X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FMachineScheduler.cpp;h=74190e935412dc7f58e89a3598ae1db3d84630a4;hb=fb9ebbf236974beac31705eaeb9f50ab585af6ab;hp=53003d8dac755ff7f0bbeea0eeff6bfa02264175;hpb=000b2504eef6c1ff4a7857087b0a1cbe0f7e1b1a;p=oota-llvm.git diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp index 53003d8dac7..74190e93541 100644 --- a/lib/CodeGen/MachineScheduler.cpp +++ b/lib/CodeGen/MachineScheduler.cpp @@ -14,13 +14,13 @@ #define DEBUG_TYPE "misched" -#include "RegisterPressure.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/Passes.h" -#include "llvm/CodeGen/ScheduleDAGInstrs.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/ScheduleDAGILP.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" @@ -32,10 +32,12 @@ using namespace llvm; -static cl::opt ForceTopDown("misched-topdown", cl::Hidden, - cl::desc("Force top-down list scheduling")); -static cl::opt ForceBottomUp("misched-bottomup", cl::Hidden, - cl::desc("Force bottom-up list scheduling")); +namespace llvm { +cl::opt ForceTopDown("misched-topdown", cl::Hidden, + cl::desc("Force top-down list scheduling")); +cl::opt ForceBottomUp("misched-bottomup", cl::Hidden, + cl::desc("Force bottom-up list scheduling")); +} #ifndef NDEBUG static cl::opt ViewMISchedDAGs("view-misched-dags", cl::Hidden, @@ -51,6 +53,15 @@ static bool ViewMISchedDAGs = false; // Machine Instruction Scheduling Pass and Registry //===----------------------------------------------------------------------===// +MachineSchedContext::MachineSchedContext(): + MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { + RegClassInfo = new RegisterClassInfo(); +} + +MachineSchedContext::~MachineSchedContext() { + delete RegClassInfo; +} + namespace { /// MachineScheduler runs after coalescing and before register allocation. class MachineScheduler : public MachineSchedContext, @@ -139,7 +150,7 @@ priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { /// non-debug instruction. static MachineBasicBlock::iterator nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { - while(I != End) { + for(; I != End; ++I) { if (!I->isDebugValue()) break; } @@ -163,6 +174,8 @@ nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { /// design would be to split blocks at scheduling boundaries, but LLVM has a /// general bias against block splitting purely for implementation simplicity. bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { + DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); + // Initialize the context of the pass. MF = &mf; MLI = &getAnalysis(); @@ -173,7 +186,7 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { LIS = &getAnalysis(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); - RegClassInfo.runOnMachineFunction(*MF); + RegClassInfo->runOnMachineFunction(*MF); // Select the scheduler, or set the default. MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; @@ -198,7 +211,7 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { Scheduler->startBlock(MBB); // Break the block into scheduling regions [I, RegionEnd), and schedule each - // region as soon as it is discovered. RegionEnd points the the scheduling + // region as soon as it is discovered. RegionEnd points the scheduling // boundary at the bottom of the region. The DAG does not include RegionEnd, // but the region does (i.e. the next RegionEnd is above the previous // RegionBegin). If the current block has no terminator then RegionEnd == @@ -237,7 +250,8 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { Scheduler->exitRegion(); continue; } - DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName() + DEBUG(dbgs() << "********** MI Scheduling **********\n"); + DEBUG(dbgs() << MF->getName() << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; @@ -266,106 +280,24 @@ void MachineScheduler::print(raw_ostream &O, const Module* m) const { // unimplemented } -//===----------------------------------------------------------------------===// -// MachineSchedStrategy - Interface to a machine scheduling algorithm. -//===----------------------------------------------------------------------===// - -namespace { -class ScheduleDAGMI; - -/// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected -/// scheduling algorithm. -/// -/// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it -/// in ScheduleDAGInstrs.h -class MachineSchedStrategy { -public: - virtual ~MachineSchedStrategy() {} - - /// Initialize the strategy after building the DAG for a new region. - virtual void initialize(ScheduleDAGMI *DAG) = 0; - - /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to - /// schedule the node at the top of the unscheduled region. Otherwise it will - /// be scheduled at the bottom. - virtual SUnit *pickNode(bool &IsTopNode) = 0; - - /// When all predecessor dependencies have been resolved, free this node for - /// top-down scheduling. - virtual void releaseTopNode(SUnit *SU) = 0; - /// When all successor dependencies have been resolved, free this node for - /// bottom-up scheduling. - virtual void releaseBottomNode(SUnit *SU) = 0; -}; -} // namespace +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ReadyQueue::dump() { + dbgs() << Name << ": "; + for (unsigned i = 0, e = Queue.size(); i < e; ++i) + dbgs() << Queue[i]->NodeNum << " "; + dbgs() << "\n"; +} +#endif //===----------------------------------------------------------------------===// // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals // preservation. //===----------------------------------------------------------------------===// -namespace { -/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules -/// machine instructions while updating LiveIntervals. -class ScheduleDAGMI : public ScheduleDAGInstrs { - AliasAnalysis *AA; - RegisterClassInfo *RegClassInfo; - MachineSchedStrategy *SchedImpl; - - // Register pressure in this region computed by buildSchedGraph. - IntervalPressure RegPressure; - RegPressureTracker RPTracker; - - /// The top of the unscheduled zone. - MachineBasicBlock::iterator CurrentTop; - - /// The bottom of the unscheduled zone. - MachineBasicBlock::iterator CurrentBottom; - - /// The number of instructions scheduled so far. Used to cut off the - /// scheduler at the point determined by misched-cutoff. - unsigned NumInstrsScheduled; -public: - ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S): - ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS), - AA(C->AA), RegClassInfo(&C->RegClassInfo), SchedImpl(S), - RPTracker(RegPressure), CurrentTop(), CurrentBottom(), - NumInstrsScheduled(0) {} - - ~ScheduleDAGMI() { - delete SchedImpl; - } - - MachineBasicBlock::iterator top() const { return CurrentTop; } - MachineBasicBlock::iterator bottom() const { return CurrentBottom; } - - /// Implement the ScheduleDAGInstrs interface for handling the next scheduling - /// region. This covers all instructions in a block, while schedule() may only - /// cover a subset. - void enterRegion(MachineBasicBlock *bb, - MachineBasicBlock::iterator begin, - MachineBasicBlock::iterator end, - unsigned endcount); - - /// Implement ScheduleDAGInstrs interface for scheduling a sequence of - /// reorderable instructions. - void schedule(); - -protected: - void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); - bool checkSchedLimit(); - - void releaseSucc(SUnit *SU, SDep *SuccEdge); - void releaseSuccessors(SUnit *SU); - void releasePred(SUnit *SU, SDep *PredEdge); - void releasePredecessors(SUnit *SU); - - void placeDebugValues(); -}; -} // namespace - /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When /// NumPredsLeft reaches zero, release the successor node. +/// +/// FIXME: Adjust SuccSU height based on MinLatency. void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); @@ -392,6 +324,8 @@ void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When /// NumSuccsLeft reaches zero, release the predecessor node. +/// +/// FIXME: Adjust PredSU height based on MinLatency. void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); @@ -418,12 +352,17 @@ void ScheduleDAGMI::releasePredecessors(SUnit *SU) { void ScheduleDAGMI::moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { - // Fix RegionBegin if the first instruction moves down. + // Advance RegionBegin if the first instruction moves down. if (&*RegionBegin == MI) - RegionBegin = llvm::next(RegionBegin); + ++RegionBegin; + + // Update the instruction stream. BB->splice(InsertPos, BB, MI); + + // Update LiveIntervals LIS->handleMove(MI); - // Fix RegionBegin if another instruction moves above the first instruction. + + // Recede RegionBegin if an instruction moves above the first. if (RegionBegin == InsertPos) RegionBegin = MI; } @@ -449,87 +388,222 @@ void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, unsigned endcount) { ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); - // Setup the register pressure tracker to begin tracking at the end of this - // region. - RPTracker.init(&MF, RegClassInfo, LIS, BB, end); + + // For convenience remember the end of the liveness region. + LiveRegionEnd = + (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); +} + +// Setup the register pressure trackers for the top scheduled top and bottom +// scheduled regions. +void ScheduleDAGMI::initRegPressure() { + TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); + BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + + // Close the RPTracker to finalize live ins. + RPTracker.closeRegion(); + + DEBUG(RPTracker.getPressure().dump(TRI)); + + // Initialize the live ins and live outs. + TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); + BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); + + // Close one end of the tracker so we can call + // getMaxUpward/DownwardPressureDelta before advancing across any + // instructions. This converts currently live regs into live ins/outs. + TopRPTracker.closeTop(); + BotRPTracker.closeBottom(); + + // Account for liveness generated by the region boundary. + if (LiveRegionEnd != RegionEnd) + BotRPTracker.recede(); + + assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); + + // Cache the list of excess pressure sets in this region. This will also track + // the max pressure in the scheduled code for these sets. + RegionCriticalPSets.clear(); + std::vector RegionPressure = RPTracker.getPressure().MaxSetPressure; + for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { + unsigned Limit = TRI->getRegPressureSetLimit(i); + DEBUG(dbgs() << TRI->getRegPressureSetName(i) + << "Limit " << Limit + << " Actual " << RegionPressure[i] << "\n"); + if (RegionPressure[i] > Limit) + RegionCriticalPSets.push_back(PressureElement(i, 0)); + } + DEBUG(dbgs() << "Excess PSets: "; + for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) + dbgs() << TRI->getRegPressureSetName( + RegionCriticalPSets[i].PSetID) << " "; + dbgs() << "\n"); +} + +// FIXME: When the pressure tracker deals in pressure differences then we won't +// iterate over all RegionCriticalPSets[i]. +void ScheduleDAGMI:: +updateScheduledPressure(std::vector NewMaxPressure) { + for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { + unsigned ID = RegionCriticalPSets[i].PSetID; + int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; + if ((int)NewMaxPressure[ID] > MaxUnits) + MaxUnits = NewMaxPressure[ID]; + } } /// schedule - Called back from MachineScheduler::runOnMachineFunction /// after setting up the current scheduling region. [RegionBegin, RegionEnd) /// only includes instructions that have DAG nodes, not scheduling boundaries. +/// +/// This is a skeletal driver, with all the functionality pushed into helpers, +/// so that it can be easilly extended by experimental schedulers. Generally, +/// implementing MachineSchedStrategy should be sufficient to implement a new +/// scheduling algorithm. However, if a scheduler further subclasses +/// ScheduleDAGMI then it will want to override this virtual method in order to +/// update any specialized state. void ScheduleDAGMI::schedule() { - while(RPTracker.getPos() != RegionEnd) { - bool Moved = RPTracker.recede(); - assert(Moved && "Regpressure tracker cannot find RegionEnd"); (void)Moved; - } + buildDAGWithRegPressure(); - // Build the DAG. - buildSchedGraph(AA, &RPTracker); + postprocessDAG(); - DEBUG(dbgs() << "********** MI Scheduling **********\n"); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); if (ViewMISchedDAGs) viewGraph(); - SchedImpl->initialize(this); + initQueues(); - // Release edges from the special Entry node or to the special Exit node. - releaseSuccessors(&EntrySU); - releasePredecessors(&ExitSU); + bool IsTopNode = false; + while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { + assert(!SU->isScheduled && "Node already scheduled"); + if (!checkSchedLimit()) + break; - // Release all DAG roots for scheduling. - for (std::vector::iterator I = SUnits.begin(), E = SUnits.end(); - I != E; ++I) { + scheduleMI(SU, IsTopNode); + + updateQueues(SU, IsTopNode); + } + assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + + placeDebugValues(); +} + +/// Build the DAG and setup three register pressure trackers. +void ScheduleDAGMI::buildDAGWithRegPressure() { + // Initialize the register pressure tracker used by buildSchedGraph. + RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + + // Account for liveness generate by the region boundary. + if (LiveRegionEnd != RegionEnd) + RPTracker.recede(); + + // Build the DAG, and compute current register pressure. + buildSchedGraph(AA, &RPTracker); + if (ViewMISchedDAGs) viewGraph(); + + // Initialize top/bottom trackers after computing region pressure. + initRegPressure(); +} + +/// Apply each ScheduleDAGMutation step in order. +void ScheduleDAGMI::postprocessDAG() { + for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { + Mutations[i]->apply(this); + } +} + +// Release all DAG roots for scheduling. +void ScheduleDAGMI::releaseRoots() { + SmallVector BotRoots; + + for (std::vector::iterator + I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { // A SUnit is ready to top schedule if it has no predecessors. if (I->Preds.empty()) SchedImpl->releaseTopNode(&(*I)); // A SUnit is ready to bottom schedule if it has no successors. if (I->Succs.empty()) - SchedImpl->releaseBottomNode(&(*I)); + BotRoots.push_back(&(*I)); } + // Release bottom roots in reverse order so the higher priority nodes appear + // first. This is more natural and slightly more efficient. + for (SmallVectorImpl::const_reverse_iterator + I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) + SchedImpl->releaseBottomNode(*I); +} + +/// Identify DAG roots and setup scheduler queues. +void ScheduleDAGMI::initQueues() { + + // Initialize the strategy before modifying the DAG. + SchedImpl->initialize(this); + + // Release edges from the special Entry node or to the special Exit node. + releaseSuccessors(&EntrySU); + releasePredecessors(&ExitSU); + + // Release all DAG roots for scheduling. + releaseRoots(); + + SchedImpl->registerRoots(); CurrentTop = nextIfDebug(RegionBegin, RegionEnd); CurrentBottom = RegionEnd; - bool IsTopNode = false; - while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { - DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") - << " Scheduling Instruction:\n"; SU->dump(this)); - if (!checkSchedLimit()) - break; +} - // Move the instruction to its new location in the instruction stream. - MachineInstr *MI = SU->getInstr(); +/// Move an instruction and update register pressure. +void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { + // Move the instruction to its new location in the instruction stream. + MachineInstr *MI = SU->getInstr(); - if (IsTopNode) { - assert(SU->isTopReady() && "node still has unscheduled dependencies"); - if (&*CurrentTop == MI) - CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); - else - moveInstruction(MI, CurrentTop); - // Release dependent instructions for scheduling. - releaseSuccessors(SU); + if (IsTopNode) { + assert(SU->isTopReady() && "node still has unscheduled dependencies"); + if (&*CurrentTop == MI) + CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); + else { + moveInstruction(MI, CurrentTop); + TopRPTracker.setPos(MI); } + + // Update top scheduled pressure. + TopRPTracker.advance(); + assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); + updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); + } + else { + assert(SU->isBottomReady() && "node still has unscheduled dependencies"); + MachineBasicBlock::iterator priorII = + priorNonDebug(CurrentBottom, CurrentTop); + if (&*priorII == MI) + CurrentBottom = priorII; else { - assert(SU->isBottomReady() && "node still has unscheduled dependencies"); - MachineBasicBlock::iterator priorII = - priorNonDebug(CurrentBottom, CurrentTop); - if (&*priorII == MI) - CurrentBottom = priorII; - else { - if (&*CurrentTop == MI) - CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); - moveInstruction(MI, CurrentBottom); - CurrentBottom = MI; + if (&*CurrentTop == MI) { + CurrentTop = nextIfDebug(++CurrentTop, priorII); + TopRPTracker.setPos(CurrentTop); } - // Release dependent instructions for scheduling. - releasePredecessors(SU); + moveInstruction(MI, CurrentBottom); + CurrentBottom = MI; } - SU->isScheduled = true; + // Update bottom scheduled pressure. + BotRPTracker.recede(); + assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); + updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); } - assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); +} - placeDebugValues(); +/// Update scheduler queues after scheduling an instruction. +void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { + // Release dependent instructions for scheduling. + if (IsTopNode) + releaseSuccessors(SU); + else + releasePredecessors(SU); + + SU->isScheduled = true; + + // Notify the scheduling strategy after updating the DAG. + SchedImpl->schedNode(SU, IsTopNode); } /// Reinsert any remaining debug_values, just like the PostRA scheduler. @@ -561,53 +635,560 @@ namespace { /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance /// the schedule. class ConvergingScheduler : public MachineSchedStrategy { + + /// Store the state used by ConvergingScheduler heuristics, required for the + /// lifetime of one invocation of pickNode(). + struct SchedCandidate { + // The best SUnit candidate. + SUnit *SU; + + // Register pressure values for the best candidate. + RegPressureDelta RPDelta; + + SchedCandidate(): SU(NULL) {} + }; + /// Represent the type of SchedCandidate found within a single queue. + enum CandResult { + NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure }; + + /// Each Scheduling boundary is associated with ready queues. It tracks the + /// current cycle in whichever direction at has moved, and maintains the state + /// of "hazards" and other interlocks at the current cycle. + struct SchedBoundary { + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + + ReadyQueue Available; + ReadyQueue Pending; + bool CheckPending; + + ScheduleHazardRecognizer *HazardRec; + + unsigned CurrCycle; + unsigned IssueCount; + + /// MinReadyCycle - Cycle of the soonest available instruction. + unsigned MinReadyCycle; + + // Remember the greatest min operand latency. + unsigned MaxMinLatency; + + /// Pending queues extend the ready queues with the same ID and the + /// PendingFlag set. + SchedBoundary(unsigned ID, const Twine &Name): + DAG(0), SchedModel(0), Available(ID, Name+".A"), + Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), + CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0), + MinReadyCycle(UINT_MAX), MaxMinLatency(0) {} + + ~SchedBoundary() { delete HazardRec; } + + void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel) { + DAG = dag; + SchedModel = smodel; + } + + bool isTop() const { + return Available.getID() == ConvergingScheduler::TopQID; + } + + bool checkHazard(SUnit *SU); + + void releaseNode(SUnit *SU, unsigned ReadyCycle); + + void bumpCycle(); + + void bumpNode(SUnit *SU); + + void releasePending(); + + void removeReady(SUnit *SU); + + SUnit *pickOnlyChoice(); + }; + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + const TargetRegisterInfo *TRI; - unsigned NumTopReady; - unsigned NumBottomReady; + // State of the top and bottom scheduled instruction boundaries. + SchedBoundary Top; + SchedBoundary Bot; public: - virtual void initialize(ScheduleDAGMI *dag) { - DAG = dag; + /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) + enum { + TopQID = 1, + BotQID = 2, + LogMaxQID = 2 + }; + + ConvergingScheduler(): + DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} + + virtual void initialize(ScheduleDAGMI *dag); + + virtual SUnit *pickNode(bool &IsTopNode); + + virtual void schedNode(SUnit *SU, bool IsTopNode); + + virtual void releaseTopNode(SUnit *SU); + + virtual void releaseBottomNode(SUnit *SU); + +protected: + SUnit *pickNodeBidrectional(bool &IsTopNode); + + CandResult pickNodeFromQueue(ReadyQueue &Q, + const RegPressureTracker &RPTracker, + SchedCandidate &Candidate); +#ifndef NDEBUG + void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU, + PressureElement P = PressureElement()); +#endif +}; +} // namespace - assert((!ForceTopDown || !ForceBottomUp) && - "-misched-topdown incompatible with -misched-bottomup"); +void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { + DAG = dag; + SchedModel = DAG->getSchedModel(); + TRI = DAG->TRI; + Top.init(DAG, SchedModel); + Bot.init(DAG, SchedModel); + + // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or + // are disabled, then these HazardRecs will be disabled. + const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); + const TargetMachine &TM = DAG->MF.getTarget(); + Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + + assert((!ForceTopDown || !ForceBottomUp) && + "-misched-topdown incompatible with -misched-bottomup"); +} + +void ConvergingScheduler::releaseTopNode(SUnit *SU) { + if (SU->isScheduled) + return; + + for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; + unsigned MinLatency = I->getMinLatency(); +#ifndef NDEBUG + Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); +#endif + if (SU->TopReadyCycle < PredReadyCycle + MinLatency) + SU->TopReadyCycle = PredReadyCycle + MinLatency; } + Top.releaseNode(SU, SU->TopReadyCycle); +} - virtual SUnit *pickNode(bool &IsTopNode) { - if (DAG->top() == DAG->bottom()) - return NULL; +void ConvergingScheduler::releaseBottomNode(SUnit *SU) { + if (SU->isScheduled) + return; - // As an initial placeholder heuristic, schedule in the direction that has - // the fewest choices. - SUnit *SU; - if (ForceTopDown || (!ForceBottomUp && NumTopReady <= NumBottomReady)) { - SU = DAG->getSUnit(DAG->top()); - IsTopNode = true; + assert(SU->getInstr() && "Scheduled SUnit must have instr"); + + for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); + I != E; ++I) { + unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; + unsigned MinLatency = I->getMinLatency(); +#ifndef NDEBUG + Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); +#endif + if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) + SU->BotReadyCycle = SuccReadyCycle + MinLatency; + } + Bot.releaseNode(SU, SU->BotReadyCycle); +} + +/// Does this SU have a hazard within the current instruction group. +/// +/// The scheduler supports two modes of hazard recognition. The first is the +/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that +/// supports highly complicated in-order reservation tables +/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. +/// +/// The second is a streamlined mechanism that checks for hazards based on +/// simple counters that the scheduler itself maintains. It explicitly checks +/// for instruction dispatch limitations, including the number of micro-ops that +/// can dispatch per cycle. +/// +/// TODO: Also check whether the SU must start a new group. +bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { + if (HazardRec->isEnabled()) + return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; + + unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); + if (IssueCount + uops > SchedModel->getIssueWidth()) + return true; + + return false; +} + +void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, + unsigned ReadyCycle) { + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + // Check for interlocks first. For the purpose of other heuristics, an + // instruction that cannot issue appears as if it's not in the ReadyQueue. + if (ReadyCycle > CurrCycle || checkHazard(SU)) + Pending.push(SU); + else + Available.push(SU); +} + +/// Move the boundary of scheduled code by one cycle. +void ConvergingScheduler::SchedBoundary::bumpCycle() { + unsigned Width = SchedModel->getIssueWidth(); + IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; + + assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); + unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); + + if (!HazardRec->isEnabled()) { + // Bypass HazardRec virtual calls. + CurrCycle = NextCycle; + } + else { + // Bypass getHazardType calls in case of long latency. + for (; CurrCycle != NextCycle; ++CurrCycle) { + if (isTop()) + HazardRec->AdvanceCycle(); + else + HazardRec->RecedeCycle(); } - else { - SU = DAG->getSUnit(priorNonDebug(DAG->bottom(), DAG->top())); - IsTopNode = false; + } + CheckPending = true; + + DEBUG(dbgs() << "*** " << Available.getName() << " cycle " + << CurrCycle << '\n'); +} + +/// Move the boundary of scheduled code by one SUnit. +void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { + // Update the reservation table. + if (HazardRec->isEnabled()) { + if (!isTop() && SU->isCall) { + // Calls are scheduled with their preceding instructions. For bottom-up + // scheduling, clear the pipeline state before emitting. + HazardRec->Reset(); } - if (SU->isTopReady()) { - assert(NumTopReady > 0 && "bad ready count"); - --NumTopReady; + HazardRec->EmitInstruction(SU); + } + // Check the instruction group dispatch limit. + // TODO: Check if this SU must end a dispatch group. + IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); + if (IssueCount >= SchedModel->getIssueWidth()) { + DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); + bumpCycle(); + } +} + +/// Release pending ready nodes in to the available queue. This makes them +/// visible to heuristics. +void ConvergingScheduler::SchedBoundary::releasePending() { + // If the available queue is empty, it is safe to reset MinReadyCycle. + if (Available.empty()) + MinReadyCycle = UINT_MAX; + + // Check to see if any of the pending instructions are ready to issue. If + // so, add them to the available queue. + for (unsigned i = 0, e = Pending.size(); i != e; ++i) { + SUnit *SU = *(Pending.begin()+i); + unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; + + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + if (ReadyCycle > CurrCycle) + continue; + + if (checkHazard(SU)) + continue; + + Available.push(SU); + Pending.remove(Pending.begin()+i); + --i; --e; + } + CheckPending = false; +} + +/// Remove SU from the ready set for this boundary. +void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { + if (Available.isInQueue(SU)) + Available.remove(Available.find(SU)); + else { + assert(Pending.isInQueue(SU) && "bad ready count"); + Pending.remove(Pending.find(SU)); + } +} + +/// If this queue only has one ready candidate, return it. As a side effect, +/// advance the cycle until at least one node is ready. If multiple instructions +/// are ready, return NULL. +SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { + if (CheckPending) + releasePending(); + + for (unsigned i = 0; Available.empty(); ++i) { + assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && + "permanent hazard"); (void)i; + bumpCycle(); + releasePending(); + } + if (Available.size() == 1) + return *Available.begin(); + return NULL; +} + +#ifndef NDEBUG +void ConvergingScheduler::traceCandidate(const char *Label, const ReadyQueue &Q, + SUnit *SU, PressureElement P) { + dbgs() << Label << " " << Q.getName() << " "; + if (P.isValid()) + dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease + << " "; + else + dbgs() << " "; + SU->dump(DAG); +} +#endif + +/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is +/// more desirable than RHS from scheduling standpoint. +static bool compareRPDelta(const RegPressureDelta &LHS, + const RegPressureDelta &RHS) { + // Compare each component of pressure in decreasing order of importance + // without checking if any are valid. Invalid PressureElements are assumed to + // have UnitIncrease==0, so are neutral. + + // Avoid increasing the max critical pressure in the scheduled region. + if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) + return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; + + // Avoid increasing the max critical pressure in the scheduled region. + if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) + return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; + + // Avoid increasing the max pressure of the entire region. + if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) + return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; + + return false; +} + +/// Pick the best candidate from the top queue. +/// +/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during +/// DAG building. To adjust for the current scheduling location we need to +/// maintain the number of vreg uses remaining to be top-scheduled. +ConvergingScheduler::CandResult ConvergingScheduler:: +pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, + SchedCandidate &Candidate) { + DEBUG(Q.dump()); + + // getMaxPressureDelta temporarily modifies the tracker. + RegPressureTracker &TempTracker = const_cast(RPTracker); + + // BestSU remains NULL if no top candidates beat the best existing candidate. + CandResult FoundCandidate = NoCand; + for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { + RegPressureDelta RPDelta; + TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, + DAG->getRegionCriticalPSets(), + DAG->getRegPressure().MaxSetPressure); + + // Initialize the candidate if needed. + if (!Candidate.SU) { + Candidate.SU = *I; + Candidate.RPDelta = RPDelta; + FoundCandidate = NodeOrder; + continue; + } + // Avoid exceeding the target's limit. + if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) { + DEBUG(traceCandidate("ECAND", Q, *I, RPDelta.Excess)); + Candidate.SU = *I; + Candidate.RPDelta = RPDelta; + FoundCandidate = SingleExcess; + continue; + } + if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease) + continue; + if (FoundCandidate == SingleExcess) + FoundCandidate = MultiPressure; + + // Avoid increasing the max critical pressure in the scheduled region. + if (RPDelta.CriticalMax.UnitIncrease + < Candidate.RPDelta.CriticalMax.UnitIncrease) { + DEBUG(traceCandidate("PCAND", Q, *I, RPDelta.CriticalMax)); + Candidate.SU = *I; + Candidate.RPDelta = RPDelta; + FoundCandidate = SingleCritical; + continue; + } + if (RPDelta.CriticalMax.UnitIncrease + > Candidate.RPDelta.CriticalMax.UnitIncrease) + continue; + if (FoundCandidate == SingleCritical) + FoundCandidate = MultiPressure; + + // Avoid increasing the max pressure of the entire region. + if (RPDelta.CurrentMax.UnitIncrease + < Candidate.RPDelta.CurrentMax.UnitIncrease) { + DEBUG(traceCandidate("MCAND", Q, *I, RPDelta.CurrentMax)); + Candidate.SU = *I; + Candidate.RPDelta = RPDelta; + FoundCandidate = SingleMax; + continue; } - if (SU->isBottomReady()) { - assert(NumBottomReady > 0 && "bad ready count"); - --NumBottomReady; + if (RPDelta.CurrentMax.UnitIncrease + > Candidate.RPDelta.CurrentMax.UnitIncrease) + continue; + if (FoundCandidate == SingleMax) + FoundCandidate = MultiPressure; + + // Fall through to original instruction order. + // Only consider node order if Candidate was chosen from this Q. + if (FoundCandidate == NoCand) + continue; + + if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) + || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { + DEBUG(traceCandidate("NCAND", Q, *I)); + Candidate.SU = *I; + Candidate.RPDelta = RPDelta; + FoundCandidate = NodeOrder; } + } + return FoundCandidate; +} + +/// Pick the best candidate node from either the top or bottom queue. +SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) { + // Schedule as far as possible in the direction of no choice. This is most + // efficient, but also provides the best heuristics for CriticalPSets. + if (SUnit *SU = Bot.pickOnlyChoice()) { + IsTopNode = false; return SU; } + if (SUnit *SU = Top.pickOnlyChoice()) { + IsTopNode = true; + return SU; + } + SchedCandidate BotCand; + // Prefer bottom scheduling when heuristics are silent. + CandResult BotResult = pickNodeFromQueue(Bot.Available, + DAG->getBotRPTracker(), BotCand); + assert(BotResult != NoCand && "failed to find the first candidate"); + + // If either Q has a single candidate that provides the least increase in + // Excess pressure, we can immediately schedule from that Q. + // + // RegionCriticalPSets summarizes the pressure within the scheduled region and + // affects picking from either Q. If scheduling in one direction must + // increase pressure for one of the excess PSets, then schedule in that + // direction first to provide more freedom in the other direction. + if (BotResult == SingleExcess || BotResult == SingleCritical) { + IsTopNode = false; + return BotCand.SU; + } + // Check if the top Q has a better candidate. + SchedCandidate TopCand; + CandResult TopResult = pickNodeFromQueue(Top.Available, + DAG->getTopRPTracker(), TopCand); + assert(TopResult != NoCand && "failed to find the first candidate"); + + if (TopResult == SingleExcess || TopResult == SingleCritical) { + IsTopNode = true; + return TopCand.SU; + } + // If either Q has a single candidate that minimizes pressure above the + // original region's pressure pick it. + if (BotResult == SingleMax) { + IsTopNode = false; + return BotCand.SU; + } + if (TopResult == SingleMax) { + IsTopNode = true; + return TopCand.SU; + } + // Check for a salient pressure difference and pick the best from either side. + if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { + IsTopNode = true; + return TopCand.SU; + } + // Otherwise prefer the bottom candidate in node order. + IsTopNode = false; + return BotCand.SU; +} + +/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. +SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { + if (DAG->top() == DAG->bottom()) { + assert(Top.Available.empty() && Top.Pending.empty() && + Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); + return NULL; + } + SUnit *SU; + do { + if (ForceTopDown) { + SU = Top.pickOnlyChoice(); + if (!SU) { + SchedCandidate TopCand; + CandResult TopResult = + pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); + assert(TopResult != NoCand && "failed to find the first candidate"); + (void)TopResult; + SU = TopCand.SU; + } + IsTopNode = true; + } + else if (ForceBottomUp) { + SU = Bot.pickOnlyChoice(); + if (!SU) { + SchedCandidate BotCand; + CandResult BotResult = + pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); + assert(BotResult != NoCand && "failed to find the first candidate"); + (void)BotResult; + SU = BotCand.SU; + } + IsTopNode = false; + } + else { + SU = pickNodeBidrectional(IsTopNode); + } + } while (SU->isScheduled); + + if (SU->isTopReady()) + Top.removeReady(SU); + if (SU->isBottomReady()) + Bot.removeReady(SU); + + DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") + << " Scheduling Instruction in cycle " + << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; + SU->dump(DAG)); + return SU; +} - virtual void releaseTopNode(SUnit *SU) { - ++NumTopReady; +/// Update the scheduler's state after scheduling a node. This is the same node +/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update +/// it's state based on the current cycle before MachineSchedStrategy does. +void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { + if (IsTopNode) { + SU->TopReadyCycle = Top.CurrCycle; + Top.bumpNode(SU); } - virtual void releaseBottomNode(SUnit *SU) { - ++NumBottomReady; + else { + SU->BotReadyCycle = Bot.CurrCycle; + Bot.bumpNode(SU); } -}; -} // namespace +} /// Create the standard converging machine scheduler. This will be used as the /// default scheduler if the target does not set a default. @@ -620,6 +1201,86 @@ static MachineSchedRegistry ConvergingSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched); +//===----------------------------------------------------------------------===// +// ILP Scheduler. Currently for experimental analysis of heuristics. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Order nodes by the ILP metric. +struct ILPOrder { + ScheduleDAGILP *ILP; + bool MaximizeILP; + + ILPOrder(ScheduleDAGILP *ilp, bool MaxILP): ILP(ilp), MaximizeILP(MaxILP) {} + + /// \brief Apply a less-than relation on node priority. + bool operator()(const SUnit *A, const SUnit *B) const { + // Return true if A comes after B in the Q. + if (MaximizeILP) + return ILP->getILP(A) < ILP->getILP(B); + else + return ILP->getILP(A) > ILP->getILP(B); + } +}; + +/// \brief Schedule based on the ILP metric. +class ILPScheduler : public MachineSchedStrategy { + ScheduleDAGILP ILP; + ILPOrder Cmp; + + std::vector ReadyQ; +public: + ILPScheduler(bool MaximizeILP) + : ILP(/*BottomUp=*/true), Cmp(&ILP, MaximizeILP) {} + + virtual void initialize(ScheduleDAGMI *DAG) { + ReadyQ.clear(); + ILP.resize(DAG->SUnits.size()); + } + + virtual void registerRoots() { + for (std::vector::const_iterator + I = ReadyQ.begin(), E = ReadyQ.end(); I != E; ++I) { + ILP.computeILP(*I); + } + } + + /// Implement MachineSchedStrategy interface. + /// ----------------------------------------- + + virtual SUnit *pickNode(bool &IsTopNode) { + if (ReadyQ.empty()) return NULL; + pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + SUnit *SU = ReadyQ.back(); + ReadyQ.pop_back(); + IsTopNode = false; + DEBUG(dbgs() << "*** Scheduling " << *SU->getInstr() + << " ILP: " << ILP.getILP(SU) << '\n'); + return SU; + } + + virtual void schedNode(SUnit *, bool) {} + + virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } + + virtual void releaseBottomNode(SUnit *SU) { + ReadyQ.push_back(SU); + std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } +}; +} // namespace + +static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(true)); +} +static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(false)); +} +static MachineSchedRegistry ILPMaxRegistry( + "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); +static MachineSchedRegistry ILPMinRegistry( + "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); + //===----------------------------------------------------------------------===// // Machine Instruction Shuffler for Correctness Testing //===----------------------------------------------------------------------===// @@ -686,6 +1347,8 @@ public: return SU; } + virtual void schedNode(SUnit *SU, bool IsTopNode) {} + virtual void releaseTopNode(SUnit *SU) { TopQ.push(SU); }