X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FAsmPrinter.cpp;h=b718958f974f579f72215a878bb92a7618ae8804;hb=63e3cd4e0f3731d6801ac24199652e4d7b4b3729;hp=db70e2d6148b377a0be77eb0bcd381648fd8da3f;hpb=cb0a6819895bf5e357a205b72f0a6fce90025f21;p=oota-llvm.git diff --git a/lib/CodeGen/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter.cpp index db70e2d6148..b718958f974 100644 --- a/lib/CodeGen/AsmPrinter.cpp +++ b/lib/CodeGen/AsmPrinter.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -16,8 +16,12 @@ #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Module.h" +#include "llvm/CodeGen/Collector.h" +#include "llvm/CodeGen/CollectorMetadata.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" @@ -25,12 +29,17 @@ #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/SmallPtrSet.h" #include using namespace llvm; +static cl::opt +AsmVerbose("asm-verbose", cl::Hidden, cl::desc("Add comments to directives.")); + +char AsmPrinter::ID = 0; AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm, const TargetAsmInfo *T) -: FunctionNumber(0), O(o), TM(tm), TAI(T) + : MachineFunctionPass((intptr_t)&ID), FunctionNumber(0), O(o), TM(tm), TAI(T) {} std::string AsmPrinter::getSectionForFunction(const Function &F) const { @@ -87,9 +96,20 @@ void AsmPrinter::SwitchToDataSection(const char *NewSection, } +void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { + MachineFunctionPass::getAnalysisUsage(AU); + AU.addRequired(); +} + bool AsmPrinter::doInitialization(Module &M) { Mang = new Mangler(M, TAI->getGlobalPrefix()); + CollectorModuleMetadata *CMM = getAnalysisToUpdate(); + assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?"); + for (CollectorModuleMetadata::iterator I = CMM->begin(), + E = CMM->end(); I != E; ++I) + (*I)->beginAssembly(O, *this, *TAI); + if (!M.getModuleInlineAsm().empty()) O << TAI->getCommentString() << " Start of file scope inline assembly\n" << M.getModuleInlineAsm() @@ -98,18 +118,74 @@ bool AsmPrinter::doInitialization(Module &M) { SwitchToDataSection(""); // Reset back to no section. - if (MachineDebugInfo *DebugInfo = getAnalysisToUpdate()) { - DebugInfo->AnalyzeModule(M); - } + MMI = getAnalysisToUpdate(); + if (MMI) MMI->AnalyzeModule(M); return false; } bool AsmPrinter::doFinalization(Module &M) { + if (TAI->getWeakRefDirective()) { + if (!ExtWeakSymbols.empty()) + SwitchToDataSection(""); + + for (std::set::iterator i = ExtWeakSymbols.begin(), + e = ExtWeakSymbols.end(); i != e; ++i) { + const GlobalValue *GV = *i; + std::string Name = Mang->getValueName(GV); + O << TAI->getWeakRefDirective() << Name << "\n"; + } + } + + if (TAI->getSetDirective()) { + if (!M.alias_empty()) + SwitchToTextSection(TAI->getTextSection()); + + O << "\n"; + for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); + I!=E; ++I) { + std::string Name = Mang->getValueName(I); + std::string Target; + + const GlobalValue *GV = cast(I->getAliasedGlobal()); + Target = Mang->getValueName(GV); + + if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) + O << "\t.globl\t" << Name << "\n"; + else if (I->hasWeakLinkage()) + O << TAI->getWeakRefDirective() << Name << "\n"; + else if (!I->hasInternalLinkage()) + assert(0 && "Invalid alias linkage"); + + O << TAI->getSetDirective() << ' ' << Name << ", " << Target << "\n"; + + // If the aliasee has external weak linkage it can be referenced only by + // alias itself. In this case it can be not in ExtWeakSymbols list. Emit + // weak reference in such case. + if (GV->hasExternalWeakLinkage()) + if (TAI->getWeakRefDirective()) + O << TAI->getWeakRefDirective() << Target << "\n"; + else + O << "\t.globl\t" << Target << "\n"; + } + } + + CollectorModuleMetadata *CMM = getAnalysisToUpdate(); + assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?"); + for (CollectorModuleMetadata::iterator I = CMM->end(), + E = CMM->begin(); I != E; ) + (*--I)->finishAssembly(O, *this, *TAI); + delete Mang; Mang = 0; return false; } +std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { + assert(MF && "No machine function?"); + return Mang->makeNameProper(MF->getFunction()->getName() + ".eh", + TAI->getGlobalPrefix()); +} + void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); @@ -136,13 +212,13 @@ void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { MachineConstantPoolEntry CPE = CP[i]; const Type *Ty = CPE.getType(); if (TAI->getFourByteConstantSection() && - TM.getTargetData()->getTypeSize(Ty) == 4) + TM.getTargetData()->getABITypeSize(Ty) == 4) FourByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getEightByteConstantSection() && - TM.getTargetData()->getTypeSize(Ty) == 8) + TM.getTargetData()->getABITypeSize(Ty) == 8) EightByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getSixteenByteConstantSection() && - TM.getTargetData()->getTypeSize(Ty) == 16) + TM.getTargetData()->getABITypeSize(Ty) == 16) SixteenByteCPs.push_back(std::make_pair(CPE, i)); else OtherCPs.push_back(std::make_pair(CPE, i)); @@ -173,7 +249,7 @@ void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, if (i != e-1) { const Type *Ty = CP[i].first.getType(); unsigned EntSize = - TM.getTargetData()->getTypeSize(Ty); + TM.getTargetData()->getABITypeSize(Ty); unsigned ValEnd = CP[i].first.getOffset() + EntSize; // Emit inter-object padding for alignment. EmitZeros(CP[i+1].first.getOffset()-ValEnd); @@ -188,36 +264,26 @@ void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, MachineFunction &MF) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; - const TargetData *TD = TM.getTargetData(); - - // JTEntryDirective is a string to print sizeof(ptr) for non-PIC jump tables, - // and 32 bits for PIC since PIC jump table entries are differences, not - // pointers to blocks. - // Use the architecture specific relocation directive, if it is set - const char *JTEntryDirective = TAI->getJumpTableDirective(); - if (!JTEntryDirective) - JTEntryDirective = TAI->getData32bitsDirective(); + + bool IsPic = TM.getRelocationModel() == Reloc::PIC_; // Pick the directive to use to print the jump table entries, and switch to // the appropriate section. - if (TM.getRelocationModel() == Reloc::PIC_) { - TargetLowering *LoweringInfo = TM.getTargetLowering(); - if (LoweringInfo && LoweringInfo->usesGlobalOffsetTable()) { - SwitchToDataSection(TAI->getJumpTableDataSection()); - if (TD->getPointerSize() == 8 && !JTEntryDirective) - JTEntryDirective = TAI->getData64bitsDirective(); - } else { - // In PIC mode, we need to emit the jump table to the same section as the - // function body itself, otherwise the label differences won't make sense. - const Function *F = MF.getFunction(); - SwitchToTextSection(getSectionForFunction(*F).c_str(), F); - } + TargetLowering *LoweringInfo = TM.getTargetLowering(); + + const char* JumpTableDataSection = TAI->getJumpTableDataSection(); + if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || + !JumpTableDataSection) { + // In PIC mode, we need to emit the jump table to the same section as the + // function body itself, otherwise the label differences won't make sense. + // We should also do if the section name is NULL. + const Function *F = MF.getFunction(); + SwitchToTextSection(getSectionForFunction(*F).c_str(), F); } else { - SwitchToDataSection(TAI->getJumpTableDataSection()); - if (TD->getPointerSize() == 8) - JTEntryDirective = TAI->getData64bitsDirective(); + SwitchToDataSection(JumpTableDataSection); } - EmitAlignment(Log2_32(TD->getPointerAlignment())); + + EmitAlignment(Log2_32(MJTI->getAlignment())); for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &JTBBs = JT[i].MBBs; @@ -228,43 +294,78 @@ void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, // For PIC codegen, if possible we want to use the SetDirective to reduce // the number of relocations the assembler will generate for the jump table. // Set directives are all printed before the jump table itself. - std::set EmittedSets; - if (TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_) + SmallPtrSet EmittedSets; + if (TAI->getSetDirective() && IsPic) for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) - if (EmittedSets.insert(JTBBs[ii]).second) - printSetLabel(i, JTBBs[ii]); + if (EmittedSets.insert(JTBBs[ii])) + printPICJumpTableSetLabel(i, JTBBs[ii]); + + // On some targets (e.g. darwin) we want to emit two consequtive labels + // before each jump table. The first label is never referenced, but tells + // the assembler and linker the extents of the jump table object. The + // second label is actually referenced by the code. + if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) + O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << i << ":\n"; for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { - O << JTEntryDirective << ' '; - // If we have emitted set directives for the jump table entries, print - // them rather than the entries themselves. If we're emitting PIC, then - // emit the table entries as differences between two text section labels. - // If we're emitting non-PIC code, then emit the entries as direct - // references to the target basic blocks. - if (!EmittedSets.empty()) { - O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() - << '_' << i << "_set_" << JTBBs[ii]->getNumber(); - } else if (TM.getRelocationModel() == Reloc::PIC_) { - printBasicBlockLabel(JTBBs[ii], false, false); - //If the arch uses custom Jump Table directives, don't calc relative to JT - if (!TAI->getJumpTableDirective()) - O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" - << getFunctionNumber() << '_' << i; - } else { - printBasicBlockLabel(JTBBs[ii], false, false); - } + printPICJumpTableEntry(MJTI, JTBBs[ii], i); O << '\n'; } } } +void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, + const MachineBasicBlock *MBB, + unsigned uid) const { + bool IsPic = TM.getRelocationModel() == Reloc::PIC_; + + // Use JumpTableDirective otherwise honor the entry size from the jump table + // info. + const char *JTEntryDirective = TAI->getJumpTableDirective(); + bool HadJTEntryDirective = JTEntryDirective != NULL; + if (!HadJTEntryDirective) { + JTEntryDirective = MJTI->getEntrySize() == 4 ? + TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); + } + + O << JTEntryDirective << ' '; + + // If we have emitted set directives for the jump table entries, print + // them rather than the entries themselves. If we're emitting PIC, then + // emit the table entries as differences between two text section labels. + // If we're emitting non-PIC code, then emit the entries as direct + // references to the target basic blocks. + if (IsPic) { + if (TAI->getSetDirective()) { + O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() + << '_' << uid << "_set_" << MBB->getNumber(); + } else { + printBasicBlockLabel(MBB, false, false); + // If the arch uses custom Jump Table directives, don't calc relative to + // JT + if (!HadJTEntryDirective) + O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" + << getFunctionNumber() << '_' << uid; + } + } else { + printBasicBlockLabel(MBB, false, false); + } +} + + /// EmitSpecialLLVMGlobal - Check to see if the specified global is a /// special global used by LLVM. If so, emit it and return true, otherwise /// do nothing and return false. bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { + if (GV->getName() == "llvm.used") { + if (TAI->getUsedDirective() != 0) // No need to emit this at all. + EmitLLVMUsedList(GV->getInitializer()); + return true; + } + // Ignore debug and non-emitted data. if (GV->getSection() == "llvm.metadata") return true; @@ -272,22 +373,18 @@ bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { assert(GV->hasInitializer() && "Not a special LLVM global!"); - if (GV->getName() == "llvm.used") { - if (TAI->getUsedDirective() != 0) // No need to emit this at all. - EmitLLVMUsedList(GV->getInitializer()); - return true; - } - + const TargetData *TD = TM.getTargetData(); + unsigned Align = Log2_32(TD->getPointerPrefAlignment()); if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticCtorsSection()); - EmitAlignment(2, 0); + EmitAlignment(Align, 0); EmitXXStructorList(GV->getInitializer()); return true; } if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticDtorsSection()); - EmitAlignment(2, 0); + EmitAlignment(Align, 0); EmitXXStructorList(GV->getInitializer()); return true; } @@ -348,15 +445,253 @@ const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ return LinkName; } -// EmitAlignment - Emit an alignment directive to the specified power of two. -void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { +/// EmitExternalGlobal - Emit the external reference to a global variable. +/// Should be overridden if an indirect reference should be used. +void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { + O << getGlobalLinkName(GV); +} + + + +//===----------------------------------------------------------------------===// +/// LEB 128 number encoding. + +/// PrintULEB128 - Print a series of hexidecimal values (separated by commas) +/// representing an unsigned leb128 value. +void AsmPrinter::PrintULEB128(unsigned Value) const { + do { + unsigned Byte = Value & 0x7f; + Value >>= 7; + if (Value) Byte |= 0x80; + O << "0x" << std::hex << Byte << std::dec; + if (Value) O << ", "; + } while (Value); +} + +/// SizeULEB128 - Compute the number of bytes required for an unsigned leb128 +/// value. +unsigned AsmPrinter::SizeULEB128(unsigned Value) { + unsigned Size = 0; + do { + Value >>= 7; + Size += sizeof(int8_t); + } while (Value); + return Size; +} + +/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) +/// representing a signed leb128 value. +void AsmPrinter::PrintSLEB128(int Value) const { + int Sign = Value >> (8 * sizeof(Value) - 1); + bool IsMore; + + do { + unsigned Byte = Value & 0x7f; + Value >>= 7; + IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; + if (IsMore) Byte |= 0x80; + O << "0x" << std::hex << Byte << std::dec; + if (IsMore) O << ", "; + } while (IsMore); +} + +/// SizeSLEB128 - Compute the number of bytes required for a signed leb128 +/// value. +unsigned AsmPrinter::SizeSLEB128(int Value) { + unsigned Size = 0; + int Sign = Value >> (8 * sizeof(Value) - 1); + bool IsMore; + + do { + unsigned Byte = Value & 0x7f; + Value >>= 7; + IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; + Size += sizeof(int8_t); + } while (IsMore); + return Size; +} + +//===--------------------------------------------------------------------===// +// Emission and print routines +// + +/// PrintHex - Print a value as a hexidecimal value. +/// +void AsmPrinter::PrintHex(int Value) const { + O << "0x" << std::hex << Value << std::dec; +} + +/// EOL - Print a newline character to asm stream. If a comment is present +/// then it will be printed first. Comments should not contain '\n'. +void AsmPrinter::EOL() const { + O << "\n"; +} +void AsmPrinter::EOL(const std::string &Comment) const { + if (AsmVerbose && !Comment.empty()) { + O << "\t" + << TAI->getCommentString() + << " " + << Comment; + } + O << "\n"; +} + +/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an +/// unsigned leb128 value. +void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { + if (TAI->hasLEB128()) { + O << "\t.uleb128\t" + << Value; + } else { + O << TAI->getData8bitsDirective(); + PrintULEB128(Value); + } +} + +/// EmitSLEB128Bytes - print an assembler byte data directive to compose a +/// signed leb128 value. +void AsmPrinter::EmitSLEB128Bytes(int Value) const { + if (TAI->hasLEB128()) { + O << "\t.sleb128\t" + << Value; + } else { + O << TAI->getData8bitsDirective(); + PrintSLEB128(Value); + } +} + +/// EmitInt8 - Emit a byte directive and value. +/// +void AsmPrinter::EmitInt8(int Value) const { + O << TAI->getData8bitsDirective(); + PrintHex(Value & 0xFF); +} + +/// EmitInt16 - Emit a short directive and value. +/// +void AsmPrinter::EmitInt16(int Value) const { + O << TAI->getData16bitsDirective(); + PrintHex(Value & 0xFFFF); +} + +/// EmitInt32 - Emit a long directive and value. +/// +void AsmPrinter::EmitInt32(int Value) const { + O << TAI->getData32bitsDirective(); + PrintHex(Value); +} + +/// EmitInt64 - Emit a long long directive and value. +/// +void AsmPrinter::EmitInt64(uint64_t Value) const { + if (TAI->getData64bitsDirective()) { + O << TAI->getData64bitsDirective(); + PrintHex(Value); + } else { + if (TM.getTargetData()->isBigEndian()) { + EmitInt32(unsigned(Value >> 32)); O << "\n"; + EmitInt32(unsigned(Value)); + } else { + EmitInt32(unsigned(Value)); O << "\n"; + EmitInt32(unsigned(Value >> 32)); + } + } +} + +/// toOctal - Convert the low order bits of X into an octal digit. +/// +static inline char toOctal(int X) { + return (X&7)+'0'; +} + +/// printStringChar - Print a char, escaped if necessary. +/// +static void printStringChar(std::ostream &O, unsigned char C) { + if (C == '"') { + O << "\\\""; + } else if (C == '\\') { + O << "\\\\"; + } else if (isprint(C)) { + O << C; + } else { + switch(C) { + case '\b': O << "\\b"; break; + case '\f': O << "\\f"; break; + case '\n': O << "\\n"; break; + case '\r': O << "\\r"; break; + case '\t': O << "\\t"; break; + default: + O << '\\'; + O << toOctal(C >> 6); + O << toOctal(C >> 3); + O << toOctal(C >> 0); + break; + } + } +} + +/// EmitString - Emit a string with quotes and a null terminator. +/// Special characters are emitted properly. +/// \literal (Eg. '\t') \endliteral +void AsmPrinter::EmitString(const std::string &String) const { + const char* AscizDirective = TAI->getAscizDirective(); + if (AscizDirective) + O << AscizDirective; + else + O << TAI->getAsciiDirective(); + O << "\""; + for (unsigned i = 0, N = String.size(); i < N; ++i) { + unsigned char C = String[i]; + printStringChar(O, C); + } + if (AscizDirective) + O << "\""; + else + O << "\\0\""; +} + + +/// EmitFile - Emit a .file directive. +void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { + O << "\t.file\t" << Number << " \""; + for (unsigned i = 0, N = Name.size(); i < N; ++i) { + unsigned char C = Name[i]; + printStringChar(O, C); + } + O << "\""; +} + + +//===----------------------------------------------------------------------===// + +// EmitAlignment - Emit an alignment directive to the specified power of +// two boundary. For example, if you pass in 3 here, you will get an 8 +// byte alignment. If a global value is specified, and if that global has +// an explicit alignment requested, it will unconditionally override the +// alignment request. However, if ForcedAlignBits is specified, this value +// has final say: the ultimate alignment will be the max of ForcedAlignBits +// and the alignment computed with NumBits and the global. +// +// The algorithm is: +// Align = NumBits; +// if (GV && GV->hasalignment) Align = GV->getalignment(); +// Align = std::max(Align, ForcedAlignBits); +// +void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, + unsigned ForcedAlignBits, bool UseFillExpr, + unsigned FillValue) const { if (GV && GV->getAlignment()) NumBits = Log2_32(GV->getAlignment()); + NumBits = std::max(NumBits, ForcedAlignBits); + if (NumBits == 0) return; // No need to emit alignment. if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; - O << TAI->getAlignDirective() << NumBits << "\n"; + O << TAI->getAlignDirective() << NumBits; + if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec; + O << "\n"; } + /// EmitZeros - Emit a block of zeros. /// void AsmPrinter::EmitZeros(uint64_t NumZeros) const { @@ -378,17 +713,8 @@ void AsmPrinter::EmitZeros(uint64_t NumZeros) const { void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { if (CV->isNullValue() || isa(CV)) O << "0"; - else if (const ConstantBool *CB = dyn_cast(CV)) { - assert(CB->getValue()); - O << "1"; - } else if (const ConstantInt *CI = dyn_cast(CV)) { - if (CI->getType()->isSigned()) { - if (((CI->getSExtValue() << 32) >> 32) == CI->getSExtValue()) - O << CI->getSExtValue(); - else - O << (uint64_t)CI->getSExtValue(); - } else - O << CI->getZExtValue(); + else if (const ConstantInt *CI = dyn_cast(CV)) { + O << CI->getZExtValue(); } else if (const GlobalValue *GV = dyn_cast(CV)) { // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value, possibly @@ -405,12 +731,14 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { } } else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData *TD = TM.getTargetData(); - switch(CE->getOpcode()) { + unsigned Opcode = CE->getOpcode(); + switch (Opcode) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); - std::vector idxVec(CE->op_begin()+1, CE->op_end()); - if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec)) { + SmallVector idxVec(CE->op_begin()+1, CE->op_end()); + if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], + idxVec.size())) { if (Offset) O << "("; EmitConstantValueOnly(ptrVal); @@ -437,42 +765,59 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { case Instruction::BitCast: return EmitConstantValueOnly(CE->getOperand(0)); - case Instruction::IntToPtr: - case Instruction::PtrToInt:{ + case Instruction::IntToPtr: { + // Handle casts to pointers by changing them into casts to the appropriate + // integer type. This promotes constant folding and simplifies this code. + Constant *Op = CE->getOperand(0); + Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); + return EmitConstantValueOnly(Op); + } + + + case Instruction::PtrToInt: { // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); - const Type *OpTy = Op->getType(), *Ty = CE->getType(); + const Type *Ty = CE->getType(); - // Handle casts to pointers by changing them into casts to the appropriate - // integer type. This promotes constant folding and simplifies this code. - if (isa(Ty)) { - const Type *IntPtrTy = TD->getIntPtrType(); - Instruction::CastOps opcode = Instruction::CastOps(CE->getOpcode()); - if (opcode == Instruction::IntToPtr) - Op = ConstantExpr::getIntegerCast(Op, IntPtrTy, false /*ZExt*/); - else - Op = ConstantExpr::getPtrToInt(Op, IntPtrTy); + // We can emit the pointer value into this slot if the slot is an + // integer slot greater or equal to the size of the pointer. + if (Ty->isInteger() && + TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) return EmitConstantValueOnly(Op); - } - - // We know the dest type is not a pointer. Is the src value a pointer or - // integral? - if (isa(OpTy) || OpTy->isIntegral()) { - // We can emit the pointer value into this slot if the slot is an - // integer slot greater or equal to the size of the pointer. - if (Ty->isIntegral() && TD->getTypeSize(Ty) >= TD->getTypeSize(OpTy)) - return EmitConstantValueOnly(Op); - } assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); EmitConstantValueOnly(Op); break; } case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: O << "("; EmitConstantValueOnly(CE->getOperand(0)); - O << ") + ("; + O << ")"; + switch (Opcode) { + case Instruction::Add: + O << " + "; + break; + case Instruction::Sub: + O << " - "; + break; + case Instruction::And: + O << " & "; + break; + case Instruction::Or: + O << " | "; + break; + case Instruction::Xor: + O << " ^ "; + break; + default: + break; + } + O << "("; EmitConstantValueOnly(CE->getOperand(1)); O << ")"; break; @@ -484,12 +829,6 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { } } -/// toOctal - Convert the low order bits of X into an octal digit. -/// -static inline char toOctal(int X) { - return (X&7)+'0'; -} - /// printAsCString - Print the specified array as a C compatible string, only if /// the predicate isString is true. /// @@ -501,28 +840,7 @@ static void printAsCString(std::ostream &O, const ConstantArray *CVA, for (unsigned i = 0; i != LastElt; ++i) { unsigned char C = (unsigned char)cast(CVA->getOperand(i))->getZExtValue(); - - if (C == '"') { - O << "\\\""; - } else if (C == '\\') { - O << "\\\\"; - } else if (isprint(C)) { - O << C; - } else { - switch(C) { - case '\b': O << "\\b"; break; - case '\f': O << "\\f"; break; - case '\n': O << "\\n"; break; - case '\r': O << "\\r"; break; - case '\t': O << "\\t"; break; - default: - O << '\\'; - O << toOctal(C >> 6); - O << toOctal(C >> 3); - O << toOctal(C >> 0); - break; - } - } + printStringChar(O, C); } O << "\""; } @@ -543,19 +861,21 @@ void AsmPrinter::EmitString(const ConstantArray *CVA) const { } /// EmitGlobalConstant - Print a general LLVM constant to the .s file. -/// -void AsmPrinter::EmitGlobalConstant(const Constant *CV) { +/// If Packed is false, pad to the ABI size. +void AsmPrinter::EmitGlobalConstant(const Constant *CV, bool Packed) { const TargetData *TD = TM.getTargetData(); + unsigned Size = Packed ? + TD->getTypeStoreSize(CV->getType()) : TD->getABITypeSize(CV->getType()); if (CV->isNullValue() || isa(CV)) { - EmitZeros(TD->getTypeSize(CV->getType())); + EmitZeros(Size); return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { EmitString(CVA); } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) - EmitGlobalConstant(CVA->getOperand(i)); + EmitGlobalConstant(CVA->getOperand(i), false); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { @@ -566,51 +886,132 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. - uint64_t fieldSize = TD->getTypeSize(field->getType()); - uint64_t padSize = ((i == e-1? cvsLayout->StructSize - : cvsLayout->MemberOffsets[i+1]) - - cvsLayout->MemberOffsets[i]) - fieldSize; + uint64_t fieldSize = TD->getTypeStoreSize(field->getType()); + uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) + - cvsLayout->getElementOffset(i)) - fieldSize; sizeSoFar += fieldSize + padSize; - // Now print the actual field value - EmitGlobalConstant(field); + // Now print the actual field value without ABI size padding. + EmitGlobalConstant(field, true); - // Insert the field padding unless it's zero bytes... + // Insert padding - this may include padding to increase the size of the + // current field up to the ABI size (if the struct is not packed) as well + // as padding to ensure that the next field starts at the right offset. EmitZeros(padSize); } - assert(sizeSoFar == cvsLayout->StructSize && + assert(sizeSoFar == cvsLayout->getSizeInBytes() && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... - double Val = CFP->getValue(); if (CFP->getType() == Type::DoubleTy) { + double Val = CFP->getValueAPF().convertToDouble(); // for comment only + uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue(); if (TAI->getData64bitsDirective()) - O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t" + O << TAI->getData64bitsDirective() << i << "\t" << TAI->getCommentString() << " double value: " << Val << "\n"; else if (TD->isBigEndian()) { - O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32) + O << TAI->getData32bitsDirective() << unsigned(i >> 32) << "\t" << TAI->getCommentString() << " double most significant word " << Val << "\n"; - O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val)) + O << TAI->getData32bitsDirective() << unsigned(i) << "\t" << TAI->getCommentString() << " double least significant word " << Val << "\n"; } else { - O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val)) + O << TAI->getData32bitsDirective() << unsigned(i) << "\t" << TAI->getCommentString() << " double least significant word " << Val << "\n"; - O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32) + O << TAI->getData32bitsDirective() << unsigned(i >> 32) << "\t" << TAI->getCommentString() << " double most significant word " << Val << "\n"; } return; - } else { - O << TAI->getData32bitsDirective() << FloatToBits(Val) + } else if (CFP->getType() == Type::FloatTy) { + float Val = CFP->getValueAPF().convertToFloat(); // for comment only + O << TAI->getData32bitsDirective() + << CFP->getValueAPF().convertToAPInt().getZExtValue() << "\t" << TAI->getCommentString() << " float " << Val << "\n"; return; - } - } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) { + } else if (CFP->getType() == Type::X86_FP80Ty) { + // all long double variants are printed as hex + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().convertToAPInt(); + const uint64_t *p = api.getRawData(); + APFloat DoubleVal = CFP->getValueAPF(); + DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven); + if (TD->isBigEndian()) { + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) + << "\t" << TAI->getCommentString() + << " long double most significant halfword of ~" + << DoubleVal.convertToDouble() << "\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0]) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[1]) + << "\t" << TAI->getCommentString() + << " long double least significant halfword\n"; + } else { + O << TAI->getData16bitsDirective() << uint16_t(p[1]) + << "\t" << TAI->getCommentString() + << " long double least significant halfword of ~" + << DoubleVal.convertToDouble() << "\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0]) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) + << "\t" << TAI->getCommentString() + << " long double next halfword\n"; + O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) + << "\t" << TAI->getCommentString() + << " long double most significant halfword\n"; + } + EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); + return; + } else if (CFP->getType() == Type::PPC_FP128Ty) { + // all long double variants are printed as hex + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().convertToAPInt(); + const uint64_t *p = api.getRawData(); + if (TD->isBigEndian()) { + O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) + << "\t" << TAI->getCommentString() + << " long double most significant word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[0]) + << "\t" << TAI->getCommentString() + << " long double next word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) + << "\t" << TAI->getCommentString() + << " long double next word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[1]) + << "\t" << TAI->getCommentString() + << " long double least significant word\n"; + } else { + O << TAI->getData32bitsDirective() << uint32_t(p[1]) + << "\t" << TAI->getCommentString() + << " long double least significant word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) + << "\t" << TAI->getCommentString() + << " long double next word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[0]) + << "\t" << TAI->getCommentString() + << " long double next word\n"; + O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) + << "\t" << TAI->getCommentString() + << " long double most significant word\n"; + } + return; + } else assert(0 && "Floating point constant type not handled"); + } else if (CV->getType() == Type::Int64Ty) { if (const ConstantInt *CI = dyn_cast(CV)) { uint64_t Val = CI->getZExtValue(); @@ -633,11 +1034,11 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) { } return; } - } else if (const ConstantPacked *CP = dyn_cast(CV)) { - const PackedType *PTy = CP->getType(); + } else if (const ConstantVector *CP = dyn_cast(CV)) { + const VectorType *PTy = CP->getType(); for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) - EmitGlobalConstant(CP->getOperand(I)); + EmitGlobalConstant(CP->getOperand(I), false); return; } @@ -668,9 +1069,19 @@ void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { } else if (!strcmp(Code, "uid")) { // Assign a unique ID to this machine instruction. static const MachineInstr *LastMI = 0; + static const Function *F = 0; static unsigned Counter = 0U-1; + + // Comparing the address of MI isn't sufficient, because machineinstrs may + // be allocated to the same address across functions. + const Function *ThisF = MI->getParent()->getParent()->getFunction(); + // If this is a new machine instruction, bump the counter. - if (LastMI != MI) { ++Counter; LastMI = MI; } + if (LastMI != MI || F != ThisF) { + ++Counter; + LastMI = MI; + F = ThisF; + } O << Counter; } else { cerr << "Unknown special formatter '" << Code @@ -687,7 +1098,7 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { // Count the number of register definitions. unsigned NumDefs = 0; - for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); + for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef(); ++NumDefs) assert(NumDefs != NumOperands-1 && "No asm string?"); @@ -696,17 +1107,18 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); - // If this asmstr is empty, don't bother printing the #APP/#NOAPP markers. + // If this asmstr is empty, just print the #APP/#NOAPP markers. + // These are useful to see where empty asm's wound up. if (AsmStr[0] == 0) { - O << "\n"; // Tab already printed, avoid double indenting next instr. + O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << "\n"; return; } O << TAI->getInlineAsmStart() << "\n\t"; - // The variant of the current asmprinter: FIXME: change. - int AsmPrinterVariant = 0; - + // The variant of the current asmprinter. + int AsmPrinterVariant = TAI->getAssemblerDialect(); + int CurVariant = -1; // The number of the {.|.|.} region we are in. const char *LastEmitted = AsmStr; // One past the last character emitted. @@ -725,7 +1137,7 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { } case '\n': ++LastEmitted; // Consume newline character. - O << "\n\t"; // Indent code with newline. + O << "\n"; // Indent code with newline. break; case '$': { ++LastEmitted; // Consume '$' character. @@ -777,6 +1189,7 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { const char *IDStart = LastEmitted; char *IDEnd; + errno = 0; long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { cerr << "Bad $ operand number in inline asm string: '" @@ -826,23 +1239,28 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { // Scan to find the machine operand number for the operand. for (; Val; --Val) { if (OpNo >= MI->getNumOperands()) break; - unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); + unsigned OpFlags = MI->getOperand(OpNo).getImm(); OpNo += (OpFlags >> 3) + 1; } if (OpNo >= MI->getNumOperands()) { Error = true; } else { - unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); + unsigned OpFlags = MI->getOperand(OpNo).getImm(); ++OpNo; // Skip over the ID number. - AsmPrinter *AP = const_cast(this); - if ((OpFlags & 7) == 4 /*ADDR MODE*/) { - Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, - Modifier[0] ? Modifier : 0); - } else { - Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, - Modifier[0] ? Modifier : 0); + if (Modifier[0]=='l') // labels are target independent + printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), + false, false); + else { + AsmPrinter *AP = const_cast(this); + if ((OpFlags & 7) == 4 /*ADDR MODE*/) { + Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, + Modifier[0] ? Modifier : 0); + } else { + Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, + Modifier[0] ? Modifier : 0); + } } } if (Error) { @@ -859,6 +1277,27 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { O << "\n\t" << TAI->getInlineAsmEnd() << "\n"; } +/// printLabel - This method prints a local label used by debug and +/// exception handling tables. +void AsmPrinter::printLabel(const MachineInstr *MI) const { + O << TAI->getPrivateGlobalPrefix() + << "label" << MI->getOperand(0).getImm() << ":\n"; +} + +void AsmPrinter::printLabel(unsigned Id) const { + O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; +} + +/// printDeclare - This method prints a local variable declaration used by +/// debug tables. +/// FIXME: It doesn't really print anything rather it inserts a DebugVariable +/// entry into dwarf table. +void AsmPrinter::printDeclare(const MachineInstr *MI) const { + int FI = MI->getOperand(0).getIndex(); + GlobalValue *GV = MI->getOperand(1).getGlobal(); + MMI->RecordVariable(GV, FI); +} + /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM /// instruction, using the specified assembler variant. Targets should /// overried this to format as appropriate. @@ -880,18 +1319,19 @@ bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, bool printColon, bool printComment) const { - O << TAI->getPrivateGlobalPrefix() << "BB" << FunctionNumber << "_" + O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << "_" << MBB->getNumber(); if (printColon) O << ':'; if (printComment && MBB->getBasicBlock()) - O << '\t' << TAI->getCommentString() << MBB->getBasicBlock()->getName(); + O << '\t' << TAI->getCommentString() << ' ' + << MBB->getBasicBlock()->getName(); } -/// printSetLabel - This method prints a set label for the specified -/// MachineBasicBlock -void AsmPrinter::printSetLabel(unsigned uid, - const MachineBasicBlock *MBB) const { +/// printPICJumpTableSetLabel - This method prints a set label for the +/// specified MachineBasicBlock for a jumptable entry. +void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, + const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; @@ -902,8 +1342,8 @@ void AsmPrinter::printSetLabel(unsigned uid, << '_' << uid << '\n'; } -void AsmPrinter::printSetLabel(unsigned uid, unsigned uid2, - const MachineBasicBlock *MBB) const { +void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, + const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; @@ -920,33 +1360,36 @@ void AsmPrinter::printSetLabel(unsigned uid, unsigned uid2, void AsmPrinter::printDataDirective(const Type *type) { const TargetData *TD = TM.getTargetData(); switch (type->getTypeID()) { - case Type::BoolTyID: - case Type::UByteTyID: case Type::SByteTyID: - O << TAI->getData8bitsDirective(); - break; - case Type::UShortTyID: case Type::ShortTyID: - O << TAI->getData16bitsDirective(); + case Type::IntegerTyID: { + unsigned BitWidth = cast(type)->getBitWidth(); + if (BitWidth <= 8) + O << TAI->getData8bitsDirective(); + else if (BitWidth <= 16) + O << TAI->getData16bitsDirective(); + else if (BitWidth <= 32) + O << TAI->getData32bitsDirective(); + else if (BitWidth <= 64) { + assert(TAI->getData64bitsDirective() && + "Target cannot handle 64-bit constant exprs!"); + O << TAI->getData64bitsDirective(); + } break; + } case Type::PointerTyID: if (TD->getPointerSize() == 8) { assert(TAI->getData64bitsDirective() && "Target cannot handle 64-bit pointer exprs!"); O << TAI->getData64bitsDirective(); - break; + } else { + O << TAI->getData32bitsDirective(); } - //Fall through for pointer size == int size - case Type::UIntTyID: case Type::IntTyID: - O << TAI->getData32bitsDirective(); - break; - case Type::ULongTyID: case Type::LongTyID: - assert(TAI->getData64bitsDirective() && - "Target cannot handle 64-bit constant exprs!"); - O << TAI->getData64bitsDirective(); break; case Type::FloatTyID: case Type::DoubleTyID: + case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } } +