X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FInstructionSimplify.cpp;h=16a9a0481c5eb25077f1836589a1a0957704c0aa;hb=9133783d5483e38b16af6c10df7a8bbe655d3446;hp=2d202f7b9834814ba743556bfa8a1b66bd281f86;hpb=84dd4fa2e36f72050f5c46577359f5df0467e3e4;p=oota-llvm.git diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index 2d202f7b983..16a9a0481c5 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -18,12 +18,17 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instsimplify" +#include "llvm/GlobalAlias.h" +#include "llvm/Operator.h" #include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SetVector.h" #include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/ConstantRange.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Target/TargetData.h" @@ -36,16 +41,53 @@ STATISTIC(NumExpand, "Number of expansions"); STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc, "Number of reassociations"); -static Value *SimplifyAndInst(Value *, Value *, const TargetData *, - const DominatorTree *, unsigned); -static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, - const DominatorTree *, unsigned); -static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, - const DominatorTree *, unsigned); -static Value *SimplifyOrInst(Value *, Value *, const TargetData *, - const DominatorTree *, unsigned); -static Value *SimplifyXorInst(Value *, Value *, const TargetData *, - const DominatorTree *, unsigned); +struct Query { + const TargetData *TD; + const TargetLibraryInfo *TLI; + const DominatorTree *DT; + + Query(const TargetData *td, const TargetLibraryInfo *tli, + const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {} +}; + +static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); +static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, + unsigned); +static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, + unsigned); +static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); +static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); +static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); + +/// getFalse - For a boolean type, or a vector of boolean type, return false, or +/// a vector with every element false, as appropriate for the type. +static Constant *getFalse(Type *Ty) { + assert(Ty->getScalarType()->isIntegerTy(1) && + "Expected i1 type or a vector of i1!"); + return Constant::getNullValue(Ty); +} + +/// getTrue - For a boolean type, or a vector of boolean type, return true, or +/// a vector with every element true, as appropriate for the type. +static Constant *getTrue(Type *Ty) { + assert(Ty->getScalarType()->isIntegerTy(1) && + "Expected i1 type or a vector of i1!"); + return Constant::getAllOnesValue(Ty); +} + +/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? +static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, + Value *RHS) { + CmpInst *Cmp = dyn_cast(V); + if (!Cmp) + return false; + CmpInst::Predicate CPred = Cmp->getPredicate(); + Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); + if (CPred == Pred && CLHS == LHS && CRHS == RHS) + return true; + return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && + CRHS == LHS; +} /// ValueDominatesPHI - Does the given value dominate the specified phi node? static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { @@ -54,9 +96,20 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { // Arguments and constants dominate all instructions. return true; + // If we are processing instructions (and/or basic blocks) that have not been + // fully added to a function, the parent nodes may still be null. Simply + // return the conservative answer in these cases. + if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) + return false; + // If we have a DominatorTree then do a precise test. - if (DT) + if (DT) { + if (!DT->isReachableFromEntry(P->getParent())) + return true; + if (!DT->isReachableFromEntry(I->getParent())) + return false; return DT->dominates(I, P); + } // Otherwise, if the instruction is in the entry block, and is not an invoke, // then it obviously dominates all phi nodes. @@ -73,8 +126,8 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". /// Returns the simplified value, or null if no simplification was performed. static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, - unsigned OpcToExpand, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { + unsigned OpcToExpand, const Query &Q, + unsigned MaxRecurse) { Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) @@ -86,8 +139,8 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, // It does! Try turning it into "(A op C) op' (B op C)". Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; // Do "A op C" and "B op C" both simplify? - if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) - if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { + if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) + if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { // They do! Return "L op' R" if it simplifies or is already available. // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) @@ -96,8 +149,7 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, return LHS; } // Otherwise return "L op' R" if it simplifies. - if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, - MaxRecurse)) { + if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { ++NumExpand; return V; } @@ -110,8 +162,8 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, // It does! Try turning it into "(A op B) op' (A op C)". Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); // Do "A op B" and "A op C" both simplify? - if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) - if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) { + if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) + if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { // They do! Return "L op' R" if it simplifies or is already available. // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) @@ -120,8 +172,7 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, return RHS; } // Otherwise return "L op' R" if it simplifies. - if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, - MaxRecurse)) { + if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { ++NumExpand; return V; } @@ -136,8 +187,8 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". /// Returns the simplified value, or null if no simplification was performed. static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, - unsigned OpcToExtract, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { + unsigned OpcToExtract, const Query &Q, + unsigned MaxRecurse) { Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) @@ -161,7 +212,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, Value *DD = A == C ? D : C; // Form "A op' (B op DD)" if it simplifies completely. // Does "B op DD" simplify? - if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) { // It does! Return "A op' V" if it simplifies or is already available. // If V equals B then "A op' V" is just the LHS. If V equals DD then // "A op' V" is just the RHS. @@ -170,7 +221,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, return V == B ? LHS : RHS; } // Otherwise return "A op' V" if it simplifies. - if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) { ++NumFactor; return W; } @@ -184,7 +235,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, Value *CC = B == D ? C : D; // Form "(A op CC) op' B" if it simplifies completely.. // Does "A op CC" simplify? - if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) { // It does! Return "V op' B" if it simplifies or is already available. // If V equals A then "V op' B" is just the LHS. If V equals CC then // "V op' B" is just the RHS. @@ -193,7 +244,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, return V == A ? LHS : RHS; } // Otherwise return "V op' B" if it simplifies. - if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) { ++NumFactor; return W; } @@ -206,9 +257,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, /// SimplifyAssociativeBinOp - Generic simplifications for associative binary /// operations. Returns the simpler value, or null if none was found. static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, - const TargetData *TD, - const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); @@ -226,12 +275,12 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, Value *C = RHS; // Does "B op C" simplify? - if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { // It does! Return "A op V" if it simplifies or is already available. // If V equals B then "A op V" is just the LHS. if (V == B) return LHS; // Otherwise return "A op V" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { ++NumReassoc; return W; } @@ -245,12 +294,12 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, Value *C = Op1->getOperand(1); // Does "A op B" simplify? - if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { // It does! Return "V op C" if it simplifies or is already available. // If V equals B then "V op C" is just the RHS. if (V == B) return RHS; // Otherwise return "V op C" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { ++NumReassoc; return W; } @@ -268,12 +317,12 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, Value *C = RHS; // Does "C op A" simplify? - if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { // It does! Return "V op B" if it simplifies or is already available. // If V equals A then "V op B" is just the LHS. if (V == A) return LHS; // Otherwise return "V op B" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { ++NumReassoc; return W; } @@ -287,12 +336,12 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, Value *C = Op1->getOperand(1); // Does "C op A" simplify? - if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { + if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { // It does! Return "B op V" if it simplifies or is already available. // If V equals C then "B op V" is just the RHS. if (V == C) return RHS; // Otherwise return "B op V" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) { + if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { ++NumReassoc; return W; } @@ -307,9 +356,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, /// evaluating it on both branches of the select results in the same value. /// Returns the common value if so, otherwise returns null. static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, - const TargetData *TD, - const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return 0; @@ -326,11 +373,11 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, Value *TV; Value *FV; if (SI == LHS) { - TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse); - FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse); + TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); + FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); } else { - TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse); - FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse); + TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); + FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); } // If they simplified to the same value, then return the common value. @@ -381,8 +428,7 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, /// result in the same value. Returns the common value if so, otherwise returns /// null. static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const TargetData *TD, - const DominatorTree *DT, + Value *RHS, const Query &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) @@ -395,40 +441,67 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, } assert(isa(LHS) && "Not comparing with a select instruction!"); SelectInst *SI = cast(LHS); + Value *Cond = SI->getCondition(); + Value *TV = SI->getTrueValue(); + Value *FV = SI->getFalseValue(); // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. // Does "cmp TV, RHS" simplify? - if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT, - MaxRecurse)) { - // It does! Does "cmp FV, RHS" simplify? - if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT, - MaxRecurse)) { - // It does! If they simplified to the same value, then use it as the - // result of the original comparison. - if (TCmp == FCmp) - return TCmp; - Value *Cond = SI->getCondition(); - // If the false value simplified to false, then the result of the compare - // is equal to "Cond && TCmp". This also catches the case when the false - // value simplified to false and the true value to true, returning "Cond". - if (match(FCmp, m_Zero())) - if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse)) - return V; - // If the true value simplified to true, then the result of the compare - // is equal to "Cond || FCmp". - if (match(TCmp, m_One())) - if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse)) - return V; - // Finally, if the false value simplified to true and the true value to - // false, then the result of the compare is equal to "!Cond". - if (match(FCmp, m_One()) && match(TCmp, m_Zero())) - if (Value *V = - SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), - TD, DT, MaxRecurse)) - return V; - } + Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); + if (TCmp == Cond) { + // It not only simplified, it simplified to the select condition. Replace + // it with 'true'. + TCmp = getTrue(Cond->getType()); + } else if (!TCmp) { + // It didn't simplify. However if "cmp TV, RHS" is equal to the select + // condition then we can replace it with 'true'. Otherwise give up. + if (!isSameCompare(Cond, Pred, TV, RHS)) + return 0; + TCmp = getTrue(Cond->getType()); } + // Does "cmp FV, RHS" simplify? + Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); + if (FCmp == Cond) { + // It not only simplified, it simplified to the select condition. Replace + // it with 'false'. + FCmp = getFalse(Cond->getType()); + } else if (!FCmp) { + // It didn't simplify. However if "cmp FV, RHS" is equal to the select + // condition then we can replace it with 'false'. Otherwise give up. + if (!isSameCompare(Cond, Pred, FV, RHS)) + return 0; + FCmp = getFalse(Cond->getType()); + } + + // If both sides simplified to the same value, then use it as the result of + // the original comparison. + if (TCmp == FCmp) + return TCmp; + + // The remaining cases only make sense if the select condition has the same + // type as the result of the comparison, so bail out if this is not so. + if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) + return 0; + // If the false value simplified to false, then the result of the compare + // is equal to "Cond && TCmp". This also catches the case when the false + // value simplified to false and the true value to true, returning "Cond". + if (match(FCmp, m_Zero())) + if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) + return V; + // If the true value simplified to true, then the result of the compare + // is equal to "Cond || FCmp". + if (match(TCmp, m_One())) + if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) + return V; + // Finally, if the false value simplified to true and the true value to + // false, then the result of the compare is equal to "!Cond". + if (match(FCmp, m_One()) && match(TCmp, m_Zero())) + if (Value *V = + SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), + Q, MaxRecurse)) + return V; + return 0; } @@ -437,8 +510,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, /// it on the incoming phi values yields the same result for every value. If so /// returns the common value, otherwise returns null. static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return 0; @@ -447,13 +519,13 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, if (isa(LHS)) { PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. - if (!ValueDominatesPHI(RHS, PI, DT)) + if (!ValueDominatesPHI(RHS, PI, Q.DT)) return 0; } else { assert(isa(RHS) && "No PHI instruction operand!"); PI = cast(RHS); // Bail out if LHS and the phi may be mutually interdependent due to a loop. - if (!ValueDominatesPHI(LHS, PI, DT)) + if (!ValueDominatesPHI(LHS, PI, Q.DT)) return 0; } @@ -464,8 +536,8 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; Value *V = PI == LHS ? - SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) : - SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse); + SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : + SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) @@ -481,8 +553,7 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, /// incoming phi values yields the same result every time. If so returns the /// common result, otherwise returns null. static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return 0; @@ -496,7 +567,7 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, PHINode *PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. - if (!ValueDominatesPHI(RHS, PI, DT)) + if (!ValueDominatesPHI(RHS, PI, Q.DT)) return 0; // Evaluate the BinOp on the incoming phi values. @@ -505,7 +576,7 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, Value *Incoming = PI->getIncomingValue(i); // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; - Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse); + Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) @@ -519,13 +590,12 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, /// SimplifyAddInst - Given operands for an Add, see if we can /// fold the result. If not, this returns null. static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; - return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), - Ops, 2, TD); + return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops, + Q.TD, Q.TLI); } // Canonicalize the constant to the RHS. @@ -555,17 +625,17 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, /// i1 add -> xor. if (MaxRecurse && Op0->getType()->isIntegerTy(1)) - if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT, + if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) return V; // Mul distributes over Add. Try some generic simplifications based on this. if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // Threading Add over selects and phi nodes is pointless, so don't bother. @@ -581,20 +651,116 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, } Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); + const TargetData *TD, const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), + RecursionLimit); +} + +/// \brief Accumulate the constant integer offset a GEP represents. +/// +/// Given a getelementptr instruction/constantexpr, accumulate the constant +/// offset from the base pointer into the provided APInt 'Offset'. Returns true +/// if the GEP has all-constant indices. Returns false if any non-constant +/// index is encountered leaving the 'Offset' in an undefined state. The +/// 'Offset' APInt must be the bitwidth of the target's pointer size. +static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP, + APInt &Offset) { + unsigned IntPtrWidth = TD.getPointerSizeInBits(); + assert(IntPtrWidth == Offset.getBitWidth()); + + gep_type_iterator GTI = gep_type_begin(GEP); + for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E; + ++I, ++GTI) { + ConstantInt *OpC = dyn_cast(*I); + if (!OpC) return false; + if (OpC->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = dyn_cast(*GTI)) { + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = TD.getStructLayout(STy); + Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); + continue; + } + + APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType())); + Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; + } + return true; +} + +/// \brief Compute the base pointer and cumulative constant offsets for V. +/// +/// This strips all constant offsets off of V, leaving it the base pointer, and +/// accumulates the total constant offset applied in the returned constant. It +/// returns 0 if V is not a pointer, and returns the constant '0' if there are +/// no constant offsets applied. +static Constant *stripAndComputeConstantOffsets(const TargetData &TD, + Value *&V) { + if (!V->getType()->isPointerTy()) + return 0; + + unsigned IntPtrWidth = TD.getPointerSizeInBits(); + APInt Offset = APInt::getNullValue(IntPtrWidth); + + // Even though we don't look through PHI nodes, we could be called on an + // instruction in an unreachable block, which may be on a cycle. + SmallPtrSet Visited; + Visited.insert(V); + do { + if (GEPOperator *GEP = dyn_cast(V)) { + if (!GEP->isInBounds() || !accumulateGEPOffset(TD, GEP, Offset)) + break; + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast) { + V = cast(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast(V)) { + if (GA->mayBeOverridden()) + break; + V = GA->getAliasee(); + } else { + break; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } while (Visited.insert(V)); + + Type *IntPtrTy = TD.getIntPtrType(V->getContext()); + return ConstantInt::get(IntPtrTy, Offset); +} + +/// \brief Compute the constant difference between two pointer values. +/// If the difference is not a constant, returns zero. +static Constant *computePointerDifference(const TargetData &TD, + Value *LHS, Value *RHS) { + Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS); + if (!LHSOffset) + return 0; + Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS); + if (!RHSOffset) + return 0; + + // If LHS and RHS are not related via constant offsets to the same base + // value, there is nothing we can do here. + if (LHS != RHS) + return 0; + + // Otherwise, the difference of LHS - RHS can be computed as: + // LHS - RHS + // = (LHSOffset + Base) - (RHSOffset + Base) + // = LHSOffset - RHSOffset + return ConstantExpr::getSub(LHSOffset, RHSOffset); } /// SimplifySubInst - Given operands for a Sub, see if we can /// fold the result. If not, this returns null. static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), - Ops, 2, TD); + Ops, Q.TD, Q.TLI); } // X - undef -> undef @@ -622,19 +788,17 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, Value *Y = 0, *Z = Op1; if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z // See if "V === Y - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) // It does! Now see if "X + V" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT, - MaxRecurse-1)) { + if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } // See if "V === X - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) // It does! Now see if "Y + V" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT, - MaxRecurse-1)) { + if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; @@ -646,19 +810,17 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, X = Op0; if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) // See if "V === X - Y" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) // It does! Now see if "V - Z" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT, - MaxRecurse-1)) { + if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } // See if "V === X - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) // It does! Now see if "V - Y" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT, - MaxRecurse-1)) { + if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; @@ -670,23 +832,39 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, Z = Op0; if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) // See if "V === Z - X" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) // It does! Now see if "V + Y" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT, - MaxRecurse-1)) { + if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } + // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. + if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && + match(Op1, m_Trunc(m_Value(Y)))) + if (X->getType() == Y->getType()) + // See if "V === X - Y" simplifies. + if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) + // It does! Now see if "trunc V" simplifies. + if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) + // It does, return the simplified "trunc V". + return W; + + // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). + if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) && + match(Op1, m_PtrToInt(m_Value(Y)))) + if (Constant *Result = computePointerDifference(*Q.TD, X, Y)) + return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); + // Mul distributes over Sub. Try some generic simplifications based on this. if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // i1 sub -> xor. if (MaxRecurse && Op0->getType()->isIntegerTy(1)) - if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Threading Sub over selects and phi nodes is pointless, so don't bother. @@ -702,19 +880,21 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, } Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); + const TargetData *TD, const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyMulInst - Given operands for a Mul, see if we can /// fold the result. If not, this returns null. -static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { +static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), - Ops, 2, TD); + Ops, Q.TD, Q.TLI); } // Canonicalize the constant to the RHS. @@ -734,40 +914,37 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, return Op0; // (X / Y) * Y -> X if the division is exact. - Value *X = 0, *Y = 0; - if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y - (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y) - BinaryOperator *Div = cast(Y == Op1 ? Op0 : Op1); - if (Div->isExact()) - return X; - } + Value *X = 0; + if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y + match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) + return X; // i1 mul -> and. if (MaxRecurse && Op0->getType()->isIntegerTy(1)) - if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT, + if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; // Mul distributes over Add. Try some generic simplifications based on this. if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT, + if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT, + if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; @@ -775,19 +952,19 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, } Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can /// fold the result. If not, this returns null. static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { if (Constant *C0 = dyn_cast(Op0)) { if (Constant *C1 = dyn_cast(Op1)) { Constant *Ops[] = { C0, C1 }; - return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD); + return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); } } @@ -821,7 +998,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, Value *X = 0, *Y = 0; if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 - BinaryOperator *Mul = cast(Op0); + OverflowingBinaryOperator *Mul = cast(Op0); // If the Mul knows it does not overflow, then we are good to go. if ((isSigned && Mul->hasNoSignedWrap()) || (!isSigned && Mul->hasNoUnsignedWrap())) @@ -840,13 +1017,13 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse)) + if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse)) + if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) return V; return 0; @@ -854,36 +1031,38 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, /// SimplifySDivInst - Given operands for an SDiv, see if we can /// fold the result. If not, this returns null. -static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { - if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse)) +static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { + if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) return V; return 0; } Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyUDivInst - Given operands for a UDiv, see if we can /// fold the result. If not, this returns null. -static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { - if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse)) +static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { + if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) return V; return 0; } Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } -static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *, - const DominatorTree *, unsigned) { +static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, + unsigned) { // undef / X -> undef (the undef could be a snan). if (match(Op0, m_Undef())) return Op0; @@ -896,19 +1075,124 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *, } Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); +} + +/// SimplifyRem - Given operands for an SRem or URem, see if we can +/// fold the result. If not, this returns null. +static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, + const Query &Q, unsigned MaxRecurse) { + if (Constant *C0 = dyn_cast(Op0)) { + if (Constant *C1 = dyn_cast(Op1)) { + Constant *Ops[] = { C0, C1 }; + return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); + } + } + + // X % undef -> undef + if (match(Op1, m_Undef())) + return Op1; + + // undef % X -> 0 + if (match(Op0, m_Undef())) + return Constant::getNullValue(Op0->getType()); + + // 0 % X -> 0, we don't need to preserve faults! + if (match(Op0, m_Zero())) + return Op0; + + // X % 0 -> undef, we don't need to preserve faults! + if (match(Op1, m_Zero())) + return UndefValue::get(Op0->getType()); + + // X % 1 -> 0 + if (match(Op1, m_One())) + return Constant::getNullValue(Op0->getType()); + + if (Op0->getType()->isIntegerTy(1)) + // It can't be remainder by zero, hence it must be remainder by one. + return Constant::getNullValue(Op0->getType()); + + // X % X -> 0 + if (Op0 == Op1) + return Constant::getNullValue(Op0->getType()); + + // If the operation is with the result of a select instruction, check whether + // operating on either branch of the select always yields the same value. + if (isa(Op0) || isa(Op1)) + if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) + return V; + + // If the operation is with the result of a phi instruction, check whether + // operating on all incoming values of the phi always yields the same value. + if (isa(Op0) || isa(Op1)) + if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) + return V; + + return 0; +} + +/// SimplifySRemInst - Given operands for an SRem, see if we can +/// fold the result. If not, this returns null. +static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { + if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) + return V; + + return 0; +} + +Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); +} + +/// SimplifyURemInst - Given operands for a URem, see if we can +/// fold the result. If not, this returns null. +static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { + if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) + return V; + + return 0; +} + +Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); +} + +static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, + unsigned) { + // undef % X -> undef (the undef could be a snan). + if (match(Op0, m_Undef())) + return Op0; + + // X % undef -> undef + if (match(Op1, m_Undef())) + return Op1; + + return 0; +} + +Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can /// fold the result. If not, this returns null. static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { if (Constant *C0 = dyn_cast(Op0)) { if (Constant *C1 = dyn_cast(Op1)) { Constant *Ops[] = { C0, C1 }; - return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD); + return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); } } @@ -933,13 +1217,13 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse)) + if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse)) + if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) return V; return 0; @@ -948,9 +1232,8 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, /// SimplifyShlInst - Given operands for an Shl, see if we can /// fold the result. If not, this returns null. static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse)) + const Query &Q, unsigned MaxRecurse) { + if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) return V; // undef << X -> 0 @@ -959,23 +1242,23 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, // (X >> A) << A -> X Value *X; - if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) && - cast(Op0)->isExact()) + if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) return X; return 0; } Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); + const TargetData *TD, const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyLShrInst - Given operands for an LShr, see if we can /// fold the result. If not, this returns null. static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse)) + const Query &Q, unsigned MaxRecurse) { + if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse)) return V; // undef >>l X -> 0 @@ -992,16 +1275,18 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, } Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit); + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyAShrInst - Given operands for an AShr, see if we can /// fold the result. If not, this returns null. static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse)) + const Query &Q, unsigned MaxRecurse) { + if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse)) return V; // all ones >>a X -> all ones @@ -1022,19 +1307,22 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, } Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit); + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyAndInst - Given operands for an And, see if we can /// fold the result. If not, this returns null. -static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { +static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), - Ops, 2, TD); + Ops, Q.TD, Q.TLI); } // Canonicalize the constant to the RHS. @@ -1073,37 +1361,46 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, (A == Op0 || B == Op0)) return Op0; + // A & (-A) = A if A is a power of two or zero. + if (match(Op0, m_Neg(m_Specific(Op1))) || + match(Op1, m_Neg(m_Specific(Op0)))) { + if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true)) + return Op0; + if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true)) + return Op1; + } + // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT, + if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; // And distributes over Or. Try some generic simplifications based on this. if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // And distributes over Xor. Try some generic simplifications based on this. if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // Or distributes over And. Try some generic simplifications based on this. if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT, + if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT, + if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; @@ -1111,19 +1408,20 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, } Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyOrInst - Given operands for an Or, see if we can /// fold the result. If not, this returns null. -static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { +static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), - Ops, 2, TD); + Ops, Q.TD, Q.TLI); } // Canonicalize the constant to the RHS. @@ -1173,51 +1471,51 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, return Constant::getAllOnesValue(Op0->getType()); // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT, + if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; // Or distributes over And. Try some generic simplifications based on this. - if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, - TD, DT, MaxRecurse)) + if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, + MaxRecurse)) return V; // And distributes over Or. Try some generic simplifications based on this. if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT, + if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT, - MaxRecurse)) + if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; return 0; } Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyXorInst - Given operands for a Xor, see if we can /// fold the result. If not, this returns null. -static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, - const DominatorTree *DT, unsigned MaxRecurse) { +static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, + unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), - Ops, 2, TD); + Ops, Q.TD, Q.TLI); } // Canonicalize the constant to the RHS. @@ -1242,13 +1540,13 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, return Constant::getAllOnesValue(Op0->getType()); // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT, + if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) return V; // And distributes over Xor. Try some generic simplifications based on this. if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, - TD, DT, MaxRecurse)) + Q, MaxRecurse)) return V; // Threading Xor over selects and phi nodes is pointless, so don't bother. @@ -1264,33 +1562,93 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, } Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { - return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit); + return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); } -static const Type *GetCompareTy(Value *Op) { +static Type *GetCompareTy(Value *Op) { return CmpInst::makeCmpResultType(Op->getType()); } +/// ExtractEquivalentCondition - Rummage around inside V looking for something +/// equivalent to the comparison "LHS Pred RHS". Return such a value if found, +/// otherwise return null. Helper function for analyzing max/min idioms. +static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, + Value *LHS, Value *RHS) { + SelectInst *SI = dyn_cast(V); + if (!SI) + return 0; + CmpInst *Cmp = dyn_cast(SI->getCondition()); + if (!Cmp) + return 0; + Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); + if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) + return Cmp; + if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && + LHS == CmpRHS && RHS == CmpLHS) + return Cmp; + return 0; +} + +static Constant *computePointerICmp(const TargetData &TD, + CmpInst::Predicate Pred, + Value *LHS, Value *RHS) { + // We can only fold certain predicates on pointer comparisons. + switch (Pred) { + default: + return 0; + + // Equality comaprisons are easy to fold. + case CmpInst::ICMP_EQ: + case CmpInst::ICMP_NE: + break; + + // We can only handle unsigned relational comparisons because 'inbounds' on + // a GEP only protects against unsigned wrapping. + case CmpInst::ICMP_UGT: + case CmpInst::ICMP_UGE: + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + // However, we have to switch them to their signed variants to handle + // negative indices from the base pointer. + Pred = ICmpInst::getSignedPredicate(Pred); + break; + } + + Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS); + if (!LHSOffset) + return 0; + Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS); + if (!RHSOffset) + return 0; + + // If LHS and RHS are not related via constant offsets to the same base + // value, there is nothing we can do here. + if (LHS != RHS) + return 0; + + return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); +} + /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can /// fold the result. If not, this returns null. static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) - return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); + return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } - const Type *ITy = GetCompareTy(LHS); // The return type. - const Type *OpTy = LHS->getType(); // The operand type. + Type *ITy = GetCompareTy(LHS); // The return type. + Type *OpTy = LHS->getType(); // The operand type. // icmp X, X -> true/false // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false @@ -1299,8 +1657,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); // Special case logic when the operands have i1 type. - if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() && - cast(OpTy)->getElementType()->isIntegerTy(1))) { + if (OpTy->getScalarType()->isIntegerTy(1)) { switch (Pred) { default: break; case ICmpInst::ICMP_EQ: @@ -1336,64 +1693,102 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, } } - // icmp , - Different stack variables have - // different addresses, and what's more the address of a stack variable is - // never null or equal to the address of a global. Note that generalizing - // to the case where LHS is a global variable address or null is pointless, - // since if both LHS and RHS are constants then we already constant folded - // the compare, and if only one of them is then we moved it to RHS already. - if (isa(LHS) && (isa(RHS) || isa(RHS) || - isa(RHS))) - // We already know that LHS != RHS. - return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); + // icmp , - Different identified objects have + // different addresses (unless null), and what's more the address of an + // identified local is never equal to another argument (again, barring null). + // Note that generalizing to the case where LHS is a global variable address + // or null is pointless, since if both LHS and RHS are constants then we + // already constant folded the compare, and if only one of them is then we + // moved it to RHS already. + Value *LHSPtr = LHS->stripPointerCasts(); + Value *RHSPtr = RHS->stripPointerCasts(); + if (LHSPtr == RHSPtr) + return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); + + // Be more aggressive about stripping pointer adjustments when checking a + // comparison of an alloca address to another object. We can rip off all + // inbounds GEP operations, even if they are variable. + LHSPtr = LHSPtr->stripInBoundsOffsets(); + if (llvm::isIdentifiedObject(LHSPtr)) { + RHSPtr = RHSPtr->stripInBoundsOffsets(); + if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) { + // If both sides are different identified objects, they aren't equal + // unless they're null. + if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) && + Pred == CmpInst::ICMP_EQ) + return ConstantInt::get(ITy, false); + + // A local identified object (alloca or noalias call) can't equal any + // incoming argument, unless they're both null. + if (isa(LHSPtr) && isa(RHSPtr) && + Pred == CmpInst::ICMP_EQ) + return ConstantInt::get(ITy, false); + } + + // Assume that the constant null is on the right. + if (llvm::isKnownNonNull(LHSPtr) && isa(RHSPtr)) { + if (Pred == CmpInst::ICMP_EQ) + return ConstantInt::get(ITy, false); + else if (Pred == CmpInst::ICMP_NE) + return ConstantInt::get(ITy, true); + } + } else if (isa(LHSPtr)) { + RHSPtr = RHSPtr->stripInBoundsOffsets(); + // An alloca can't be equal to an argument. + if (isa(RHSPtr)) { + if (Pred == CmpInst::ICMP_EQ) + return ConstantInt::get(ITy, false); + else if (Pred == CmpInst::ICMP_NE) + return ConstantInt::get(ITy, true); + } + } // If we are comparing with zero then try hard since this is a common case. if (match(RHS, m_Zero())) { bool LHSKnownNonNegative, LHSKnownNegative; switch (Pred) { - default: - assert(false && "Unknown ICmp predicate!"); + default: llvm_unreachable("Unknown ICmp predicate!"); case ICmpInst::ICMP_ULT: - return ConstantInt::getFalse(LHS->getContext()); + return getFalse(ITy); case ICmpInst::ICMP_UGE: - return ConstantInt::getTrue(LHS->getContext()); + return getTrue(ITy); case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: - if (isKnownNonZero(LHS, TD)) - return ConstantInt::getFalse(LHS->getContext()); + if (isKnownNonZero(LHS, Q.TD)) + return getFalse(ITy); break; case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: - if (isKnownNonZero(LHS, TD)) - return ConstantInt::getTrue(LHS->getContext()); + if (isKnownNonZero(LHS, Q.TD)) + return getTrue(ITy); break; case ICmpInst::ICMP_SLT: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); if (LHSKnownNegative) - return ConstantInt::getTrue(LHS->getContext()); + return getTrue(ITy); if (LHSKnownNonNegative) - return ConstantInt::getFalse(LHS->getContext()); + return getFalse(ITy); break; case ICmpInst::ICMP_SLE: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); if (LHSKnownNegative) - return ConstantInt::getTrue(LHS->getContext()); - if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) - return ConstantInt::getFalse(LHS->getContext()); + return getTrue(ITy); + if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD)) + return getFalse(ITy); break; case ICmpInst::ICMP_SGE: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); if (LHSKnownNegative) - return ConstantInt::getFalse(LHS->getContext()); + return getFalse(ITy); if (LHSKnownNonNegative) - return ConstantInt::getTrue(LHS->getContext()); + return getTrue(ITy); break; case ICmpInst::ICMP_SGT: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); if (LHSKnownNegative) - return ConstantInt::getFalse(LHS->getContext()); - if (LHSKnownNonNegative && isKnownNonZero(LHS, TD)) - return ConstantInt::getTrue(LHS->getContext()); + return getFalse(ITy); + if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD)) + return getTrue(ITy); break; } } @@ -1420,6 +1815,9 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // 'srem x, CI2' produces (-|CI2|, |CI2|). Upper = CI2->getValue().abs(); Lower = (-Upper) + 1; + } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { + // 'udiv CI2, x' produces [0, CI2]. + Upper = CI2->getValue() + 1; } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. APInt NegOne = APInt::getAllOnesValue(Width); @@ -1467,24 +1865,24 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if (isa(LHS) && (isa(RHS) || isa(RHS))) { Instruction *LI = cast(LHS); Value *SrcOp = LI->getOperand(0); - const Type *SrcTy = SrcOp->getType(); - const Type *DstTy = LI->getType(); + Type *SrcTy = SrcOp->getType(); + Type *DstTy = LI->getType(); // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input // if the integer type is the same size as the pointer type. - if (MaxRecurse && TD && isa(LI) && - TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) { + if (MaxRecurse && Q.TD && isa(LI) && + Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) { if (Constant *RHSC = dyn_cast(RHS)) { // Transfer the cast to the constant. if (Value *V = SimplifyICmpInst(Pred, SrcOp, ConstantExpr::getIntToPtr(RHSC, SrcTy), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; } else if (PtrToIntInst *RI = dyn_cast(RHS)) { if (RI->getOperand(0)->getType() == SrcTy) // Compare without the cast. if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; } } @@ -1496,7 +1894,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) // Compare X and Y. Note that signed predicates become unsigned. if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), - SrcOp, RI->getOperand(0), TD, DT, + SrcOp, RI->getOperand(0), Q, MaxRecurse-1)) return V; } @@ -1512,15 +1910,14 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // also a case of comparing two zero-extended values. if (RExt == CI && MaxRecurse) if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), - SrcOp, Trunc, TD, DT, MaxRecurse-1)) + SrcOp, Trunc, Q, MaxRecurse-1)) return V; // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit // there. Use this to work out the result of the comparison. if (RExt != CI) { switch (Pred) { - default: - assert(false && "Unknown ICmp predicate!"); + default: llvm_unreachable("Unknown ICmp predicate!"); // LHS getOperand(0)->getType()) // Compare X and Y. Note that the predicate does not change. if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; } // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended @@ -1571,16 +1968,14 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // If the re-extended constant didn't change then this is effectively // also a case of comparing two sign-extended values. if (RExt == CI && MaxRecurse) - if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT, - MaxRecurse-1)) + if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) return V; // Otherwise the upper bits of LHS are all equal, while RHS has varying // bits there. Use this to work out the result of the comparison. if (RExt != CI) { switch (Pred) { - default: - assert(false && "Unknown ICmp predicate!"); + default: llvm_unreachable("Unknown ICmp predicate!"); case ICmpInst::ICMP_EQ: return ConstantInt::getFalse(CI->getContext()); case ICmpInst::ICMP_NE: @@ -1607,7 +2002,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if (MaxRecurse) if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, Constant::getNullValue(SrcTy), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; break; case ICmpInst::ICMP_ULT: @@ -1616,7 +2011,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if (MaxRecurse) if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, Constant::getNullValue(SrcTy), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; break; } @@ -1650,14 +2045,14 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if ((A == RHS || B == RHS) && NoLHSWrapProblem) if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, Constant::getNullValue(RHS->getType()), - TD, DT, MaxRecurse-1)) + Q, MaxRecurse-1)) return V; // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. if ((C == LHS || D == LHS) && NoRHSWrapProblem) if (Value *V = SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), - C == LHS ? D : C, TD, DT, MaxRecurse-1)) + C == LHS ? D : C, Q, MaxRecurse-1)) return V; // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. @@ -1666,7 +2061,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // Determine Y and Z in the form icmp (X+Y), (X+Z). Value *Y = (A == C || A == D) ? B : A; Value *Z = (C == A || C == B) ? D : C; - if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1)) + if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) return V; } } @@ -1678,24 +2073,24 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: - ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); + ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD); if (!KnownNonNegative) break; // fall-through case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: - return ConstantInt::getFalse(RHS->getContext()); + return getFalse(ITy); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: - ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD); + ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD); if (!KnownNonNegative) break; // fall-through case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: - return ConstantInt::getTrue(RHS->getContext()); + return getTrue(ITy); } } if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { @@ -1705,27 +2100,36 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: - ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); + ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD); if (!KnownNonNegative) break; // fall-through - case ICmpInst::ICMP_EQ: + case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: - return ConstantInt::getTrue(RHS->getContext()); + return getTrue(ITy); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: - ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD); + ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD); if (!KnownNonNegative) break; // fall-through - case ICmpInst::ICMP_NE: + case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: - return ConstantInt::getFalse(RHS->getContext()); + return getFalse(ITy); } } + // x udiv y <=u x. + if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { + // icmp pred (X /u Y), X + if (Pred == ICmpInst::ICMP_UGT) + return getFalse(ITy); + if (Pred == ICmpInst::ICMP_ULE) + return getTrue(ITy); + } + if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && LBO->getOperand(1) == RBO->getOperand(1)) { switch (LBO->getOpcode()) { @@ -1737,58 +2141,275 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // fall-through case Instruction::SDiv: case Instruction::AShr: - if (!LBO->isExact() && !RBO->isExact()) + if (!LBO->isExact() || !RBO->isExact()) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), TD, DT, MaxRecurse-1)) + RBO->getOperand(0), Q, MaxRecurse-1)) return V; break; case Instruction::Shl: { - bool NUW = LBO->hasNoUnsignedWrap() && LBO->hasNoUnsignedWrap(); + bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); if (!NUW && !NSW) break; if (!NSW && ICmpInst::isSigned(Pred)) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), TD, DT, MaxRecurse-1)) + RBO->getOperand(0), Q, MaxRecurse-1)) + return V; + break; + } + } + } + + // Simplify comparisons involving max/min. + Value *A, *B; + CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; + CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". + + // Signed variants on "max(a,b)>=a -> true". + if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { + if (A != RHS) std::swap(A, B); // smax(A, B) pred A. + EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". + // We analyze this as smax(A, B) pred A. + P = Pred; + } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && + (A == LHS || B == LHS)) { + if (A != LHS) std::swap(A, B); // A pred smax(A, B). + EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". + // We analyze this as smax(A, B) swapped-pred A. + P = CmpInst::getSwappedPredicate(Pred); + } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && + (A == RHS || B == RHS)) { + if (A != RHS) std::swap(A, B); // smin(A, B) pred A. + EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". + // We analyze this as smax(-A, -B) swapped-pred -A. + // Note that we do not need to actually form -A or -B thanks to EqP. + P = CmpInst::getSwappedPredicate(Pred); + } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && + (A == LHS || B == LHS)) { + if (A != LHS) std::swap(A, B); // A pred smin(A, B). + EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". + // We analyze this as smax(-A, -B) pred -A. + // Note that we do not need to actually form -A or -B thanks to EqP. + P = Pred; + } + if (P != CmpInst::BAD_ICMP_PREDICATE) { + // Cases correspond to "max(A, B) p A". + switch (P) { + default: + break; + case CmpInst::ICMP_EQ: + case CmpInst::ICMP_SLE: + // Equivalent to "A EqP B". This may be the same as the condition tested + // in the max/min; if so, we can just return that. + if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) + return V; + if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) + return V; + // Otherwise, see if "A EqP B" simplifies. + if (MaxRecurse) + if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) + return V; + break; + case CmpInst::ICMP_NE: + case CmpInst::ICMP_SGT: { + CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); + // Equivalent to "A InvEqP B". This may be the same as the condition + // tested in the max/min; if so, we can just return that. + if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) + return V; + if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) + return V; + // Otherwise, see if "A InvEqP B" simplifies. + if (MaxRecurse) + if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) + return V; + break; + } + case CmpInst::ICMP_SGE: + // Always true. + return getTrue(ITy); + case CmpInst::ICMP_SLT: + // Always false. + return getFalse(ITy); + } + } + + // Unsigned variants on "max(a,b)>=a -> true". + P = CmpInst::BAD_ICMP_PREDICATE; + if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { + if (A != RHS) std::swap(A, B); // umax(A, B) pred A. + EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". + // We analyze this as umax(A, B) pred A. + P = Pred; + } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && + (A == LHS || B == LHS)) { + if (A != LHS) std::swap(A, B); // A pred umax(A, B). + EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". + // We analyze this as umax(A, B) swapped-pred A. + P = CmpInst::getSwappedPredicate(Pred); + } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && + (A == RHS || B == RHS)) { + if (A != RHS) std::swap(A, B); // umin(A, B) pred A. + EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". + // We analyze this as umax(-A, -B) swapped-pred -A. + // Note that we do not need to actually form -A or -B thanks to EqP. + P = CmpInst::getSwappedPredicate(Pred); + } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && + (A == LHS || B == LHS)) { + if (A != LHS) std::swap(A, B); // A pred umin(A, B). + EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". + // We analyze this as umax(-A, -B) pred -A. + // Note that we do not need to actually form -A or -B thanks to EqP. + P = Pred; + } + if (P != CmpInst::BAD_ICMP_PREDICATE) { + // Cases correspond to "max(A, B) p A". + switch (P) { + default: + break; + case CmpInst::ICMP_EQ: + case CmpInst::ICMP_ULE: + // Equivalent to "A EqP B". This may be the same as the condition tested + // in the max/min; if so, we can just return that. + if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) + return V; + if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) return V; + // Otherwise, see if "A EqP B" simplifies. + if (MaxRecurse) + if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) + return V; + break; + case CmpInst::ICMP_NE: + case CmpInst::ICMP_UGT: { + CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); + // Equivalent to "A InvEqP B". This may be the same as the condition + // tested in the max/min; if so, we can just return that. + if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) + return V; + if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) + return V; + // Otherwise, see if "A InvEqP B" simplifies. + if (MaxRecurse) + if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) + return V; break; } + case CmpInst::ICMP_UGE: + // Always true. + return getTrue(ITy); + case CmpInst::ICMP_ULT: + // Always false. + return getFalse(ITy); + } + } + + // Variants on "max(x,y) >= min(x,z)". + Value *C, *D; + if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && + match(RHS, m_SMin(m_Value(C), m_Value(D))) && + (A == C || A == D || B == C || B == D)) { + // max(x, ?) pred min(x, ?). + if (Pred == CmpInst::ICMP_SGE) + // Always true. + return getTrue(ITy); + if (Pred == CmpInst::ICMP_SLT) + // Always false. + return getFalse(ITy); + } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && + match(RHS, m_SMax(m_Value(C), m_Value(D))) && + (A == C || A == D || B == C || B == D)) { + // min(x, ?) pred max(x, ?). + if (Pred == CmpInst::ICMP_SLE) + // Always true. + return getTrue(ITy); + if (Pred == CmpInst::ICMP_SGT) + // Always false. + return getFalse(ITy); + } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && + match(RHS, m_UMin(m_Value(C), m_Value(D))) && + (A == C || A == D || B == C || B == D)) { + // max(x, ?) pred min(x, ?). + if (Pred == CmpInst::ICMP_UGE) + // Always true. + return getTrue(ITy); + if (Pred == CmpInst::ICMP_ULT) + // Always false. + return getFalse(ITy); + } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && + match(RHS, m_UMax(m_Value(C), m_Value(D))) && + (A == C || A == D || B == C || B == D)) { + // min(x, ?) pred max(x, ?). + if (Pred == CmpInst::ICMP_ULE) + // Always true. + return getTrue(ITy); + if (Pred == CmpInst::ICMP_UGT) + // Always false. + return getFalse(ITy); + } + + // Simplify comparisons of related pointers using a powerful, recursive + // GEP-walk when we have target data available.. + if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy()) + if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS)) + return C; + + if (GetElementPtrInst *GLHS = dyn_cast(LHS)) { + if (GEPOperator *GRHS = dyn_cast(RHS)) { + if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && + GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && + (ICmpInst::isEquality(Pred) || + (GLHS->isInBounds() && GRHS->isInBounds() && + Pred == ICmpInst::getSignedPredicate(Pred)))) { + // The bases are equal and the indices are constant. Build a constant + // expression GEP with the same indices and a null base pointer to see + // what constant folding can make out of it. + Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); + SmallVector IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); + Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS); + + SmallVector IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); + Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS); + return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); + } } } // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) + if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) + if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) return V; return 0; } Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can /// fold the result. If not, this returns null. static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) - return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); + return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); @@ -1856,27 +2477,31 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) + if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) + if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) return V; return 0; } Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold /// the result. If not, this returns null. -Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, - const TargetData *TD, const DominatorTree *) { +static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, + Value *FalseVal, const Query &Q, + unsigned MaxRecurse) { // select true, X, Y -> X // select false, X, Y -> Y if (ConstantInt *CB = dyn_cast(CondVal)) @@ -1886,62 +2511,114 @@ Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, if (TrueVal == FalseVal) return TrueVal; - if (isa(TrueVal)) // select C, undef, X -> X - return FalseVal; - if (isa(FalseVal)) // select C, X, undef -> X - return TrueVal; if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return TrueVal; return FalseVal; } + if (isa(TrueVal)) // select C, undef, X -> X + return FalseVal; + if (isa(FalseVal)) // select C, X, undef -> X + return TrueVal; return 0; } +Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT), + RecursionLimit); +} + /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can /// fold the result. If not, this returns null. -Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, - const TargetData *TD, const DominatorTree *) { +static Value *SimplifyGEPInst(ArrayRef Ops, const Query &Q, unsigned) { // The type of the GEP pointer operand. - const PointerType *PtrTy = cast(Ops[0]->getType()); + PointerType *PtrTy = dyn_cast(Ops[0]->getType()); + // The GEP pointer operand is not a pointer, it's a vector of pointers. + if (!PtrTy) + return 0; // getelementptr P -> P. - if (NumOps == 1) + if (Ops.size() == 1) return Ops[0]; if (isa(Ops[0])) { // Compute the (pointer) type returned by the GEP instruction. - const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1], - NumOps-1); - const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); + Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); + Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); return UndefValue::get(GEPTy); } - if (NumOps == 2) { + if (Ops.size() == 2) { // getelementptr P, 0 -> P. if (ConstantInt *C = dyn_cast(Ops[1])) if (C->isZero()) return Ops[0]; // getelementptr P, N -> P if P points to a type of zero size. - if (TD) { - const Type *Ty = PtrTy->getElementType(); - if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) + if (Q.TD) { + Type *Ty = PtrTy->getElementType(); + if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0) return Ops[0]; } } // Check to see if this is constant foldable. - for (unsigned i = 0; i != NumOps; ++i) + for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (!isa(Ops[i])) return 0; - return ConstantExpr::getGetElementPtr(cast(Ops[0]), - (Constant *const*)Ops+1, NumOps-1); + return ConstantExpr::getGetElementPtr(cast(Ops[0]), Ops.slice(1)); +} + +Value *llvm::SimplifyGEPInst(ArrayRef Ops, const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit); +} + +/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we +/// can fold the result. If not, this returns null. +static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, + ArrayRef Idxs, const Query &Q, + unsigned) { + if (Constant *CAgg = dyn_cast(Agg)) + if (Constant *CVal = dyn_cast(Val)) + return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); + + // insertvalue x, undef, n -> x + if (match(Val, m_Undef())) + return Agg; + + // insertvalue x, (extractvalue y, n), n + if (ExtractValueInst *EV = dyn_cast(Val)) + if (EV->getAggregateOperand()->getType() == Agg->getType() && + EV->getIndices() == Idxs) { + // insertvalue undef, (extractvalue y, n), n -> y + if (match(Agg, m_Undef())) + return EV->getAggregateOperand(); + + // insertvalue y, (extractvalue y, n), n -> y + if (Agg == EV->getAggregateOperand()) + return Agg; + } + + return 0; +} + +Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, + ArrayRef Idxs, + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT), + RecursionLimit); } /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. -static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { +static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { // If all of the PHI's incoming values are the same then replace the PHI node // with the common value. Value *CommonValue = 0; @@ -1969,64 +2646,77 @@ static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { // instruction, we cannot return X as the result of the PHI node unless it // dominates the PHI block. if (HasUndefInput) - return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; + return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0; return CommonValue; } +static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { + if (Constant *C = dyn_cast(Op)) + return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI); + + return 0; +} + +Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit); +} //=== Helper functions for higher up the class hierarchy. /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can /// fold the result. If not, this returns null. static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { switch (Opcode) { case Instruction::Add: return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, - TD, DT, MaxRecurse); + Q, MaxRecurse); case Instruction::Sub: return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, - TD, DT, MaxRecurse); - case Instruction::Mul: return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse); - case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse); - case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse); - case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse); + Q, MaxRecurse); + case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); + case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); + case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); + case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse); + case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); + case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); + case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse); case Instruction::Shl: return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, - TD, DT, MaxRecurse); + Q, MaxRecurse); case Instruction::LShr: - return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse); + return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); case Instruction::AShr: - return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse); - case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse); - case Instruction::Or: return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse); - case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse); + return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); + case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); + case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); + case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); default: if (Constant *CLHS = dyn_cast(LHS)) if (Constant *CRHS = dyn_cast(RHS)) { Constant *COps[] = {CLHS, CRHS}; - return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); + return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD, + Q.TLI); } // If the operation is associative, try some generic simplifications. if (Instruction::isAssociative(Opcode)) - if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT, - MaxRecurse)) + if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) return V; - // If the operation is with the result of a select instruction, check whether + // If the operation is with the result of a select instruction check whether // operating on either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT, - MaxRecurse)) + if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(LHS) || isa(RHS)) - if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse)) + if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) return V; return 0; @@ -2034,103 +2724,136 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, } Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit); + const TargetData *TD, const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit); } /// SimplifyCmpInst - Given operands for a CmpInst, see if we can /// fold the result. static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT, - unsigned MaxRecurse) { + const Query &Q, unsigned MaxRecurse) { if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) - return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); - return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); + return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); + return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse); } Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const TargetData *TD, const DominatorTree *DT) { - return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); + const TargetData *TD, const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), + RecursionLimit); +} + +static Value *SimplifyCallInst(CallInst *CI, const Query &) { + // call undef -> undef + if (isa(CI->getCalledValue())) + return UndefValue::get(CI->getType()); + + return 0; } /// SimplifyInstruction - See if we can compute a simplified version of this /// instruction. If not, this returns null. Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, + const TargetLibraryInfo *TLI, const DominatorTree *DT) { Value *Result; switch (I->getOpcode()) { default: - Result = ConstantFoldInstruction(I, TD); + Result = ConstantFoldInstruction(I, TD, TLI); break; case Instruction::Add: Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - TD, DT); + TD, TLI, DT); break; case Instruction::Sub: Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - TD, DT); + TD, TLI, DT); break; case Instruction::Mul: - Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::SDiv: - Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::UDiv: - Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::FDiv: - Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); + break; + case Instruction::SRem: + Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); + break; + case Instruction::URem: + Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); + break; + case Instruction::FRem: + Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::Shl: Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - TD, DT); + TD, TLI, DT); break; case Instruction::LShr: Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), cast(I)->isExact(), - TD, DT); + TD, TLI, DT); break; case Instruction::AShr: Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), cast(I)->isExact(), - TD, DT); + TD, TLI, DT); break; case Instruction::And: - Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::Or: - Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::Xor: - Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT); + Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::ICmp: Result = SimplifyICmpInst(cast(I)->getPredicate(), - I->getOperand(0), I->getOperand(1), TD, DT); + I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::FCmp: Result = SimplifyFCmpInst(cast(I)->getPredicate(), - I->getOperand(0), I->getOperand(1), TD, DT); + I->getOperand(0), I->getOperand(1), TD, TLI, DT); break; case Instruction::Select: Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), - I->getOperand(2), TD, DT); + I->getOperand(2), TD, TLI, DT); break; case Instruction::GetElementPtr: { SmallVector Ops(I->op_begin(), I->op_end()); - Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT); + Result = SimplifyGEPInst(Ops, TD, TLI, DT); + break; + } + case Instruction::InsertValue: { + InsertValueInst *IV = cast(I); + Result = SimplifyInsertValueInst(IV->getAggregateOperand(), + IV->getInsertedValueOperand(), + IV->getIndices(), TD, TLI, DT); break; } case Instruction::PHI: - Result = SimplifyPHINode(cast(I), DT); + Result = SimplifyPHINode(cast(I), Query (TD, TLI, DT)); + break; + case Instruction::Call: + Result = SimplifyCallInst(cast(I), Query (TD, TLI, DT)); + break; + case Instruction::Trunc: + Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT); break; } @@ -2140,57 +2863,84 @@ Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, return Result == I ? UndefValue::get(I->getType()) : Result; } -/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then -/// delete the From instruction. In addition to a basic RAUW, this does a -/// recursive simplification of the newly formed instructions. This catches -/// things where one simplification exposes other opportunities. This only -/// simplifies and deletes scalar operations, it does not change the CFG. +/// \brief Implementation of recursive simplification through an instructions +/// uses. /// -void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, - const TargetData *TD, - const DominatorTree *DT) { - assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); - - // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that - // we can know if it gets deleted out from under us or replaced in a - // recursive simplification. - WeakVH FromHandle(From); - WeakVH ToHandle(To); - - while (!From->use_empty()) { - // Update the instruction to use the new value. - Use &TheUse = From->use_begin().getUse(); - Instruction *User = cast(TheUse.getUser()); - TheUse = To; - - // Check to see if the instruction can be folded due to the operand - // replacement. For example changing (or X, Y) into (or X, -1) can replace - // the 'or' with -1. - Value *SimplifiedVal; - { - // Sanity check to make sure 'User' doesn't dangle across - // SimplifyInstruction. - AssertingVH<> UserHandle(User); - - SimplifiedVal = SimplifyInstruction(User, TD, DT); - if (SimplifiedVal == 0) continue; - } +/// This is the common implementation of the recursive simplification routines. +/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to +/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of +/// instructions to process and attempt to simplify it using +/// InstructionSimplify. +/// +/// This routine returns 'true' only when *it* simplifies something. The passed +/// in simplified value does not count toward this. +static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + bool Simplified = false; + SmallSetVector Worklist; + + // If we have an explicit value to collapse to, do that round of the + // simplification loop by hand initially. + if (SimpleV) { + for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; + ++UI) + if (*UI != I) + Worklist.insert(cast(*UI)); + + // Replace the instruction with its simplified value. + I->replaceAllUsesWith(SimpleV); + + // Gracefully handle edge cases where the instruction is not wired into any + // parent block. + if (I->getParent()) + I->eraseFromParent(); + } else { + Worklist.insert(I); + } + + // Note that we must test the size on each iteration, the worklist can grow. + for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { + I = Worklist[Idx]; + + // See if this instruction simplifies. + SimpleV = SimplifyInstruction(I, TD, TLI, DT); + if (!SimpleV) + continue; + + Simplified = true; - // Recursively simplify this user to the new value. - ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT); - From = dyn_cast_or_null((Value*)FromHandle); - To = ToHandle; + // Stash away all the uses of the old instruction so we can check them for + // recursive simplifications after a RAUW. This is cheaper than checking all + // uses of To on the recursive step in most cases. + for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; + ++UI) + Worklist.insert(cast(*UI)); - assert(ToHandle && "To value deleted by recursive simplification?"); + // Replace the instruction with its simplified value. + I->replaceAllUsesWith(SimpleV); - // If the recursive simplification ended up revisiting and deleting - // 'From' then we're done. - if (From == 0) - return; + // Gracefully handle edge cases where the instruction is not wired into any + // parent block. + if (I->getParent()) + I->eraseFromParent(); } + return Simplified; +} - // If 'From' has value handles referring to it, do a real RAUW to update them. - From->replaceAllUsesWith(To); +bool llvm::recursivelySimplifyInstruction(Instruction *I, + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT); +} - From->eraseFromParent(); +bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, + const TargetData *TD, + const TargetLibraryInfo *TLI, + const DominatorTree *DT) { + assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); + assert(SimpleV && "Must provide a simplified value."); + return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT); }