 +53,7 @@ static bool callIsSmall(const Function *F) { /// from the specified block. void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { ++NumBlocks; - + unsigned NumInstsBeforeThisBB = NumInsts; for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); II != E; ++II) { if (isa(II)) continue; // PHI nodes don't count. @@ -151,22 +62,41 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { if (isa(II) || isa(II)) { if (isa(II)) continue; // Debug intrinsics don't count as size. - - CallSite CS = CallSite::get(const_cast(&*II)); - + + ImmutableCallSite CS(cast(II)); + // If this function contains a call to setjmp or _setjmp, never inline // it. This is a hack because we depend on the user marking their local // variables as volatile if they are live across a setjmp call, and they // probably won't do this in callers. - if (Function *F = CS.getCalledFunction()) + if (const Function *F = CS.getCalledFunction()) { + // If a function is both internal and has a single use, then it is + // extremely likely to get inlined in the future (it was probably + // exposed by an interleaved devirtualization pass). + if (F->hasInternalLinkage() && F->hasOneUse()) + ++NumInlineCandidates; + if (F->isDeclaration() && (F->getName() == "setjmp" || F->getName() == "_setjmp")) - NeverInline = true; + callsSetJmp = true; + + // If this call is to function itself, then the function is recursive. + // Inlining it into other functions is a bad idea, because this is + // basically just a form of loop peeling, and our metrics aren't useful + // for that case. + if (F == BB->getParent()) + isRecursive = true; + } - // Each argument to a call takes on average one instruction to set up. - // Add an extra penalty because calls can take a long time to execute. - if (!isa(II) && !callIsSmall(CS.getCalledFunction())) - NumInsts += InlineConstants::CallPenalty + CS.arg_size(); + if (!isa(II) && !callIsSmall(CS.getCalledFunction())) { + // Each argument to a call takes on average one instruction to set up. + NumInsts += CS.arg_size(); + + // We don't want inline asm to count as a call - that would prevent loop + // unrolling. The argument setup cost is still real, though. + if (!isa(CS.getCalledValue())) + ++NumCalls; + } } if (const AllocaInst *AI = dyn_cast(II)) { @@ -174,7 +104,7 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { this->usesDynamicAlloca = true; } - if (isa(II) || isa(II->getType())) + if (isa(II) || II->getType()->isVectorTy()) ++NumVectorInsts; if (const CastInst *CI = dyn_cast(II)) { @@ -206,7 +136,139 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) { // jump would jump from the inlined copy of the function into the original // function which is extremely undefined behavior. if (isa(BB->getTerminator())) - NeverInline = true; + containsIndirectBr = true; + + // Remember NumInsts for this BB. + NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB; +} + +// CountBonusForConstant - Figure out an approximation for how much per-call +// performance boost we can expect if the specified value is constant. +unsigned CodeMetrics::CountBonusForConstant(Value *V) { + unsigned Bonus = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (CallInst *CI = dyn_cast(U)) { + // Turning an indirect call into a direct call is a BIG win + if (CI->getCalledValue() == V) + Bonus += InlineConstants::IndirectCallBonus; + } + else if (InvokeInst *II = dyn_cast(U)) { + // Turning an indirect call into a direct call is a BIG win + if (II->getCalledValue() == V) + Bonus += InlineConstants::IndirectCallBonus; + } + // FIXME: Eliminating conditional branches and switches should + // also yield a per-call performance boost. + else { + // Figure out the bonuses that wll accrue due to simple constant + // propagation. + Instruction &Inst = cast(*U); + + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa(Inst)) + continue; + + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) + Bonus += CountBonusForConstant(&Inst); + } + } + return Bonus; +} + + +// CountCodeReductionForConstant - Figure out an approximation for how many +// instructions will be constant folded if the specified value is constant. +// +unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) { + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + User *U = *UI; + if (isa(U) || isa(U)) { + // We will be able to eliminate all but one of the successors. + const TerminatorInst &TI = cast(*U); + const unsigned NumSucc = TI.getNumSuccessors(); + unsigned Instrs = 0; + for (unsigned I = 0; I != NumSucc; ++I) + Instrs += NumBBInsts[TI.getSuccessor(I)]; + // We don't know which blocks will be eliminated, so use the average size. + Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; + } else { + // Figure out if this instruction will be removed due to simple constant + // propagation. + Instruction &Inst = cast(*U); + + // We can't constant propagate instructions which have effects or + // read memory. + // + // FIXME: It would be nice to capture the fact that a load from a + // pointer-to-constant-global is actually a *really* good thing to zap. + // Unfortunately, we don't know the pointer that may get propagated here, + // so we can't make this decision. + if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || + isa(Inst)) + continue; + + bool AllOperandsConstant = true; + for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) + if (!isa(Inst.getOperand(i)) && Inst.getOperand(i) != V) { + AllOperandsConstant = false; + break; + } + + if (AllOperandsConstant) { + // We will get to remove this instruction... + Reduction += InlineConstants::InstrCost; + + // And any other instructions that use it which become constants + // themselves. + Reduction += CountCodeReductionForConstant(&Inst); + } + } + } + return Reduction; +} + +// CountCodeReductionForAlloca - Figure out an approximation of how much smaller +// the function will be if it is inlined into a context where an argument +// becomes an alloca. +// +unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) { + if (!V->getType()->isPointerTy()) return 0; // Not a pointer + unsigned Reduction = 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ + Instruction *I = cast(*UI); + if (isa(I) || isa(I)) + Reduction += InlineConstants::InstrCost; + else if (GetElementPtrInst *GEP = dyn_cast(I)) { + // If the GEP has variable indices, we won't be able to do much with it. + if (GEP->hasAllConstantIndices()) + Reduction += CountCodeReductionForAlloca(GEP); + } else if (BitCastInst *BCI = dyn_cast(I)) { + // Track pointer through bitcasts. + Reduction += CountCodeReductionForAlloca(BCI); + } else { + // If there is some other strange instruction, we're not going to be able + // to do much if we inline this. + return 0; + } + } + + return Reduction; } /// analyzeFunction - Fill in the current structure with information gleaned @@ -230,30 +292,83 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) { // Don't bother calculating argument weights if we are never going to inline // the function anyway. - if (Metrics.NeverInline) + if (NeverInline()) return; // Check out all of the arguments to the function, figuring out how much // code can be eliminated if one of the arguments is a constant. ArgumentWeights.reserve(F->arg_size()); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) - ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I), - CountCodeReductionForAlloca(I))); + ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I), + Metrics.CountCodeReductionForAlloca(I), + Metrics.CountBonusForConstant(I))); +} + +/// NeverInline - returns true if the function should never be inlined into +/// any caller +bool InlineCostAnalyzer::FunctionInfo::NeverInline() +{ + return (Metrics.callsSetJmp || Metrics.isRecursive || + Metrics.containsIndirectBr); + +} +// getSpecializationBonus - The heuristic used to determine the per-call +// performance boost for using a specialization of Callee with argument +// specializedArgNo replaced by a constant. +int InlineCostAnalyzer::getSpecializationBonus(Function *Callee, + SmallVectorImpl &SpecializedArgNos) +{ + if (Callee->mayBeOverridden()) + return 0; + + int Bonus = 0; + // If this function uses the coldcc calling convention, prefer not to + // specialize it. + if (Callee->getCallingConv() == CallingConv::Cold) + Bonus -= InlineConstants::ColdccPenalty; + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); + + + for (unsigned i = 0, s = SpecializedArgNos.size(); + i < s; ++i ) + { + Bonus += CalleeFI->ArgumentWeights[SpecializedArgNos[i]].ConstantBonus; + } + // Calls usually take a long time, so they make the specialization gain + // smaller. + Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + + return Bonus; } + // getInlineCost - The heuristic used to determine if we should inline the // function call or not. // InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, - SmallPtrSet &NeverInline) { + SmallPtrSet &NeverInline) { + return getInlineCost(CS, CS.getCalledFunction(), NeverInline); +} + +InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, + Function *Callee, + SmallPtrSet &NeverInline) { Instruction *TheCall = CS.getInstruction(); - Function *Callee = CS.getCalledFunction(); Function *Caller = TheCall->getParent()->getParent(); + bool isDirectCall = CS.getCalledFunction() == Callee; // Don't inline functions which can be redefined at link-time to mean - // something else. Don't inline functions marked noinline. + // something else. Don't inline functions marked noinline or call sites + // marked noinline. if (Callee->mayBeOverridden() || - Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee)) + Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || + CS.isNoInline()) return llvm::InlineCost::getNever(); // InlineCost - This value measures how good of an inline candidate this call @@ -261,11 +376,11 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, // be inlined. This value may go negative. // int InlineCost = 0; - + // If there is only one call of the function, and it has internal linkage, // make it almost guaranteed to be inlined. // - if (Callee->hasLocalLinkage() && Callee->hasOneUse()) + if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) InlineCost += InlineConstants::LastCallToStaticBonus; // If this function uses the coldcc calling convention, prefer not to inline @@ -282,31 +397,36 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, } else if (isa(++BasicBlock::iterator(TheCall))) InlineCost += InlineConstants::NoreturnPenalty; - // Get information about the callee... - FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. - if (CalleeFI.Metrics.NumBlocks == 0) - CalleeFI.analyzeFunction(Callee); + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); // If we should never inline this, return a huge cost. - if (CalleeFI.Metrics.NeverInline) + if (CalleeFI->NeverInline()) return InlineCost::getNever(); - // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we + // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we // could move this up and avoid computing the FunctionInfo for // things we are going to just return always inline for. This // requires handling setjmp somewhere else, however. if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) return InlineCost::getAlways(); - if (CalleeFI.Metrics.usesDynamicAlloca) { - // Get infomation about the caller... + if (CalleeFI->Metrics.usesDynamicAlloca) { + // Get infomation about the caller. FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; // If we haven't calculated this information yet, do so now. - if (CallerFI.Metrics.NumBlocks == 0) + if (CallerFI.Metrics.NumBlocks == 0) { CallerFI.analyzeFunction(Caller); + + // Recompute the CalleeFI pointer, getting Caller could have invalidated + // it. + CalleeFI = &CachedFunctionInfo[Callee]; + } // Don't inline a callee with dynamic alloca into a caller without them. // Functions containing dynamic alloca's are inefficient in various ways; @@ -333,38 +453,71 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, // scalarization), so encourage the inlining of the function. // if (isa(I)) { - if (ArgNo < CalleeFI.ArgumentWeights.size()) - InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight; + if (ArgNo < CalleeFI->ArgumentWeights.size()) + InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; // If this is a constant being passed into the function, use the argument // weights calculated for the callee to determine how much will be folded // away with this information. } else if (isa(I)) { - if (ArgNo < CalleeFI.ArgumentWeights.size()) - InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight; + if (ArgNo < CalleeFI->ArgumentWeights.size()) + InlineCost -= (CalleeFI->ArgumentWeights[ArgNo].ConstantWeight + + CalleeFI->ArgumentWeights[ArgNo].ConstantBonus); } } // Now that we have considered all of the factors that make the call site more // likely to be inlined, look at factors that make us not want to inline it. - - // Don't inline into something too big, which would make it bigger. - // "size" here is the number of basic blocks, not instructions. - // - InlineCost += Caller->size()/15; - + + // Calls usually take a long time, so they make the inlining gain smaller. + InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; + // Look at the size of the callee. Each instruction counts as 5. - InlineCost += CalleeFI.Metrics.NumInsts*InlineConstants::InstrCost; + InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost; return llvm::InlineCost::get(InlineCost); } +// getSpecializationCost - The heuristic used to determine the code-size +// impact of creating a specialized version of Callee with argument +// SpecializedArgNo replaced by a constant. +InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee, + SmallVectorImpl &SpecializedArgNos) +{ + // Don't specialize functions which can be redefined at link-time to mean + // something else. + if (Callee->mayBeOverridden()) + return llvm::InlineCost::getNever(); + + // Get information about the callee. + FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; + + // If we haven't calculated this information yet, do so now. + if (CalleeFI->Metrics.NumBlocks == 0) + CalleeFI->analyzeFunction(Callee); + + int Cost = 0; + + // Look at the orginal size of the callee. Each instruction counts as 5. + Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; + + // Offset that with the amount of code that can be constant-folded + // away with the given arguments replaced by constants. + for (SmallVectorImpl::iterator an = SpecializedArgNos.begin(), + ae = SpecializedArgNos.end(); an != ae; ++an) + { + Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight; + } + + return llvm::InlineCost::get(Cost); +} + // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a // higher threshold to determine if the function call should be inlined. float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { Function *Callee = CS.getCalledFunction(); - // Get information about the callee... + // Get information about the callee. FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. @@ -384,3 +537,63 @@ float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { Factor += 1.5f; return Factor; } + +/// growCachedCostInfo - update the cached cost info for Caller after Callee has +/// been inlined. +void +InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) { + CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics; + + // For small functions we prefer to recalculate the cost for better accuracy. + if (CallerMetrics.NumBlocks < 10 || CallerMetrics.NumInsts < 1000) { + resetCachedCostInfo(Caller); + return; + } + + // For large functions, we can save a lot of computation time by skipping + // recalculations. + if (CallerMetrics.NumCalls > 0) + --CallerMetrics.NumCalls; + + if (Callee == 0) return; + + CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics; + + // If we don't have metrics for the callee, don't recalculate them just to + // update an approximation in the caller. Instead, just recalculate the + // caller info from scratch. + if (CalleeMetrics.NumBlocks == 0) { + resetCachedCostInfo(Caller); + return; + } + + // Since CalleeMetrics were already calculated, we know that the CallerMetrics + // reference isn't invalidated: both were in the DenseMap. + CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca; + + // FIXME: If any of these three are true for the callee, the callee was + // not inlined into the caller, so I think they're redundant here. + CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp; + CallerMetrics.isRecursive |= CalleeMetrics.isRecursive; + CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr; + + CallerMetrics.NumInsts += CalleeMetrics.NumInsts; + CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks; + CallerMetrics.NumCalls += CalleeMetrics.NumCalls; + CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts; + CallerMetrics.NumRets += CalleeMetrics.NumRets; + + // analyzeBasicBlock counts each function argument as an inst. + if (CallerMetrics.NumInsts >= Callee->arg_size()) + CallerMetrics.NumInsts -= Callee->arg_size(); + else + CallerMetrics.NumInsts = 0; + + // We are not updating the argument weights. We have already determined that + // Caller is a fairly large function, so we accept the loss of precision. +} + +/// clear - empty the cache of inline costs +void InlineCostAnalyzer::clear() { + CachedFunctionInfo.clear(); +}