X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FLoopInfo.cpp;h=05831402f4092bcea8ccf670e5864f8fdab03f40;hb=12bf43bc4f86602a5677d5e1662cb4e40562351b;hp=49162a663536ab716b0181845568c8a6d2473ce3;hpb=3cc86cc11f0bf4df5b62be617d5c2cd431bbc976;p=oota-llvm.git diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp index 49162a66353..05831402f40 100644 --- a/lib/Analysis/LoopInfo.cpp +++ b/lib/Analysis/LoopInfo.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -20,399 +20,118 @@ #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" #include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" #include -#include using namespace llvm; -static RegisterAnalysis -X("loops", "Natural Loop Construction", true); +// Always verify loopinfo if expensive checking is enabled. +#ifdef XDEBUG +static bool VerifyLoopInfo = true; +#else +static bool VerifyLoopInfo = false; +#endif +static cl::opt +VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), + cl::desc("Verify loop info (time consuming)")); + +char LoopInfo::ID = 0; +INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) //===----------------------------------------------------------------------===// // Loop implementation // -bool Loop::contains(const BasicBlock *BB) const { - return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); -} - -bool Loop::isLoopExit(const BasicBlock *BB) const { - for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); - SI != SE; ++SI) { - if (!contains(*SI)) - return true; - } - return false; -} - -/// getNumBackEdges - Calculate the number of back edges to the loop header. -/// -unsigned Loop::getNumBackEdges() const { - unsigned NumBackEdges = 0; - BasicBlock *H = getHeader(); - - for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) - if (contains(*I)) - ++NumBackEdges; - - return NumBackEdges; -} /// isLoopInvariant - Return true if the specified value is loop invariant /// bool Loop::isLoopInvariant(Value *V) const { if (Instruction *I = dyn_cast(V)) - return !contains(I->getParent()); + return !contains(I); return true; // All non-instructions are loop invariant } -void Loop::print(std::ostream &OS, unsigned Depth) const { - OS << std::string(Depth*2, ' ') << "Loop Containing: "; - - for (unsigned i = 0; i < getBlocks().size(); ++i) { - if (i) OS << ","; - WriteAsOperand(OS, getBlocks()[i], false); - } - OS << "\n"; - - for (iterator I = begin(), E = end(); I != E; ++I) - (*I)->print(OS, Depth+2); -} - -void Loop::dump() const { - print(std::cerr); -} - - -//===----------------------------------------------------------------------===// -// LoopInfo implementation -// -bool LoopInfo::runOnFunction(Function &) { - releaseMemory(); - Calculate(getAnalysis()); // Update - return false; -} - -void LoopInfo::releaseMemory() { - for (std::vector::iterator I = TopLevelLoops.begin(), - E = TopLevelLoops.end(); I != E; ++I) - delete *I; // Delete all of the loops... - - BBMap.clear(); // Reset internal state of analysis - TopLevelLoops.clear(); -} - - -void LoopInfo::Calculate(ETForest &EF) { - BasicBlock *RootNode = EF.getRoot(); - - for (df_iterator NI = df_begin(RootNode), - NE = df_end(RootNode); NI != NE; ++NI) - if (Loop *L = ConsiderForLoop(*NI, EF)) - TopLevelLoops.push_back(L); -} - -void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired(); -} - -void LoopInfo::print(std::ostream &OS, const Module* ) const { - for (unsigned i = 0; i < TopLevelLoops.size(); ++i) - TopLevelLoops[i]->print(OS); -#if 0 - for (std::map::const_iterator I = BBMap.begin(), - E = BBMap.end(); I != E; ++I) - OS << "BB '" << I->first->getName() << "' level = " - << I->second->getLoopDepth() << "\n"; -#endif -} - -static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { - if (SubLoop == 0) return true; - if (SubLoop == ParentLoop) return false; - return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); -} - -Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, ETForest &EF) { - if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node? - - std::vector TodoStack; - - // Scan the predecessors of BB, checking to see if BB dominates any of - // them. This identifies backedges which target this node... - for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) - if (EF.dominates(BB, *I)) // If BB dominates it's predecessor... - TodoStack.push_back(*I); - - if (TodoStack.empty()) return 0; // No backedges to this block... - - // Create a new loop to represent this basic block... - Loop *L = new Loop(BB); - BBMap[BB] = L; - - BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock(); - - while (!TodoStack.empty()) { // Process all the nodes in the loop - BasicBlock *X = TodoStack.back(); - TodoStack.pop_back(); - - if (!L->contains(X) && // As of yet unprocessed?? - EF.dominates(EntryBlock, X)) { // X is reachable from entry block? - // Check to see if this block already belongs to a loop. If this occurs - // then we have a case where a loop that is supposed to be a child of the - // current loop was processed before the current loop. When this occurs, - // this child loop gets added to a part of the current loop, making it a - // sibling to the current loop. We have to reparent this loop. - if (Loop *SubLoop = const_cast(getLoopFor(X))) - if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { - // Remove the subloop from it's current parent... - assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); - Loop *SLP = SubLoop->ParentLoop; // SubLoopParent - std::vector::iterator I = - std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); - assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); - SLP->SubLoops.erase(I); // Remove from parent... - - // Add the subloop to THIS loop... - SubLoop->ParentLoop = L; - L->SubLoops.push_back(SubLoop); - } - - // Normal case, add the block to our loop... - L->Blocks.push_back(X); - - // Add all of the predecessors of X to the end of the work stack... - TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); - } - } - - // If there are any loops nested within this loop, create them now! - for (std::vector::iterator I = L->Blocks.begin(), - E = L->Blocks.end(); I != E; ++I) - if (Loop *NewLoop = ConsiderForLoop(*I, EF)) { - L->SubLoops.push_back(NewLoop); - NewLoop->ParentLoop = L; - } - - // Add the basic blocks that comprise this loop to the BBMap so that this - // loop can be found for them. - // - for (std::vector::iterator I = L->Blocks.begin(), - E = L->Blocks.end(); I != E; ++I) { - std::map::iterator BBMI = BBMap.lower_bound(*I); - if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... - BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level - } - - // Now that we have a list of all of the child loops of this loop, check to - // see if any of them should actually be nested inside of each other. We can - // accidentally pull loops our of their parents, so we must make sure to - // organize the loop nests correctly now. - { - std::map ContainingLoops; - for (unsigned i = 0; i != L->SubLoops.size(); ++i) { - Loop *Child = L->SubLoops[i]; - assert(Child->getParentLoop() == L && "Not proper child loop?"); - - if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { - // If there is already a loop which contains this loop, move this loop - // into the containing loop. - MoveSiblingLoopInto(Child, ContainingLoop); - --i; // The loop got removed from the SubLoops list. - } else { - // This is currently considered to be a top-level loop. Check to see if - // any of the contained blocks are loop headers for subloops we have - // already processed. - for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { - Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; - if (BlockLoop == 0) { // Child block not processed yet... - BlockLoop = Child; - } else if (BlockLoop != Child) { - Loop *SubLoop = BlockLoop; - // Reparent all of the blocks which used to belong to BlockLoops - for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) - ContainingLoops[SubLoop->Blocks[j]] = Child; - - // There is already a loop which contains this block, that means - // that we should reparent the loop which the block is currently - // considered to belong to to be a child of this loop. - MoveSiblingLoopInto(SubLoop, Child); - --i; // We just shrunk the SubLoops list. - } - } - } - } - } - - return L; -} - -/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of -/// the NewParent Loop, instead of being a sibling of it. -void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { - Loop *OldParent = NewChild->getParentLoop(); - assert(OldParent && OldParent == NewParent->getParentLoop() && - NewChild != NewParent && "Not sibling loops!"); - - // Remove NewChild from being a child of OldParent - std::vector::iterator I = - std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); - assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); - OldParent->SubLoops.erase(I); // Remove from parent's subloops list - NewChild->ParentLoop = 0; - - InsertLoopInto(NewChild, NewParent); -} - -/// InsertLoopInto - This inserts loop L into the specified parent loop. If the -/// parent loop contains a loop which should contain L, the loop gets inserted -/// into L instead. -void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { - BasicBlock *LHeader = L->getHeader(); - assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); - - // Check to see if it belongs in a child loop... - for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) - if (Parent->SubLoops[i]->contains(LHeader)) { - InsertLoopInto(L, Parent->SubLoops[i]); - return; - } - - // If not, insert it here! - Parent->SubLoops.push_back(L); - L->ParentLoop = Parent; -} - -/// changeLoopFor - Change the top-level loop that contains BB to the -/// specified loop. This should be used by transformations that restructure -/// the loop hierarchy tree. -void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) { - Loop *&OldLoop = BBMap[BB]; - assert(OldLoop && "Block not in a loop yet!"); - OldLoop = L; -} - -/// changeTopLevelLoop - Replace the specified loop in the top-level loops -/// list with the indicated loop. -void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { - std::vector::iterator I = std::find(TopLevelLoops.begin(), - TopLevelLoops.end(), OldLoop); - assert(I != TopLevelLoops.end() && "Old loop not at top level!"); - *I = NewLoop; - assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && - "Loops already embedded into a subloop!"); -} - -/// removeLoop - This removes the specified top-level loop from this loop info -/// object. The loop is not deleted, as it will presumably be inserted into -/// another loop. -Loop *LoopInfo::removeLoop(iterator I) { - assert(I != end() && "Cannot remove end iterator!"); - Loop *L = *I; - assert(L->getParentLoop() == 0 && "Not a top-level loop!"); - TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); - return L; -} - -/// removeBlock - This method completely removes BB from all data structures, -/// including all of the Loop objects it is nested in and our mapping from -/// BasicBlocks to loops. -void LoopInfo::removeBlock(BasicBlock *BB) { - std::map::iterator I = BBMap.find(BB); - if (I != BBMap.end()) { - for (Loop *L = I->second; L; L = L->getParentLoop()) - L->removeBlockFromLoop(BB); - - BBMap.erase(I); - } +/// hasLoopInvariantOperands - Return true if all the operands of the +/// specified instruction are loop invariant. +bool Loop::hasLoopInvariantOperands(Instruction *I) const { + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (!isLoopInvariant(I->getOperand(i))) + return false; + + return true; } - -//===----------------------------------------------------------------------===// -// APIs for simple analysis of the loop. -// - -/// getExitBlocks - Return all of the successor blocks of this loop. These -/// are the blocks _outside of the current loop_ which are branched to. +/// makeLoopInvariant - If the given value is an instruciton inside of the +/// loop and it can be hoisted, do so to make it trivially loop-invariant. +/// Return true if the value after any hoisting is loop invariant. This +/// function can be used as a slightly more aggressive replacement for +/// isLoopInvariant. +/// +/// If InsertPt is specified, it is the point to hoist instructions to. +/// If null, the terminator of the loop preheader is used. /// -void Loop::getExitBlocks(std::vector &ExitBlocks) const { - for (std::vector::const_iterator BI = Blocks.begin(), - BE = Blocks.end(); BI != BE; ++BI) - for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) - if (!contains(*I)) // Not in current loop? - ExitBlocks.push_back(*I); // It must be an exit block... +bool Loop::makeLoopInvariant(Value *V, bool &Changed, + Instruction *InsertPt) const { + if (Instruction *I = dyn_cast(V)) + return makeLoopInvariant(I, Changed, InsertPt); + return true; // All non-instructions are loop-invariant. } - -/// getLoopPreheader - If there is a preheader for this loop, return it. A -/// loop has a preheader if there is only one edge to the header of the loop -/// from outside of the loop. If this is the case, the block branching to the -/// header of the loop is the preheader node. +/// makeLoopInvariant - If the given instruction is inside of the +/// loop and it can be hoisted, do so to make it trivially loop-invariant. +/// Return true if the instruction after any hoisting is loop invariant. This +/// function can be used as a slightly more aggressive replacement for +/// isLoopInvariant. /// -/// This method returns null if there is no preheader for the loop. +/// If InsertPt is specified, it is the point to hoist instructions to. +/// If null, the terminator of the loop preheader is used. /// -BasicBlock *Loop::getLoopPreheader() const { - // Keep track of nodes outside the loop branching to the header... - BasicBlock *Out = 0; - - // Loop over the predecessors of the header node... - BasicBlock *Header = getHeader(); - for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); - PI != PE; ++PI) - if (!contains(*PI)) { // If the block is not in the loop... - if (Out && Out != *PI) - return 0; // Multiple predecessors outside the loop - Out = *PI; - } - - // Make sure there is only one exit out of the preheader. - assert(Out && "Header of loop has no predecessors from outside loop?"); - succ_iterator SI = succ_begin(Out); - ++SI; - if (SI != succ_end(Out)) - return 0; // Multiple exits from the block, must not be a preheader. - - // If there is exactly one preheader, return it. If there was zero, then Out - // is still null. - return Out; -} - -/// getLoopLatch - If there is a latch block for this loop, return it. A -/// latch block is the canonical backedge for a loop. A loop header in normal -/// form has two edges into it: one from a preheader and one from a latch -/// block. -BasicBlock *Loop::getLoopLatch() const { - BasicBlock *Header = getHeader(); - pred_iterator PI = pred_begin(Header), PE = pred_end(Header); - if (PI == PE) return 0; // no preds? - - BasicBlock *Latch = 0; - if (contains(*PI)) - Latch = *PI; - ++PI; - if (PI == PE) return 0; // only one pred? - - if (contains(*PI)) { - if (Latch) return 0; // multiple backedges - Latch = *PI; +bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, + Instruction *InsertPt) const { + // Test if the value is already loop-invariant. + if (isLoopInvariant(I)) + return true; + if (!I->isSafeToSpeculativelyExecute()) + return false; + if (I->mayReadFromMemory()) + return false; + // Determine the insertion point, unless one was given. + if (!InsertPt) { + BasicBlock *Preheader = getLoopPreheader(); + // Without a preheader, hoisting is not feasible. + if (!Preheader) + return false; + InsertPt = Preheader->getTerminator(); } - ++PI; - if (PI != PE) return 0; // more than two preds + // Don't hoist instructions with loop-variant operands. + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) + return false; - return Latch; + // Hoist. + I->moveBefore(InsertPt); + Changed = true; + return true; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical -/// induction variable: an integer recurrence that starts at 0 and increments by -/// one each time through the loop. If so, return the phi node that corresponds -/// to it. +/// induction variable: an integer recurrence that starts at 0 and increments +/// by one each time through the loop. If so, return the phi node that +/// corresponds to it. +/// +/// The IndVarSimplify pass transforms loops to have a canonical induction +/// variable. /// PHINode *Loop::getCanonicalInductionVariable() const { BasicBlock *H = getHeader(); BasicBlock *Incoming = 0, *Backedge = 0; pred_iterator PI = pred_begin(H); - assert(PI != pred_end(H) && "Loop must have at least one backedge!"); + assert(PI != pred_end(H) && + "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == pred_end(H)) return 0; // dead loop Incoming = *PI++; @@ -428,154 +147,273 @@ PHINode *Loop::getCanonicalInductionVariable() const { // Loop over all of the PHI nodes, looking for a canonical indvar. for (BasicBlock::iterator I = H->begin(); isa(I); ++I) { PHINode *PN = cast(I); - if (Instruction *Inc = - dyn_cast(PN->getIncomingValueForBlock(Backedge))) - if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) - if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) - if (CI->equalsInt(1)) - return PN; - } - return 0; -} - -/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds -/// the canonical induction variable value for the "next" iteration of the loop. -/// This always succeeds if getCanonicalInductionVariable succeeds. -/// -Instruction *Loop::getCanonicalInductionVariableIncrement() const { - if (PHINode *PN = getCanonicalInductionVariable()) { - bool P1InLoop = contains(PN->getIncomingBlock(1)); - return cast(PN->getIncomingValue(P1InLoop)); + if (ConstantInt *CI = + dyn_cast(PN->getIncomingValueForBlock(Incoming))) + if (CI->isNullValue()) + if (Instruction *Inc = + dyn_cast(PN->getIncomingValueForBlock(Backedge))) + if (Inc->getOpcode() == Instruction::Add && + Inc->getOperand(0) == PN) + if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) + if (CI->equalsInt(1)) + return PN; } return 0; } /// getTripCount - Return a loop-invariant LLVM value indicating the number of -/// times the loop will be executed. Note that this means that the backedge of -/// the loop executes N-1 times. If the trip-count cannot be determined, this -/// returns null. +/// times the loop will be executed. Note that this means that the backedge +/// of the loop executes N-1 times. If the trip-count cannot be determined, +/// this returns null. +/// +/// The IndVarSimplify pass transforms loops to have a form that this +/// function easily understands. /// Value *Loop::getTripCount() const { - // Canonical loops will end with a 'setne I, V', where I is the incremented + // Canonical loops will end with a 'cmp ne I, V', where I is the incremented // canonical induction variable and V is the trip count of the loop. - Instruction *Inc = getCanonicalInductionVariableIncrement(); - if (Inc == 0) return 0; - PHINode *IV = cast(Inc->getOperand(0)); + PHINode *IV = getCanonicalInductionVariable(); + if (IV == 0 || IV->getNumIncomingValues() != 2) return 0; - BasicBlock *BackedgeBlock = - IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); + bool P0InLoop = contains(IV->getIncomingBlock(0)); + Value *Inc = IV->getIncomingValue(!P0InLoop); + BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop); if (BranchInst *BI = dyn_cast(BackedgeBlock->getTerminator())) - if (BI->isConditional()) - if (SetCondInst *SCI = dyn_cast(BI->getCondition())) - if (SCI->getOperand(0) == Inc) + if (BI->isConditional()) { + if (ICmpInst *ICI = dyn_cast(BI->getCondition())) { + if (ICI->getOperand(0) == Inc) { if (BI->getSuccessor(0) == getHeader()) { - if (SCI->getOpcode() == Instruction::SetNE) - return SCI->getOperand(1); - } else if (SCI->getOpcode() == Instruction::SetEQ) { - return SCI->getOperand(1); + if (ICI->getPredicate() == ICmpInst::ICMP_NE) + return ICI->getOperand(1); + } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { + return ICI->getOperand(1); } + } + } + } return 0; } +/// getSmallConstantTripCount - Returns the trip count of this loop as a +/// normal unsigned value, if possible. Returns 0 if the trip count is unknown +/// or not constant. Will also return 0 if the trip count is very large +/// (>= 2^32) +unsigned Loop::getSmallConstantTripCount() const { + Value* TripCount = this->getTripCount(); + if (TripCount) { + if (ConstantInt *TripCountC = dyn_cast(TripCount)) { + // Guard against huge trip counts. + if (TripCountC->getValue().getActiveBits() <= 32) { + return (unsigned)TripCountC->getZExtValue(); + } + } + } + return 0; +} + +/// getSmallConstantTripMultiple - Returns the largest constant divisor of the +/// trip count of this loop as a normal unsigned value, if possible. This +/// means that the actual trip count is always a multiple of the returned +/// value (don't forget the trip count could very well be zero as well!). +/// +/// Returns 1 if the trip count is unknown or not guaranteed to be the +/// multiple of a constant (which is also the case if the trip count is simply +/// constant, use getSmallConstantTripCount for that case), Will also return 1 +/// if the trip count is very large (>= 2^32). +unsigned Loop::getSmallConstantTripMultiple() const { + Value* TripCount = this->getTripCount(); + // This will hold the ConstantInt result, if any + ConstantInt *Result = NULL; + if (TripCount) { + // See if the trip count is constant itself + Result = dyn_cast(TripCount); + // if not, see if it is a multiplication + if (!Result) + if (BinaryOperator *BO = dyn_cast(TripCount)) { + switch (BO->getOpcode()) { + case BinaryOperator::Mul: + Result = dyn_cast(BO->getOperand(1)); + break; + case BinaryOperator::Shl: + if (ConstantInt *CI = dyn_cast(BO->getOperand(1))) + if (CI->getValue().getActiveBits() <= 5) + return 1u << CI->getZExtValue(); + break; + default: + break; + } + } + } + // Guard against huge trip counts. + if (Result && Result->getValue().getActiveBits() <= 32) { + return (unsigned)Result->getZExtValue(); + } else { + return 1; + } +} + /// isLCSSAForm - Return true if the Loop is in LCSSA form -bool Loop::isLCSSAForm() const { - for (Loop::block_iterator BB = block_begin(), E = block_end(); - BB != E; ++BB) { - for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) +bool Loop::isLCSSAForm(DominatorTree &DT) const { + // Sort the blocks vector so that we can use binary search to do quick + // lookups. + SmallPtrSet LoopBBs(block_begin(), block_end()); + + for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { + BasicBlock *BB = *BI; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { - BasicBlock *UserBB = cast(*UI)->getParent(); - if (PHINode* p = dyn_cast(*UI)) { - unsigned OperandNo = UI.getOperandNo(); - UserBB = p->getIncomingBlock(OperandNo/2); - } - - if (!contains(UserBB)) { + User *U = *UI; + BasicBlock *UserBB = cast(U)->getParent(); + if (PHINode *P = dyn_cast(U)) + UserBB = P->getIncomingBlock(UI); + + // Check the current block, as a fast-path, before checking whether + // the use is anywhere in the loop. Most values are used in the same + // block they are defined in. Also, blocks not reachable from the + // entry are special; uses in them don't need to go through PHIs. + if (UserBB != BB && + !LoopBBs.count(UserBB) && + DT.isReachableFromEntry(UserBB)) return false; - } } } - + return true; } -//===-------------------------------------------------------------------===// -// APIs for updating loop information after changing the CFG -// +/// isLoopSimplifyForm - Return true if the Loop is in the form that +/// the LoopSimplify form transforms loops to, which is sometimes called +/// normal form. +bool Loop::isLoopSimplifyForm() const { + // Normal-form loops have a preheader, a single backedge, and all of their + // exits have all their predecessors inside the loop. + return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); +} + +/// hasDedicatedExits - Return true if no exit block for the loop +/// has a predecessor that is outside the loop. +bool Loop::hasDedicatedExits() const { + // Sort the blocks vector so that we can use binary search to do quick + // lookups. + SmallPtrSet LoopBBs(block_begin(), block_end()); + // Each predecessor of each exit block of a normal loop is contained + // within the loop. + SmallVector ExitBlocks; + getExitBlocks(ExitBlocks); + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + for (pred_iterator PI = pred_begin(ExitBlocks[i]), + PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) + if (!LoopBBs.count(*PI)) + return false; + // All the requirements are met. + return true; +} -/// addBasicBlockToLoop - This function is used by other analyses to update loop -/// information. NewBB is set to be a new member of the current loop. Because -/// of this, it is added as a member of all parent loops, and is added to the -/// specified LoopInfo object as being in the current basic block. It is not -/// valid to replace the loop header with this method. +/// getUniqueExitBlocks - Return all unique successor blocks of this loop. +/// These are the blocks _outside of the current loop_ which are branched to. +/// This assumes that loop exits are in canonical form. /// -void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { - assert((Blocks.empty() || LI[getHeader()] == this) && - "Incorrect LI specified for this loop!"); - assert(NewBB && "Cannot add a null basic block to the loop!"); - assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); - - // Add the loop mapping to the LoopInfo object... - LI.BBMap[NewBB] = this; - - // Add the basic block to this loop and all parent loops... - Loop *L = this; - while (L) { - L->Blocks.push_back(NewBB); - L = L->getParentLoop(); +void +Loop::getUniqueExitBlocks(SmallVectorImpl &ExitBlocks) const { + assert(hasDedicatedExits() && + "getUniqueExitBlocks assumes the loop has canonical form exits!"); + + // Sort the blocks vector so that we can use binary search to do quick + // lookups. + SmallVector LoopBBs(block_begin(), block_end()); + std::sort(LoopBBs.begin(), LoopBBs.end()); + + SmallVector switchExitBlocks; + + for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { + + BasicBlock *current = *BI; + switchExitBlocks.clear(); + + for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { + // If block is inside the loop then it is not a exit block. + if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) + continue; + + pred_iterator PI = pred_begin(*I); + BasicBlock *firstPred = *PI; + + // If current basic block is this exit block's first predecessor + // then only insert exit block in to the output ExitBlocks vector. + // This ensures that same exit block is not inserted twice into + // ExitBlocks vector. + if (current != firstPred) + continue; + + // If a terminator has more then two successors, for example SwitchInst, + // then it is possible that there are multiple edges from current block + // to one exit block. + if (std::distance(succ_begin(current), succ_end(current)) <= 2) { + ExitBlocks.push_back(*I); + continue; + } + + // In case of multiple edges from current block to exit block, collect + // only one edge in ExitBlocks. Use switchExitBlocks to keep track of + // duplicate edges. + if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) + == switchExitBlocks.end()) { + switchExitBlocks.push_back(*I); + ExitBlocks.push_back(*I); + } + } } } -/// replaceChildLoopWith - This is used when splitting loops up. It replaces -/// the OldChild entry in our children list with NewChild, and updates the -/// parent pointers of the two loops as appropriate. -void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) { - assert(OldChild->ParentLoop == this && "This loop is already broken!"); - assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); - std::vector::iterator I = std::find(SubLoops.begin(), SubLoops.end(), - OldChild); - assert(I != SubLoops.end() && "OldChild not in loop!"); - *I = NewChild; - OldChild->ParentLoop = 0; - NewChild->ParentLoop = this; +/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one +/// block, return that block. Otherwise return null. +BasicBlock *Loop::getUniqueExitBlock() const { + SmallVector UniqueExitBlocks; + getUniqueExitBlocks(UniqueExitBlocks); + if (UniqueExitBlocks.size() == 1) + return UniqueExitBlocks[0]; + return 0; } -/// addChildLoop - Add the specified loop to be a child of this loop. -/// -void Loop::addChildLoop(Loop *NewChild) { - assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); - NewChild->ParentLoop = this; - SubLoops.push_back(NewChild); +void Loop::dump() const { + print(dbgs()); } -template -static void RemoveFromVector(std::vector &V, T *N) { - typename std::vector::iterator I = std::find(V.begin(), V.end(), N); - assert(I != V.end() && "N is not in this list!"); - V.erase(I); +//===----------------------------------------------------------------------===// +// LoopInfo implementation +// +bool LoopInfo::runOnFunction(Function &) { + releaseMemory(); + LI.Calculate(getAnalysis().getBase()); // Update + return false; } -/// removeChildLoop - This removes the specified child from being a subloop of -/// this loop. The loop is not deleted, as it will presumably be inserted -/// into another loop. -Loop *Loop::removeChildLoop(iterator I) { - assert(I != SubLoops.end() && "Cannot remove end iterator!"); - Loop *Child = *I; - assert(Child->ParentLoop == this && "Child is not a child of this loop!"); - SubLoops.erase(SubLoops.begin()+(I-begin())); - Child->ParentLoop = 0; - return Child; +void LoopInfo::verifyAnalysis() const { + // LoopInfo is a FunctionPass, but verifying every loop in the function + // each time verifyAnalysis is called is very expensive. The + // -verify-loop-info option can enable this. In order to perform some + // checking by default, LoopPass has been taught to call verifyLoop + // manually during loop pass sequences. + + if (!VerifyLoopInfo) return; + + for (iterator I = begin(), E = end(); I != E; ++I) { + assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); + (*I)->verifyLoopNest(); + } + + // TODO: check BBMap consistency. } +void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired(); +} -/// removeBlockFromLoop - This removes the specified basic block from the -/// current loop, updating the Blocks and ExitBlocks lists as appropriate. This -/// does not update the mapping in the LoopInfo class. -void Loop::removeBlockFromLoop(BasicBlock *BB) { - RemoveFromVector(Blocks, BB); +void LoopInfo::print(raw_ostream &OS, const Module*) const { + LI.print(OS); } -// Ensure this file gets linked when LoopInfo.h is used. -DEFINING_FILE_FOR(LoopInfo)