X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FRegAllocLinearScan.cpp;h=fb9745262b7c16435af227a1afd2def9525d24ff;hb=a6b677d209013d82b03fa8da937296b6faae7de0;hp=8ad347bb7dad15fa90e7c4a2141b701e4dfd96dd;hpb=6c087e5585b227f3c1d8278304c7cfbc7cd4f6e8;p=oota-llvm.git diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp index 8ad347bb7da..fb9745262b7 100644 --- a/lib/CodeGen/RegAllocLinearScan.cpp +++ b/lib/CodeGen/RegAllocLinearScan.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -12,55 +12,100 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" -#include "llvm/CodeGen/LiveVariables.h" -#include "llvm/CodeGen/LiveIntervalAnalysis.h" -#include "PhysRegTracker.h" #include "VirtRegMap.h" +#include "VirtRegRewriter.h" +#include "Spiller.h" #include "llvm/Function.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" +#include "llvm/CodeGen/RegisterCoalescer.h" +#include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" #include #include #include #include #include + using namespace llvm; STATISTIC(NumIters , "Number of iterations performed"); STATISTIC(NumBacktracks, "Number of times we had to backtrack"); +STATISTIC(NumCoalesce, "Number of copies coalesced"); +STATISTIC(NumDowngrade, "Number of registers downgraded"); + +static cl::opt +NewHeuristic("new-spilling-heuristic", + cl::desc("Use new spilling heuristic"), + cl::init(false), cl::Hidden); + +static cl::opt +PreSplitIntervals("pre-alloc-split", + cl::desc("Pre-register allocation live interval splitting"), + cl::init(false), cl::Hidden); + +static cl::opt +NewSpillFramework("new-spill-framework", + cl::desc("New spilling framework"), + cl::init(false), cl::Hidden); static RegisterRegAlloc -linearscanRegAlloc("linearscan", " linear scan register allocator", +linearscanRegAlloc("linearscan", "linear scan register allocator", createLinearScanRegisterAllocator); namespace { - static unsigned numIterations = 0; - static unsigned numIntervals = 0; + struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass { + static char ID; + RALinScan() : MachineFunctionPass(&ID) {} - struct VISIBILITY_HIDDEN RA : public MachineFunctionPass { typedef std::pair IntervalPtr; - typedef std::vector IntervalPtrs; + typedef SmallVector IntervalPtrs; private: /// RelatedRegClasses - This structure is built the first time a function is /// compiled, and keeps track of which register classes have registers that /// belong to multiple classes or have aliases that are in other classes. EquivalenceClasses RelatedRegClasses; - std::map OneClassForEachPhysReg; + DenseMap OneClassForEachPhysReg; + + // NextReloadMap - For each register in the map, it maps to the another + // register which is defined by a reload from the same stack slot and + // both reloads are in the same basic block. + DenseMap NextReloadMap; + + // DowngradedRegs - A set of registers which are being "downgraded", i.e. + // un-favored for allocation. + SmallSet DowngradedRegs; + + // DowngradeMap - A map from virtual registers to physical registers being + // downgraded for the virtual registers. + DenseMap DowngradeMap; MachineFunction* mf_; + MachineRegisterInfo* mri_; const TargetMachine* tm_; - const MRegisterInfo* mri_; + const TargetRegisterInfo* tri_; + const TargetInstrInfo* tii_; + BitVector allocatableRegs_; LiveIntervals* li_; + LiveStacks* ls_; + const MachineLoopInfo *loopInfo; /// handled_ - Intervals are added to the handled_ set in the order of their /// start value. This is uses for backtracking. @@ -79,11 +124,19 @@ namespace { IntervalPtrs inactive_; typedef std::priority_queue, + SmallVector, greater_ptr > IntervalHeap; IntervalHeap unhandled_; - std::auto_ptr prt_; - std::auto_ptr vrm_; + + /// regUse_ - Tracks register usage. + SmallVector regUse_; + SmallVector regUseBackUp_; + + /// vrm_ - Tracks register assignments. + VirtRegMap* vrm_; + + std::auto_ptr rewriter_; + std::auto_ptr spiller_; public: @@ -92,7 +145,22 @@ namespace { } virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); AU.addRequired(); + if (StrongPHIElim) + AU.addRequiredID(StrongPHIEliminationID); + // Make sure PassManager knows which analyses to make available + // to coalescing and which analyses coalescing invalidates. + AU.addRequiredTransitive(); + if (PreSplitIntervals) + AU.addRequiredID(PreAllocSplittingID); + AU.addRequired(); + AU.addPreserved(); + AU.addRequired(); + AU.addPreserved(); + AU.addRequired(); + AU.addPreserved(); + AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } @@ -115,17 +183,113 @@ namespace { /// ones to the active list. void processInactiveIntervals(unsigned CurPoint); + /// hasNextReloadInterval - Return the next liveinterval that's being + /// defined by a reload from the same SS as the specified one. + LiveInterval *hasNextReloadInterval(LiveInterval *cur); + + /// DowngradeRegister - Downgrade a register for allocation. + void DowngradeRegister(LiveInterval *li, unsigned Reg); + + /// UpgradeRegister - Upgrade a register for allocation. + void UpgradeRegister(unsigned Reg); + /// assignRegOrStackSlotAtInterval - assign a register if one /// is available, or spill. void assignRegOrStackSlotAtInterval(LiveInterval* cur); + void updateSpillWeights(std::vector &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC); + + /// findIntervalsToSpill - Determine the intervals to spill for the + /// specified interval. It's passed the physical registers whose spill + /// weight is the lowest among all the registers whose live intervals + /// conflict with the interval. + void findIntervalsToSpill(LiveInterval *cur, + std::vector > &Candidates, + unsigned NumCands, + SmallVector &SpillIntervals); + + /// attemptTrivialCoalescing - If a simple interval is defined by a copy, + /// try allocate the definition the same register as the source register + /// if the register is not defined during live time of the interval. This + /// eliminate a copy. This is used to coalesce copies which were not + /// coalesced away before allocation either due to dest and src being in + /// different register classes or because the coalescer was overly + /// conservative. + unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); + /// - /// register handling helpers + /// Register usage / availability tracking helpers. + /// + + void initRegUses() { + regUse_.resize(tri_->getNumRegs(), 0); + regUseBackUp_.resize(tri_->getNumRegs(), 0); + } + + void finalizeRegUses() { +#ifndef NDEBUG + // Verify all the registers are "freed". + bool Error = false; + for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { + if (regUse_[i] != 0) { + cerr << tri_->getName(i) << " is still in use!\n"; + Error = true; + } + } + if (Error) + llvm_unreachable(0); +#endif + regUse_.clear(); + regUseBackUp_.clear(); + } + + void addRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + ++regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) + ++regUse_[*as]; + } + + void delRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + assert(regUse_[physReg] != 0); + --regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { + assert(regUse_[*as] != 0); + --regUse_[*as]; + } + } + + bool isRegAvail(unsigned physReg) const { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + return regUse_[physReg] == 0; + } + + void backUpRegUses() { + regUseBackUp_ = regUse_; + } + + void restoreRegUses() { + regUse_ = regUseBackUp_; + } + + /// + /// Register handling helpers. /// /// getFreePhysReg - return a free physical register for this virtual /// register interval if we have one, otherwise return 0. unsigned getFreePhysReg(LiveInterval* cur); + unsigned getFreePhysReg(LiveInterval* cur, + const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector &inactiveCounts, + bool SkipDGRegs); /// assignVirt2StackSlot - assigns this virtual register to a /// stack slot. returns the stack slot @@ -139,27 +303,29 @@ namespace { for (; i != e; ++i) { DOUT << "\t" << *i->first << " -> "; unsigned reg = i->first->reg; - if (MRegisterInfo::isVirtualRegister(reg)) { + if (TargetRegisterInfo::isVirtualRegister(reg)) { reg = vrm_->getPhys(reg); } - DOUT << mri_->getName(reg) << '\n'; + DOUT << tri_->getName(reg) << '\n'; } } }; + char RALinScan::ID = 0; } -void RA::ComputeRelatedRegClasses() { - const MRegisterInfo &MRI = *mri_; - +static RegisterPass +X("linearscan-regalloc", "Linear Scan Register Allocator"); + +void RALinScan::ComputeRelatedRegClasses() { // First pass, add all reg classes to the union, and determine at least one // reg class that each register is in. bool HasAliases = false; - for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(), - E = MRI.regclass_end(); RCI != E; ++RCI) { + for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), + E = tri_->regclass_end(); RCI != E; ++RCI) { RelatedRegClasses.insert(*RCI); for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); I != E; ++I) { - HasAliases = HasAliases || *MRI.getAliasSet(*I) != 0; + HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; if (PRC) { @@ -176,86 +342,169 @@ void RA::ComputeRelatedRegClasses() { // belongs to, add info about aliases. We don't need to do this for targets // without register aliases. if (HasAliases) - for (std::map::iterator + for (DenseMap::iterator I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); I != E; ++I) - for (const unsigned *AS = MRI.getAliasSet(I->first); *AS; ++AS) + for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]); } -bool RA::runOnMachineFunction(MachineFunction &fn) { +/// attemptTrivialCoalescing - If a simple interval is defined by a copy, +/// try allocate the definition the same register as the source register +/// if the register is not defined during live time of the interval. This +/// eliminate a copy. This is used to coalesce copies which were not +/// coalesced away before allocation either due to dest and src being in +/// different register classes or because the coalescer was overly +/// conservative. +unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { + unsigned Preference = vrm_->getRegAllocPref(cur.reg); + if ((Preference && Preference == Reg) || !cur.containsOneValue()) + return Reg; + + VNInfo *vni = cur.begin()->valno; + if (!vni->def || vni->isUnused() || !vni->isDefAccurate()) + return Reg; + MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); + unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg; + if (!CopyMI || + !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) + return Reg; + PhysReg = SrcReg; + if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { + if (!vrm_->isAssignedReg(SrcReg)) + return Reg; + PhysReg = vrm_->getPhys(SrcReg); + } + if (Reg == PhysReg) + return Reg; + + const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); + if (!RC->contains(PhysReg)) + return Reg; + + // Try to coalesce. + if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) { + DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg) + << '\n'; + vrm_->clearVirt(cur.reg); + vrm_->assignVirt2Phys(cur.reg, PhysReg); + + // Remove unnecessary kills since a copy does not clobber the register. + if (li_->hasInterval(SrcReg)) { + LiveInterval &SrcLI = li_->getInterval(SrcReg); + for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg), + E = mri_->reg_end(); I != E; ++I) { + MachineOperand &O = I.getOperand(); + if (!O.isUse() || !O.isKill()) + continue; + MachineInstr *MI = &*I; + if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI)))) + O.setIsKill(false); + } + } + + ++NumCoalesce; + return PhysReg; + } + + return Reg; +} + +bool RALinScan::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; + mri_ = &fn.getRegInfo(); tm_ = &fn.getTarget(); - mri_ = tm_->getRegisterInfo(); + tri_ = tm_->getRegisterInfo(); + tii_ = tm_->getInstrInfo(); + allocatableRegs_ = tri_->getAllocatableSet(fn); li_ = &getAnalysis(); + ls_ = &getAnalysis(); + loopInfo = &getAnalysis(); + + // We don't run the coalescer here because we have no reason to + // interact with it. If the coalescer requires interaction, it + // won't do anything. If it doesn't require interaction, we assume + // it was run as a separate pass. // If this is the first function compiled, compute the related reg classes. if (RelatedRegClasses.empty()) ComputeRelatedRegClasses(); - - if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_)); - vrm_.reset(new VirtRegMap(*mf_)); - if (!spiller_.get()) spiller_.reset(createSpiller()); + // Also resize register usage trackers. + initRegUses(); + + vrm_ = &getAnalysis(); + if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); + + if (NewSpillFramework) { + spiller_.reset(createSpiller(mf_, li_, ls_, vrm_)); + } + initIntervalSets(); linearScan(); // Rewrite spill code and update the PhysRegsUsed set. - spiller_->runOnMachineFunction(*mf_, *vrm_); + rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); - vrm_.reset(); // Free the VirtRegMap + assert(unhandled_.empty() && "Unhandled live intervals remain!"); + finalizeRegUses(); - while (!unhandled_.empty()) unhandled_.pop(); fixed_.clear(); active_.clear(); inactive_.clear(); handled_.clear(); + NextReloadMap.clear(); + DowngradedRegs.clear(); + DowngradeMap.clear(); + spiller_.reset(0); return true; } /// initIntervalSets - initialize the interval sets. /// -void RA::initIntervalSets() +void RALinScan::initIntervalSets() { assert(unhandled_.empty() && fixed_.empty() && active_.empty() && inactive_.empty() && "interval sets should be empty on initialization"); + handled_.reserve(li_->getNumIntervals()); + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { - if (MRegisterInfo::isPhysicalRegister(i->second.reg)) { - mf_->setPhysRegUsed(i->second.reg); - fixed_.push_back(std::make_pair(&i->second, i->second.begin())); + if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { + mri_->setPhysRegUsed(i->second->reg); + fixed_.push_back(std::make_pair(i->second, i->second->begin())); } else - unhandled_.push(&i->second); + unhandled_.push(i->second); } } -void RA::linearScan() +void RALinScan::linearScan() { // linear scan algorithm DOUT << "********** LINEAR SCAN **********\n"; - DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n'; + DEBUG(errs() << "********** Function: " + << mf_->getFunction()->getName() << '\n'); - // DEBUG(printIntervals("unhandled", unhandled_.begin(), unhandled_.end())); DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end())); - DEBUG(printIntervals("active", active_.begin(), active_.end())); - DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); while (!unhandled_.empty()) { // pick the interval with the earliest start point LiveInterval* cur = unhandled_.top(); unhandled_.pop(); - ++numIterations; + ++NumIters; DOUT << "\n*** CURRENT ***: " << *cur << '\n'; - processActiveIntervals(cur->beginNumber()); - processInactiveIntervals(cur->beginNumber()); + if (!cur->empty()) { + processActiveIntervals(cur->beginNumber()); + processInactiveIntervals(cur->beginNumber()); - assert(MRegisterInfo::isVirtualRegister(cur->reg) && - "Can only allocate virtual registers!"); + assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && + "Can only allocate virtual registers!"); + } // Allocating a virtual register. try to find a free // physical register or spill an interval (possibly this one) in order to @@ -265,55 +514,70 @@ void RA::linearScan() DEBUG(printIntervals("active", active_.begin(), active_.end())); DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); } - numIntervals += li_->getNumIntervals(); - NumIters += numIterations; - // expire any remaining active intervals - for (IntervalPtrs::reverse_iterator - i = active_.rbegin(); i != active_.rend(); ) { - unsigned reg = i->first->reg; - DOUT << "\tinterval " << *i->first << " expired\n"; - assert(MRegisterInfo::isVirtualRegister(reg) && + // Expire any remaining active intervals + while (!active_.empty()) { + IntervalPtr &IP = active_.back(); + unsigned reg = IP.first->reg; + DOUT << "\tinterval " << *IP.first << " expired\n"; + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); - prt_->delRegUse(reg); - i = IntervalPtrs::reverse_iterator(active_.erase(i.base()-1)); - } - - // expire any remaining inactive intervals - for (IntervalPtrs::reverse_iterator - i = inactive_.rbegin(); i != inactive_.rend(); ) { - DOUT << "\tinterval " << *i->first << " expired\n"; - i = IntervalPtrs::reverse_iterator(inactive_.erase(i.base()-1)); - } - - // A brute force way of adding live-ins to every BB. - MachineFunction::iterator MBB = mf_->begin(); - ++MBB; // Skip entry MBB. - for (MachineFunction::iterator E = mf_->end(); MBB != E; ++MBB) { - unsigned StartIdx = li_->getMBBStartIdx(MBB->getNumber()); - for (IntervalPtrs::iterator i = fixed_.begin(), e = fixed_.end(); - i != e; ++i) - if (i->first->liveAt(StartIdx)) - MBB->addLiveIn(i->first->reg); - - for (unsigned i = 0, e = handled_.size(); i != e; ++i) { - LiveInterval *HI = handled_[i]; - unsigned Reg = HI->reg; - if (!vrm_->hasStackSlot(Reg) && HI->liveAt(StartIdx)) { - assert(MRegisterInfo::isVirtualRegister(Reg)); - Reg = vrm_->getPhys(Reg); - MBB->addLiveIn(Reg); + delRegUse(reg); + active_.pop_back(); + } + + // Expire any remaining inactive intervals + DEBUG(for (IntervalPtrs::reverse_iterator + i = inactive_.rbegin(); i != inactive_.rend(); ++i) + DOUT << "\tinterval " << *i->first << " expired\n"); + inactive_.clear(); + + // Add live-ins to every BB except for entry. Also perform trivial coalescing. + MachineFunction::iterator EntryMBB = mf_->begin(); + SmallVector LiveInMBBs; + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { + LiveInterval &cur = *i->second; + unsigned Reg = 0; + bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); + if (isPhys) + Reg = cur.reg; + else if (vrm_->isAssignedReg(cur.reg)) + Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); + if (!Reg) + continue; + // Ignore splited live intervals. + if (!isPhys && vrm_->getPreSplitReg(cur.reg)) + continue; + + for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); + I != E; ++I) { + const LiveRange &LR = *I; + if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { + for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) + if (LiveInMBBs[i] != EntryMBB) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg) && + "Adding a virtual register to livein set?"); + LiveInMBBs[i]->addLiveIn(Reg); + } + LiveInMBBs.clear(); } } } DOUT << *vrm_; + + // Look for physical registers that end up not being allocated even though + // register allocator had to spill other registers in its register class. + if (ls_->getNumIntervals() == 0) + return; + if (!vrm_->FindUnusedRegisters(li_)) + return; } /// processActiveIntervals - expire old intervals and move non-overlapping ones /// to the inactive list. -void RA::processActiveIntervals(unsigned CurPoint) +void RALinScan::processActiveIntervals(unsigned CurPoint) { DOUT << "\tprocessing active intervals:\n"; @@ -326,10 +590,10 @@ void RA::processActiveIntervals(unsigned CurPoint) if (IntervalPos == Interval->end()) { // Remove expired intervals. DOUT << "\t\tinterval " << *Interval << " expired\n"; - assert(MRegisterInfo::isVirtualRegister(reg) && + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); - prt_->delRegUse(reg); + delRegUse(reg); // Pop off the end of the list. active_[i] = active_.back(); @@ -339,10 +603,10 @@ void RA::processActiveIntervals(unsigned CurPoint) } else if (IntervalPos->start > CurPoint) { // Move inactive intervals to inactive list. DOUT << "\t\tinterval " << *Interval << " inactive\n"; - assert(MRegisterInfo::isVirtualRegister(reg) && + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); - prt_->delRegUse(reg); + delRegUse(reg); // add to inactive. inactive_.push_back(std::make_pair(Interval, IntervalPos)); @@ -359,7 +623,7 @@ void RA::processActiveIntervals(unsigned CurPoint) /// processInactiveIntervals - expire old intervals and move overlapping /// ones to the active list. -void RA::processInactiveIntervals(unsigned CurPoint) +void RALinScan::processInactiveIntervals(unsigned CurPoint) { DOUT << "\tprocessing inactive intervals:\n"; @@ -380,10 +644,10 @@ void RA::processInactiveIntervals(unsigned CurPoint) } else if (IntervalPos->start <= CurPoint) { // move re-activated intervals in active list DOUT << "\t\tinterval " << *Interval << " active\n"; - assert(MRegisterInfo::isVirtualRegister(reg) && + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); - prt_->addRegUse(reg); + addRegUse(reg); // add to active active_.push_back(std::make_pair(Interval, IntervalPos)); @@ -400,24 +664,49 @@ void RA::processInactiveIntervals(unsigned CurPoint) /// updateSpillWeights - updates the spill weights of the specifed physical /// register and its weight. -static void updateSpillWeights(std::vector &Weights, - unsigned reg, float weight, - const MRegisterInfo *MRI) { +void RALinScan::updateSpillWeights(std::vector &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC) { + SmallSet Processed; + SmallSet SuperAdded; + SmallVector Supers; Weights[reg] += weight; - for (const unsigned* as = MRI->getAliasSet(reg); *as; ++as) + Processed.insert(reg); + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { Weights[*as] += weight; + Processed.insert(*as); + if (tri_->isSubRegister(*as, reg) && + SuperAdded.insert(*as) && + RC->contains(*as)) { + Supers.push_back(*as); + } + } + + // If the alias is a super-register, and the super-register is in the + // register class we are trying to allocate. Then add the weight to all + // sub-registers of the super-register even if they are not aliases. + // e.g. allocating for GR32, bh is not used, updating bl spill weight. + // bl should get the same spill weight otherwise it will be choosen + // as a spill candidate since spilling bh doesn't make ebx available. + for (unsigned i = 0, e = Supers.size(); i != e; ++i) { + for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) + if (!Processed.count(*sr)) + Weights[*sr] += weight; + } } -static RA::IntervalPtrs::iterator FindIntervalInVector(RA::IntervalPtrs &IP, - LiveInterval *LI) { - for (RA::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); I != E; ++I) +static +RALinScan::IntervalPtrs::iterator +FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { + for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); + I != E; ++I) if (I->first == LI) return I; return IP.end(); } -static void RevertVectorIteratorsTo(RA::IntervalPtrs &V, unsigned Point) { +static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){ for (unsigned i = 0, e = V.size(); i != e; ++i) { - RA::IntervalPtr &IP = V[i]; + RALinScan::IntervalPtr &IP = V[i]; LiveInterval::iterator I = std::upper_bound(IP.first->begin(), IP.second, Point); if (I != IP.first->begin()) --I; @@ -425,33 +714,234 @@ static void RevertVectorIteratorsTo(RA::IntervalPtrs &V, unsigned Point) { } } +/// addStackInterval - Create a LiveInterval for stack if the specified live +/// interval has been spilled. +static void addStackInterval(LiveInterval *cur, LiveStacks *ls_, + LiveIntervals *li_, + MachineRegisterInfo* mri_, VirtRegMap &vrm_) { + int SS = vrm_.getStackSlot(cur->reg); + if (SS == VirtRegMap::NO_STACK_SLOT) + return; + + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + LiveInterval &SI = ls_->getOrCreateInterval(SS, RC); + + VNInfo *VNI; + if (SI.hasAtLeastOneValue()) + VNI = SI.getValNumInfo(0); + else + VNI = SI.getNextValue(0, 0, false, ls_->getVNInfoAllocator()); + + LiveInterval &RI = li_->getInterval(cur->reg); + // FIXME: This may be overly conservative. + SI.MergeRangesInAsValue(RI, VNI); +} + +/// getConflictWeight - Return the number of conflicts between cur +/// live interval and defs and uses of Reg weighted by loop depthes. +static +float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, + MachineRegisterInfo *mri_, + const MachineLoopInfo *loopInfo) { + float Conflicts = 0; + for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), + E = mri_->reg_end(); I != E; ++I) { + MachineInstr *MI = &*I; + if (cur->liveAt(li_->getInstructionIndex(MI))) { + unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); + Conflicts += powf(10.0f, (float)loopDepth); + } + } + return Conflicts; +} + +/// findIntervalsToSpill - Determine the intervals to spill for the +/// specified interval. It's passed the physical registers whose spill +/// weight is the lowest among all the registers whose live intervals +/// conflict with the interval. +void RALinScan::findIntervalsToSpill(LiveInterval *cur, + std::vector > &Candidates, + unsigned NumCands, + SmallVector &SpillIntervals) { + // We have figured out the *best* register to spill. But there are other + // registers that are pretty good as well (spill weight within 3%). Spill + // the one that has fewest defs and uses that conflict with cur. + float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; + SmallVector SLIs[3]; + + DOUT << "\tConsidering " << NumCands << " candidates: "; + DEBUG(for (unsigned i = 0; i != NumCands; ++i) + DOUT << tri_->getName(Candidates[i].first) << " "; + DOUT << "\n";); + + // Calculate the number of conflicts of each candidate. + for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second-1)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + // Which is the best candidate? + unsigned BestCandidate = 0; + float MinConflicts = Conflicts[0]; + for (unsigned i = 1; i != NumCands; ++i) { + if (Conflicts[i] < MinConflicts) { + BestCandidate = i; + MinConflicts = Conflicts[i]; + } + } + + std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), + std::back_inserter(SpillIntervals)); +} + +namespace { + struct WeightCompare { + typedef std::pair RegWeightPair; + bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { + return LHS.second < RHS.second; + } + }; +} + +static bool weightsAreClose(float w1, float w2) { + if (!NewHeuristic) + return false; + + float diff = w1 - w2; + if (diff <= 0.02f) // Within 0.02f + return true; + return (diff / w2) <= 0.05f; // Within 5%. +} + +LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { + DenseMap::iterator I = NextReloadMap.find(cur->reg); + if (I == NextReloadMap.end()) + return 0; + return &li_->getInterval(I->second); +} + +void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { + bool isNew = DowngradedRegs.insert(Reg); + isNew = isNew; // Silence compiler warning. + assert(isNew && "Multiple reloads holding the same register?"); + DowngradeMap.insert(std::make_pair(li->reg, Reg)); + for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) { + isNew = DowngradedRegs.insert(*AS); + isNew = isNew; // Silence compiler warning. + assert(isNew && "Multiple reloads holding the same register?"); + DowngradeMap.insert(std::make_pair(li->reg, *AS)); + } + ++NumDowngrade; +} + +void RALinScan::UpgradeRegister(unsigned Reg) { + if (Reg) { + DowngradedRegs.erase(Reg); + for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) + DowngradedRegs.erase(*AS); + } +} + +namespace { + struct LISorter { + bool operator()(LiveInterval* A, LiveInterval* B) { + return A->beginNumber() < B->beginNumber(); + } + }; +} + /// assignRegOrStackSlotAtInterval - assign a register if one is available, or /// spill. -void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) +void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) { DOUT << "\tallocating current interval: "; - PhysRegTracker backupPrt = *prt_; + // This is an implicitly defined live interval, just assign any register. + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + if (cur->empty()) { + unsigned physReg = vrm_->getRegAllocPref(cur->reg); + if (!physReg) + physReg = *RC->allocation_order_begin(*mf_); + DOUT << tri_->getName(physReg) << '\n'; + // Note the register is not really in use. + vrm_->assignVirt2Phys(cur->reg, physReg); + return; + } + + backUpRegUses(); std::vector > SpillWeightsToAdd; unsigned StartPosition = cur->beginNumber(); - const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg); const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); - - // for every interval in inactive we overlap with, mark the + + // If start of this live interval is defined by a move instruction and its + // source is assigned a physical register that is compatible with the target + // register class, then we should try to assign it the same register. + // This can happen when the move is from a larger register class to a smaller + // one, e.g. X86::mov32to32_. These move instructions are not coalescable. + if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) { + VNInfo *vni = cur->begin()->valno; + if (vni->def && !vni->isUnused() && vni->isDefAccurate()) { + MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); + unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; + if (CopyMI && + tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) { + unsigned Reg = 0; + if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) + Reg = SrcReg; + else if (vrm_->isAssignedReg(SrcReg)) + Reg = vrm_->getPhys(SrcReg); + if (Reg) { + if (SrcSubReg) + Reg = tri_->getSubReg(Reg, SrcSubReg); + if (DstSubReg) + Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); + if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) + mri_->setRegAllocationHint(cur->reg, 0, Reg); + } + } + } + } + + // For every interval in inactive we overlap with, mark the // register as not free and update spill weights. for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { unsigned Reg = i->first->reg; - assert(MRegisterInfo::isVirtualRegister(Reg) && + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Can only allocate virtual registers!"); - const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(Reg); + const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); // If this is not in a related reg class to the register we're allocating, // don't check it. if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && cur->overlapsFrom(*i->first, i->second-1)) { Reg = vrm_->getPhys(Reg); - prt_->addRegUse(Reg); + addRegUse(Reg); SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); } } @@ -462,12 +952,13 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) // is very bad (it contains all callee clobbered registers for any functions // with a call), so we want to avoid doing that if possible. unsigned physReg = getFreePhysReg(cur); + unsigned BestPhysReg = physReg; if (physReg) { // We got a register. However, if it's in the fixed_ list, we might // conflict with it. Check to see if we conflict with it or any of its // aliases. - std::set RegAliases; - for (const unsigned *AS = mri_->getAliasSet(physReg); *AS; ++AS) + SmallSet RegAliases; + for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) RegAliases.insert(*AS); bool ConflictsWithFixed = false; @@ -492,7 +983,7 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) // Okay, the register picked by our speculative getFreePhysReg call turned // out to be in use. Actually add all of the conflicting fixed registers to - // prt so we can do an accurate query. + // regUse_ so we can do an accurate query. if (ConflictsWithFixed) { // For every interval in fixed we overlap with, mark the register as not // free and update spill weights. @@ -509,13 +1000,13 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) --II; if (cur->overlapsFrom(*I, II)) { unsigned reg = I->reg; - prt_->addRegUse(reg); + addRegUse(reg); SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); } } } - // Using the newly updated prt_ object, which includes conflicts in the + // Using the newly updated regUse_ object, which includes conflicts in the // future, see if there are any registers available. physReg = getFreePhysReg(cur); } @@ -523,167 +1014,222 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) // Restore the physical register tracker, removing information about the // future. - *prt_ = backupPrt; + restoreRegUses(); - // if we find a free register, we are done: assign this virtual to + // If we find a free register, we are done: assign this virtual to // the free physical register and add this interval to the active // list. if (physReg) { - DOUT << mri_->getName(physReg) << '\n'; + DOUT << tri_->getName(physReg) << '\n'; vrm_->assignVirt2Phys(cur->reg, physReg); - prt_->addRegUse(physReg); + addRegUse(physReg); active_.push_back(std::make_pair(cur, cur->begin())); handled_.push_back(cur); + + // "Upgrade" the physical register since it has been allocated. + UpgradeRegister(physReg); + if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { + // "Downgrade" physReg to try to keep physReg from being allocated until + // the next reload from the same SS is allocated. + mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg); + DowngradeRegister(cur, physReg); + } return; } DOUT << "no free registers\n"; // Compile the spill weights into an array that is better for scanning. - std::vector SpillWeights(mri_->getNumRegs(), 0.0); + std::vector SpillWeights(tri_->getNumRegs(), 0.0f); for (std::vector >::iterator I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) - updateSpillWeights(SpillWeights, I->first, I->second, mri_); + updateSpillWeights(SpillWeights, I->first, I->second, RC); // for each interval in active, update spill weights. for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); i != e; ++i) { unsigned reg = i->first->reg; - assert(MRegisterInfo::isVirtualRegister(reg) && + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); - updateSpillWeights(SpillWeights, reg, i->first->weight, mri_); + updateSpillWeights(SpillWeights, reg, i->first->weight, RC); } DOUT << "\tassigning stack slot at interval "<< *cur << ":\n"; // Find a register to spill. float minWeight = HUGE_VALF; - unsigned minReg = cur->preference; // Try the preferred register first. - + unsigned minReg = 0; + + bool Found = false; + std::vector > RegsWeights; if (!minReg || SpillWeights[minReg] == HUGE_VALF) for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), e = RC->allocation_order_end(*mf_); i != e; ++i) { unsigned reg = *i; - if (minWeight > SpillWeights[reg]) { - minWeight = SpillWeights[reg]; - minReg = reg; - } + float regWeight = SpillWeights[reg]; + if (minWeight > regWeight) + Found = true; + RegsWeights.push_back(std::make_pair(reg, regWeight)); } // If we didn't find a register that is spillable, try aliases? - if (!minReg) { + if (!Found) { for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), e = RC->allocation_order_end(*mf_); i != e; ++i) { unsigned reg = *i; // No need to worry about if the alias register size < regsize of RC. // We are going to spill all registers that alias it anyway. - for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) { - if (minWeight > SpillWeights[*as]) { - minWeight = SpillWeights[*as]; - minReg = *as; + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) + RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); + } + } + + // Sort all potential spill candidates by weight. + std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare()); + minReg = RegsWeights[0].first; + minWeight = RegsWeights[0].second; + if (minWeight == HUGE_VALF) { + // All registers must have inf weight. Just grab one! + minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_); + if (cur->weight == HUGE_VALF || + li_->getApproximateInstructionCount(*cur) == 0) { + // Spill a physical register around defs and uses. + if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { + // spillPhysRegAroundRegDefsUses may have invalidated iterator stored + // in fixed_. Reset them. + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + LiveInterval *I = IP.first; + if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) + IP.second = I->advanceTo(I->begin(), StartPosition); } + + DowngradedRegs.clear(); + assignRegOrStackSlotAtInterval(cur); + } else { + llvm_report_error("Ran out of registers during register allocation!"); } + return; } + } - // All registers must have inf weight. Just grab one! - if (!minReg) - minReg = *RC->allocation_order_begin(*mf_); + // Find up to 3 registers to consider as spill candidates. + unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; + while (LastCandidate > 1) { + if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) + break; + --LastCandidate; } - - DOUT << "\t\tregister with min weight: " - << mri_->getName(minReg) << " (" << minWeight << ")\n"; - // if the current has the minimum weight, we need to spill it and + DOUT << "\t\tregister(s) with min weight(s): "; + DEBUG(for (unsigned i = 0; i != LastCandidate; ++i) + DOUT << tri_->getName(RegsWeights[i].first) + << " (" << RegsWeights[i].second << ")\n"); + + // If the current has the minimum weight, we need to spill it and // add any added intervals back to unhandled, and restart // linearscan. if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { DOUT << "\t\t\tspilling(c): " << *cur << '\n'; - // if the current interval is re-materializable, remember so and don't - // assign it a spill slot. - if (cur->remat) - vrm_->setVirtIsReMaterialized(cur->reg, cur->remat); - int slot = cur->remat ? vrm_->assignVirtReMatId(cur->reg) - : vrm_->assignVirt2StackSlot(cur->reg); - std::vector added = - li_->addIntervalsForSpills(*cur, *vrm_, slot); + SmallVector spillIs; + std::vector added; + + if (!NewSpillFramework) { + added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_); + } else { + added = spiller_->spill(cur); + } + + std::sort(added.begin(), added.end(), LISorter()); + addStackInterval(cur, ls_, li_, mri_, *vrm_); if (added.empty()) return; // Early exit if all spills were folded. - // Merge added with unhandled. Note that we know that - // addIntervalsForSpills returns intervals sorted by their starting + // Merge added with unhandled. Note that we have already sorted + // intervals returned by addIntervalsForSpills by their starting // point. - for (unsigned i = 0, e = added.size(); i != e; ++i) - unhandled_.push(added[i]); + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + unsigned ReloadIdx = ReloadLi->beginNumber(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginNumber() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } return; } ++NumBacktracks; - // push the current interval back to unhandled since we are going + // Push the current interval back to unhandled since we are going // to re-run at least this iteration. Since we didn't modify it it // should go back right in the front of the list unhandled_.push(cur); - // otherwise we spill all intervals aliasing the register with + assert(TargetRegisterInfo::isPhysicalRegister(minReg) && + "did not choose a register to spill?"); + + // We spill all intervals aliasing the register with // minimum weight, rollback to the interval with the earliest // start point and let the linear scan algorithm run again - std::vector added; - assert(MRegisterInfo::isPhysicalRegister(minReg) && - "did not choose a register to spill?"); - BitVector toSpill(mri_->getNumRegs()); + SmallVector spillIs; - // We are going to spill minReg and all its aliases. - toSpill[minReg] = true; - for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as) - toSpill[*as] = true; + // Determine which intervals have to be spilled. + findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); - // the earliest start of a spilled interval indicates up to where - // in handled we need to roll back - unsigned earliestStart = cur->beginNumber(); + // Set of spilled vregs (used later to rollback properly) + SmallSet spilled; - // set of spilled vregs (used later to rollback properly) - std::set spilled; + // The earliest start of a Spilled interval indicates up to where + // in handled we need to roll back + + LiveInterval *earliestStartInterval = cur; - // spill live intervals of virtual regs mapped to the physical register we + // Spill live intervals of virtual regs mapped to the physical register we // want to clear (and its aliases). We only spill those that overlap with the // current interval as the rest do not affect its allocation. we also keep // track of the earliest start of all spilled live intervals since this will // mark our rollback point. - for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { - unsigned reg = i->first->reg; - if (//MRegisterInfo::isVirtualRegister(reg) && - toSpill[vrm_->getPhys(reg)] && - cur->overlapsFrom(*i->first, i->second)) { - DOUT << "\t\t\tspilling(a): " << *i->first << '\n'; - earliestStart = std::min(earliestStart, i->first->beginNumber()); - if (i->first->remat) - vrm_->setVirtIsReMaterialized(reg, i->first->remat); - int slot = i->first->remat ? vrm_->assignVirtReMatId(reg) - : vrm_->assignVirt2StackSlot(reg); - std::vector newIs = - li_->addIntervalsForSpills(*i->first, *vrm_, slot); - std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); - spilled.insert(reg); - } - } - for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ - unsigned reg = i->first->reg; - if (//MRegisterInfo::isVirtualRegister(reg) && - toSpill[vrm_->getPhys(reg)] && - cur->overlapsFrom(*i->first, i->second-1)) { - DOUT << "\t\t\tspilling(i): " << *i->first << '\n'; - earliestStart = std::min(earliestStart, i->first->beginNumber()); - if (i->first->remat) - vrm_->setVirtIsReMaterialized(reg, i->first->remat); - int slot = i->first->remat ? vrm_->assignVirtReMatId(reg) - : vrm_->assignVirt2StackSlot(reg); - std::vector newIs = - li_->addIntervalsForSpills(*i->first, *vrm_, slot); - std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); - spilled.insert(reg); + std::vector added; + while (!spillIs.empty()) { + LiveInterval *sli = spillIs.back(); + spillIs.pop_back(); + DOUT << "\t\t\tspilling(a): " << *sli << '\n'; + earliestStartInterval = + (earliestStartInterval->beginNumber() < sli->beginNumber()) ? + earliestStartInterval : sli; + + std::vector newIs; + if (!NewSpillFramework) { + newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_); + } else { + newIs = spiller_->spill(sli); } + addStackInterval(sli, ls_, li_, mri_, *vrm_); + std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); + spilled.insert(sli->reg); } + unsigned earliestStart = earliestStartInterval->beginNumber(); + DOUT << "\t\trolling back to: " << earliestStart << '\n'; // Scan handled in reverse order up to the earliest start of a @@ -698,27 +1244,37 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) handled_.pop_back(); // When undoing a live interval allocation we must know if it is active or - // inactive to properly update the PhysRegTracker and the VirtRegMap. + // inactive to properly update regUse_ and the VirtRegMap. IntervalPtrs::iterator it; if ((it = FindIntervalInVector(active_, i)) != active_.end()) { active_.erase(it); - assert(!MRegisterInfo::isPhysicalRegister(i->reg)); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); if (!spilled.count(i->reg)) unhandled_.push(i); - prt_->delRegUse(vrm_->getPhys(i->reg)); + delRegUse(vrm_->getPhys(i->reg)); vrm_->clearVirt(i->reg); } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { inactive_.erase(it); - assert(!MRegisterInfo::isPhysicalRegister(i->reg)); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); if (!spilled.count(i->reg)) unhandled_.push(i); vrm_->clearVirt(i->reg); } else { - assert(MRegisterInfo::isVirtualRegister(i->reg) && + assert(TargetRegisterInfo::isVirtualRegister(i->reg) && "Can only allocate virtual registers!"); vrm_->clearVirt(i->reg); unhandled_.push(i); } + + DenseMap::iterator ii = DowngradeMap.find(i->reg); + if (ii == DowngradeMap.end()) + // It interval has a preference, it must be defined by a copy. Clear the + // preference now since the source interval allocation may have been + // undone as well. + mri_->setRegAllocationHint(i->reg, 0, 0); + else { + UpgradeRegister(ii->second); + } } // Rewind the iterators in the active, inactive, and fixed lists back to the @@ -727,7 +1283,7 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) RevertVectorIteratorsTo(inactive_, earliestStart); RevertVectorIteratorsTo(fixed_, earliestStart); - // scan the rest and undo each interval that expired after t and + // Scan the rest and undo each interval that expired after t and // insert it in active (the next iteration of the algorithm will // put it in inactive if required) for (unsigned i = 0, e = handled_.size(); i != e; ++i) { @@ -736,86 +1292,148 @@ void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur) HI->expiredAt(cur->beginNumber())) { DOUT << "\t\t\tundo changes for: " << *HI << '\n'; active_.push_back(std::make_pair(HI, HI->begin())); - assert(!MRegisterInfo::isPhysicalRegister(HI->reg)); - prt_->addRegUse(vrm_->getPhys(HI->reg)); + assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); + addRegUse(vrm_->getPhys(HI->reg)); } } - // merge added with unhandled - for (unsigned i = 0, e = added.size(); i != e; ++i) - unhandled_.push(added[i]); + // Merge added with unhandled. + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + std::sort(added.begin(), added.end(), LISorter()); + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + unsigned ReloadIdx = ReloadLi->beginNumber(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginNumber() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } +} + +unsigned RALinScan::getFreePhysReg(LiveInterval* cur, + const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector &inactiveCounts, + bool SkipDGRegs) { + unsigned FreeReg = 0; + unsigned FreeRegInactiveCount = 0; + + std::pair Hint = mri_->getRegAllocationHint(cur->reg); + // Resolve second part of the hint (if possible) given the current allocation. + unsigned physReg = Hint.second; + if (physReg && + TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg)) + physReg = vrm_->getPhys(physReg); + + TargetRegisterClass::iterator I, E; + tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_); + assert(I != E && "No allocatable register in this register class!"); + + // Scan for the first available register. + for (; I != E; ++I) { + unsigned Reg = *I; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + if (isRegAvail(Reg)) { + FreeReg = Reg; + if (FreeReg < inactiveCounts.size()) + FreeRegInactiveCount = inactiveCounts[FreeReg]; + else + FreeRegInactiveCount = 0; + break; + } + } + + // If there are no free regs, or if this reg has the max inactive count, + // return this register. + if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) + return FreeReg; + + // Continue scanning the registers, looking for the one with the highest + // inactive count. Alkis found that this reduced register pressure very + // slightly on X86 (in rev 1.94 of this file), though this should probably be + // reevaluated now. + for (; I != E; ++I) { + unsigned Reg = *I; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + if (isRegAvail(Reg) && Reg < inactiveCounts.size() && + FreeRegInactiveCount < inactiveCounts[Reg]) { + FreeReg = Reg; + FreeRegInactiveCount = inactiveCounts[Reg]; + if (FreeRegInactiveCount == MaxInactiveCount) + break; // We found the one with the max inactive count. + } + } + + return FreeReg; } /// getFreePhysReg - return a free physical register for this virtual register /// interval if we have one, otherwise return 0. -unsigned RA::getFreePhysReg(LiveInterval *cur) { - std::vector inactiveCounts(mri_->getNumRegs(), 0); +unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { + SmallVector inactiveCounts; unsigned MaxInactiveCount = 0; - const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg); + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { unsigned reg = i->first->reg; - assert(MRegisterInfo::isVirtualRegister(reg) && + assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); // If this is not in a related reg class to the register we're allocating, // don't check it. - const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(reg); + const TargetRegisterClass *RegRC = mri_->getRegClass(reg); if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { reg = vrm_->getPhys(reg); + if (inactiveCounts.size() <= reg) + inactiveCounts.resize(reg+1); ++inactiveCounts[reg]; MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); } } - unsigned FreeReg = 0; - unsigned FreeRegInactiveCount = 0; - // If copy coalescer has assigned a "preferred" register, check if it's // available first. - if (cur->preference) - if (prt_->isRegAvail(cur->preference)) { - DOUT << "\t\tassigned the preferred register: " - << mri_->getName(cur->preference) << "\n"; - return cur->preference; - } else - DOUT << "\t\tunable to assign the preferred register: " - << mri_->getName(cur->preference) << "\n"; + unsigned Preference = vrm_->getRegAllocPref(cur->reg); + if (Preference) { + DOUT << "(preferred: " << tri_->getName(Preference) << ") "; + if (isRegAvail(Preference) && + RC->contains(Preference)) + return Preference; + } - // Scan for the first available register. - TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_); - TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_); - for (; I != E; ++I) - if (prt_->isRegAvail(*I)) { - FreeReg = *I; - FreeRegInactiveCount = inactiveCounts[FreeReg]; - break; - } - - // If there are no free regs, or if this reg has the max inactive count, - // return this register. - if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) return FreeReg; - - // Continue scanning the registers, looking for the one with the highest - // inactive count. Alkis found that this reduced register pressure very - // slightly on X86 (in rev 1.94 of this file), though this should probably be - // reevaluated now. - for (; I != E; ++I) { - unsigned Reg = *I; - if (prt_->isRegAvail(Reg) && FreeRegInactiveCount < inactiveCounts[Reg]) { - FreeReg = Reg; - FreeRegInactiveCount = inactiveCounts[Reg]; - if (FreeRegInactiveCount == MaxInactiveCount) - break; // We found the one with the max inactive count. - } + if (!DowngradedRegs.empty()) { + unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, + true); + if (FreeReg) + return FreeReg; } - - return FreeReg; + return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false); } FunctionPass* llvm::createLinearScanRegisterAllocator() { - return new RA(); + return new RALinScan(); }