X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FPostDominators.cpp;h=4f9d1d160696f336866748311c1cdbf7642ad835;hb=1c51c6ac13b5e68b099605021784c7f552dcce3c;hp=33e14e9fc583e1058af861de42e4a689cad465b2;hpb=221d688a5ef21a22c2368c9fff0e92d7966c95e5;p=oota-llvm.git diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp index 33e14e9fc58..4f9d1d16069 100644 --- a/lib/Analysis/PostDominators.cpp +++ b/lib/Analysis/PostDominators.cpp @@ -1,166 +1,123 @@ -//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// +//===- PostDominators.cpp - Post-Dominator Calculation --------------------===// +// +// The LLVM Compiler Infrastructure // -// This file provides a simple class to calculate the dominator set of a method. +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the post-dominator construction algorithms. // //===----------------------------------------------------------------------===// -#include "llvm/Analysis/Dominators.h" -#include "llvm/Transforms/UnifyMethodExitNodes.h" -#include "llvm/Method.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Instructions.h" #include "llvm/Support/CFG.h" -#include "Support/DepthFirstIterator.h" -#include "Support/STLExtras.h" -#include "Support/SetOperations.h" -#include -using std::set; +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +using namespace llvm; //===----------------------------------------------------------------------===// -// DominatorSet Implementation +// PostDominatorSet Implementation //===----------------------------------------------------------------------===// -AnalysisID cfg::DominatorSet::ID(AnalysisID::create()); -AnalysisID cfg::DominatorSet::PostDomID(AnalysisID::create()); - -bool cfg::DominatorSet::runOnMethod(Method *M) { - Doms.clear(); // Reset from the last time we were run... - - if (isPostDominator()) - calcPostDominatorSet(M); - else - calcForwardDominatorSet(M); - return false; -} - +static RegisterAnalysis +B("postdomset", "Post-Dominator Set Construction", true); -// calcForwardDominatorSet - This method calculates the forward dominator sets -// for the specified method. +// Postdominator set construction. This converts the specified function to only +// have a single exit node (return stmt), then calculates the post dominance +// sets for the function. // -void cfg::DominatorSet::calcForwardDominatorSet(Method *M) { - Root = M->getEntryNode(); - assert(Root->pred_begin() == Root->pred_end() && - "Root node has predecessors in method!"); +bool PostDominatorSet::runOnFunction(Function &F) { + Doms.clear(); // Reset from the last time we were run... - bool Changed; - do { - Changed = false; + // Scan the function looking for the root nodes of the post-dominance + // relationships. These blocks end with return and unwind instructions. + // While we are iterating over the function, we also initialize all of the + // domsets to empty. + Roots.clear(); + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + Doms[I]; // Initialize to empty - DomSetType WorkingSet; - df_iterator It = df_begin(M), End = df_end(M); - for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - BasicBlock::pred_const_iterator PI = BB->pred_begin(), - PEnd = BB->pred_end(); - if (PI != PEnd) { // Is there SOME predecessor? - // Loop until we get to a predecessor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*PI].size() == 0) ++PI; - WorkingSet = Doms[*PI]; - - for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets - DomSetType &PredSet = Doms[*PI]; - if (PredSet.size()) - set_intersect(WorkingSet, PredSet); - } - } - - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. - } - WorkingSet.clear(); // Clear out the set for next iteration - } - } while (Changed); -} + if (succ_begin(I) == succ_end(I)) + Roots.push_back(I); + } -// Postdominator set constructor. This ctor converts the specified method to -// only have a single exit node (return stmt), then calculates the post -// dominance sets for the method. -// -void cfg::DominatorSet::calcPostDominatorSet(Method *M) { - // Since we require that the unify all exit nodes pass has been run, we know - // that there can be at most one return instruction in the method left. - // Get it. - // - Root = getAnalysis().getExitNode(); + // If there are no exit nodes for the function, postdomsets are all empty. + // This can happen if the function just contains an infinite loop, for + // example. + if (Roots.empty()) return false; - if (Root == 0) { // No exit node for the method? Postdomsets are all empty - for (Method::const_iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) - Doms[*MI] = DomSetType(); - return; - } + // If we have more than one root, we insert an artificial "null" exit, which + // has "virtual edges" to each of the real exit nodes. + if (Roots.size() > 1) + Doms[0].insert(0); bool Changed; do { Changed = false; - set Visited; + std::set Visited; DomSetType WorkingSet; - idf_iterator It = idf_begin(Root), End = idf_end(Root); - for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - BasicBlock::succ_const_iterator PI = BB->succ_begin(), - PEnd = BB->succ_end(); - if (PI != PEnd) { // Is there SOME predecessor? - // Loop until we get to a successor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*PI].size() == 0) ++PI; - WorkingSet = Doms[*PI]; - - for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets - DomSetType &PredSet = Doms[*PI]; - if (PredSet.size()) - set_intersect(WorkingSet, PredSet); - } - } + + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + for (idf_ext_iterator It = idf_ext_begin(Roots[i], Visited), + E = idf_ext_end(Roots[i], Visited); It != E; ++It) { + BasicBlock *BB = *It; + succ_iterator SI = succ_begin(BB), SE = succ_end(BB); + if (SI != SE) { // Is there SOME successor? + // Loop until we get to a successor that has had it's dom set filled + // in at least once. We are guaranteed to have this because we are + // traversing the graph in DFO and have handled start nodes specially. + // + while (Doms[*SI].size() == 0) ++SI; + WorkingSet = Doms[*SI]; + + for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets + DomSetType &SuccSet = Doms[*SI]; + if (SuccSet.size()) + set_intersect(WorkingSet, SuccSet); + } + } else { + // If this node has no successors, it must be one of the root nodes. + // We will already take care of the notion that the node + // post-dominates itself. The only thing we have to add is that if + // there are multiple root nodes, we want to insert a special "null" + // exit node which dominates the roots as well. + if (Roots.size() > 1) + WorkingSet.insert(0); + } - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. + WorkingSet.insert(BB); // A block always dominates itself + DomSetType &BBSet = Doms[BB]; + if (BBSet != WorkingSet) { + BBSet.swap(WorkingSet); // Constant time operation! + Changed = true; // The sets changed. + } + WorkingSet.clear(); // Clear out the set for next iteration } - WorkingSet.clear(); // Clear out the set for next iteration - } } while (Changed); + return false; } -// getAnalysisUsageInfo - This obviously provides a dominator set, but it also -// uses the UnifyMethodExitNodes pass if building post-dominators -// -void cfg::DominatorSet::getAnalysisUsageInfo(Pass::AnalysisSet &Requires, - Pass::AnalysisSet &Destroyed, - Pass::AnalysisSet &Provided) { - if (isPostDominator()) { - Provided.push_back(PostDomID); - Requires.push_back(UnifyMethodExitNodes::ID); - } else { - Provided.push_back(ID); - } -} - - //===----------------------------------------------------------------------===// -// ImmediateDominators Implementation +// ImmediatePostDominators Implementation //===----------------------------------------------------------------------===// -AnalysisID cfg::ImmediateDominators::ID(AnalysisID::create()); -AnalysisID cfg::ImmediateDominators::PostDomID(AnalysisID::create()); +static RegisterAnalysis +D("postidom", "Immediate Post-Dominators Construction", true); + // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. -void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { +void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { - const BasicBlock *BB = DI->first; + BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -188,103 +145,33 @@ void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { } } - //===----------------------------------------------------------------------===// -// DominatorTree Implementation +// PostDominatorTree Implementation //===----------------------------------------------------------------------===// -AnalysisID cfg::DominatorTree::ID(AnalysisID::create()); -AnalysisID cfg::DominatorTree::PostDomID(AnalysisID::create()); - -// DominatorTree::reset - Free all of the tree node memory. -// -void cfg::DominatorTree::reset() { - for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) - delete I->second; - Nodes.clear(); -} - +static RegisterAnalysis +F("postdomtree", "Post-Dominator Tree Construction", true); -#if 0 -// Given immediate dominators, we can also calculate the dominator tree -cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) - : DominatorBase(IDoms.getRoot()) { - const Method *M = Root->getParent(); +void PostDominatorTree::calculate(const PostDominatorSet &DS) { + if (Roots.empty()) return; + BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; - Nodes[Root] = new Node(Root, 0); // Add a node for the root... + Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... - for (df_iterator I = df_begin(M), E = df_end(M); I != E; ++I) { - const BasicBlock *BB = *I, *IDom = IDoms[*I]; - - if (IDom != 0) { // Ignore the root node and other nasty nodes - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - assert(Nodes[IDom] && "No node for IDOM?"); - Node *IDomNode = Nodes[IDom]; - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - } - } -} -#endif - -void cfg::DominatorTree::calculate(const DominatorSet &DS) { - Nodes[Root] = new Node(Root, 0); // Add a node for the root... - - if (!isPostDominator()) { - // Iterate over all nodes in depth first order... - for (df_iterator I = df_begin(Root), E = df_end(Root); - I != E; ++I) { - const BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping over - // nodes in the dominator chain, looking for a node whose dominator set is - // equal to the current nodes, except that the current node does not exist - // in it. This means that it is one level higher in the dom chain than the - // current node, and it is our idom! We know that we have already added - // a DominatorTree node for our idom, because the idom must be a - // predecessor in the depth first order that we are iterating through the - // method. - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number of - // elements in the dominator set indicates what level the node is at in - // the chain. We want the node immediately above us, so it will have - // an identical dominator set, except that BB will not dominate it... - // therefore it's dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } - } - } - } else if (Root) { - // Iterate over all nodes in depth first order... - for (idf_iterator I = idf_begin(Root), E = idf_end(Root); - I != E; ++I) { - const BasicBlock *BB = *I; + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + for (idf_iterator I = idf_begin(Roots[i]), + E = idf_end(Roots[i]); I != E; ++I) { + BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null - + + // If we have already computed the immediate dominator for this node, + // don't revisit. This can happen due to nodes reachable from multiple + // roots, but which the idf_iterator doesn't know about. + if (Nodes.find(BB) != Nodes.end()) continue; + // Loop over all dominators of this node. This corresponds to looping // over nodes in the dominator chain, looking for a node whose dominator // set is equal to the current nodes, except that the current node does @@ -292,66 +179,63 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) { // chain than the current node, and it is our idom! We know that we have // already added a DominatorTree node for our idom, because the idom must // be a predecessor in the depth first order that we are iterating through - // the method. + // the function. // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number - // of elements in the dominator set indicates what level the - // node is at in the chain. We want the node immediately - // above us, so it will have an identical dominator set, - // except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); + for (DominatorSet::DomSetType::const_iterator I = Dominators.begin(), + E = Dominators.end(); I != E; ++I) { // Iterate over dominators. + // All of our dominators should form a chain, where the number + // of elements in the dominator set indicates what level the + // node is at in the chain. We want the node immediately + // above us, so it will have an identical dominator set, + // except that BB will not dominate it... therefore it's + // dominator set size will be one less than BB's... + // + if (DS.getDominators(*I).size() == DomSetSize - 1) { + // We know that the immediate dominator should already have a node, + // because we are traversing the CFG in depth first order! + // + Node *IDomNode = Nodes[*I]; + assert(IDomNode && "No node for IDOM?"); - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); + break; + } } } - } } - - //===----------------------------------------------------------------------===// -// DominanceFrontier Implementation +// PostDominanceFrontier Implementation //===----------------------------------------------------------------------===// -AnalysisID cfg::DominanceFrontier::ID(AnalysisID::create()); -AnalysisID cfg::DominanceFrontier::PostDomID(AnalysisID::create()); +static RegisterAnalysis +H("postdomfrontier", "Post-Dominance Frontier Construction", true); -const cfg::DominanceFrontier::DomSetType & -cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { +const DominanceFrontier::DomSetType & +PostDominanceFrontier::calculate(const PostDominatorTree &DT, + const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); + BasicBlock *BB = Node->getBlock(); DomSetType &S = Frontiers[BB]; // The new set to fill in... + if (getRoots().empty()) return S; - for (BasicBlock::succ_const_iterator SI = BB->succ_begin(), - SE = BB->succ_end(); SI != SE; ++SI) { - // Does Node immediately dominate this successor? - if (DT[*SI]->getIDom() != Node) - S.insert(*SI); - } + if (BB) + for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); + SI != SE; ++SI) + // Does Node immediately dominate this predecessor? + if (DT[*SI]->getIDom() != Node) + S.insert(*SI); // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // - for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); - NI != NE; ++NI) { + for (PostDominatorTree::Node::const_iterator + NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); + const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { @@ -363,36 +247,7 @@ cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, return S; } -const cfg::DominanceFrontier::DomSetType & -cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { - // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); - DomSetType &S = Frontiers[BB]; // The new set to fill in... - if (!Root) return S; - - for (BasicBlock::pred_const_iterator SI = BB->pred_begin(), - SE = BB->pred_end(); SI != SE; ++SI) { - // Does Node immediately dominate this predeccessor? - if (DT[*SI]->getIDom() != Node) - S.insert(*SI); - } - - // At this point, S is DFlocal. Now we union in DFup's of our children... - // Loop through and visit the nodes that Node immediately dominates (Node's - // children in the IDomTree) - // - for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); - NI != NE; ++NI) { - DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); - - DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); - for (; CDFI != CDFE; ++CDFI) { - if (!Node->dominates(DT[*CDFI])) - S.insert(*CDFI); - } - } - - return S; +// stub - a dummy function to make linking work ok. +void PostDominanceFrontier::stub() { } +