X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FLegalizeTypes.cpp;h=28f7a4db9ca25c96fd8e6a71bafb875a35c68220;hb=b169426272b85ce28a9a56d13154e61b158fc47a;hp=cc9caf071844a01757563d928c40a6ce3d55ac1f;hpb=d8742eeb2f7cabc45a1c3736a2780bf87ba684ba;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp index cc9caf07184..28f7a4db9ca 100644 --- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp +++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp @@ -14,36 +14,176 @@ //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" +#include "llvm/CallingConv.h" +#include "llvm/ADT/SetVector.h" #include "llvm/Support/CommandLine.h" -#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetData.h" using namespace llvm; -#ifndef NDEBUG static cl::opt -ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, - cl::desc("Pop up a window to show dags before legalize types")); -#else -static const bool ViewLegalizeTypesDAGs = 0; -#endif +EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden); + +/// PerformExpensiveChecks - Do extensive, expensive, sanity checking. +void DAGTypeLegalizer::PerformExpensiveChecks() { + // If a node is not processed, then none of its values should be mapped by any + // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. + + // If a node is processed, then each value with an illegal type must be mapped + // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. + // Values with a legal type may be mapped by ReplacedValues, but not by any of + // the other maps. + + // Note that these invariants may not hold momentarily when processing a node: + // the node being processed may be put in a map before being marked Processed. + + // Note that it is possible to have nodes marked NewNode in the DAG. This can + // occur in two ways. Firstly, a node may be created during legalization but + // never passed to the legalization core. This is usually due to the implicit + // folding that occurs when using the DAG.getNode operators. Secondly, a new + // node may be passed to the legalization core, but when analyzed may morph + // into a different node, leaving the original node as a NewNode in the DAG. + // A node may morph if one of its operands changes during analysis. Whether + // it actually morphs or not depends on whether, after updating its operands, + // it is equivalent to an existing node: if so, it morphs into that existing + // node (CSE). An operand can change during analysis if the operand is a new + // node that morphs, or it is a processed value that was mapped to some other + // value (as recorded in ReplacedValues) in which case the operand is turned + // into that other value. If a node morphs then the node it morphed into will + // be used instead of it for legalization, however the original node continues + // to live on in the DAG. + // The conclusion is that though there may be nodes marked NewNode in the DAG, + // all uses of such nodes are also marked NewNode: the result is a fungus of + // NewNodes growing on top of the useful nodes, and perhaps using them, but + // not used by them. + + // If a value is mapped by ReplacedValues, then it must have no uses, except + // by nodes marked NewNode (see above). + + // The final node obtained by mapping by ReplacedValues is not marked NewNode. + // Note that ReplacedValues should be applied iteratively. + + // Note that the ReplacedValues map may also map deleted nodes. By iterating + // over the DAG we only consider non-deleted nodes. + SmallVector NewNodes; + for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), + E = DAG.allnodes_end(); I != E; ++I) { + // Remember nodes marked NewNode - they are subject to extra checking below. + if (I->getNodeId() == NewNode) + NewNodes.push_back(I); + + for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) { + SDValue Res(I, i); + bool Failed = false; + + unsigned Mapped = 0; + if (ReplacedValues.find(Res) != ReplacedValues.end()) { + Mapped |= 1; + // Check that remapped values are only used by nodes marked NewNode. + for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end(); + UI != UE; ++UI) + if (UI.getUse().getResNo() == i) + assert(UI->getNodeId() == NewNode && + "Remapped value has non-trivial use!"); + + // Check that the final result of applying ReplacedValues is not + // marked NewNode. + SDValue NewVal = ReplacedValues[Res]; + DenseMap::iterator I = ReplacedValues.find(NewVal); + while (I != ReplacedValues.end()) { + NewVal = I->second; + I = ReplacedValues.find(NewVal); + } + assert(NewVal.getNode()->getNodeId() != NewNode && + "ReplacedValues maps to a new node!"); + } + if (PromotedIntegers.find(Res) != PromotedIntegers.end()) + Mapped |= 2; + if (SoftenedFloats.find(Res) != SoftenedFloats.end()) + Mapped |= 4; + if (ScalarizedVectors.find(Res) != ScalarizedVectors.end()) + Mapped |= 8; + if (ExpandedIntegers.find(Res) != ExpandedIntegers.end()) + Mapped |= 16; + if (ExpandedFloats.find(Res) != ExpandedFloats.end()) + Mapped |= 32; + if (SplitVectors.find(Res) != SplitVectors.end()) + Mapped |= 64; + if (WidenedVectors.find(Res) != WidenedVectors.end()) + Mapped |= 128; + + if (I->getNodeId() != Processed) { + if (Mapped != 0) { + cerr << "Unprocessed value in a map!"; + Failed = true; + } + } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) { + // FIXME: Because of PR2957, the build vector can be placed on this + // list but if the associated vector shuffle is split, the build vector + // can also be split so we allow this to go through for now. + if (Mapped > 1 && Res.getOpcode() != ISD::BUILD_VECTOR) { + cerr << "Value with legal type was transformed!"; + Failed = true; + } + } else { + if (Mapped == 0) { + cerr << "Processed value not in any map!"; + Failed = true; + } else if (Mapped & (Mapped - 1)) { + cerr << "Value in multiple maps!"; + Failed = true; + } + } + if (Failed) { + if (Mapped & 1) + cerr << " ReplacedValues"; + if (Mapped & 2) + cerr << " PromotedIntegers"; + if (Mapped & 4) + cerr << " SoftenedFloats"; + if (Mapped & 8) + cerr << " ScalarizedVectors"; + if (Mapped & 16) + cerr << " ExpandedIntegers"; + if (Mapped & 32) + cerr << " ExpandedFloats"; + if (Mapped & 64) + cerr << " SplitVectors"; + if (Mapped & 128) + cerr << " WidenedVectors"; + cerr << "\n"; + abort(); + } + } + } + // Checked that NewNodes are only used by other NewNodes. + for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) { + SDNode *N = NewNodes[i]; + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + UI != UE; ++UI) + assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!"); + } +} /// run - This is the main entry point for the type legalizer. This does a -/// top-down traversal of the dag, legalizing types as it goes. -void DAGTypeLegalizer::run() { +/// top-down traversal of the dag, legalizing types as it goes. Returns "true" +/// if it made any changes. +bool DAGTypeLegalizer::run() { + bool Changed = false; + // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); + Dummy.setNodeId(Unanalyzed); // The root of the dag may dangle to deleted nodes until the type legalizer is // done. Set it to null to avoid confusion. - DAG.setRoot(SDOperand()); - - // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess' - // (and remembering them) if they are leaves and assigning 'NewNode' if + DAG.setRoot(SDValue()); + + // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess' + // (and remembering them) if they are leaves and assigning 'Unanalyzed' if // non-leaves. for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) { @@ -51,128 +191,217 @@ void DAGTypeLegalizer::run() { I->setNodeId(ReadyToProcess); Worklist.push_back(I); } else { - I->setNodeId(NewNode); + I->setNodeId(Unanalyzed); } } - + // Now that we have a set of nodes to process, handle them all. while (!Worklist.empty()) { +#ifndef XDEBUG + if (EnableExpensiveChecks) +#endif + PerformExpensiveChecks(); + SDNode *N = Worklist.back(); Worklist.pop_back(); assert(N->getNodeId() == ReadyToProcess && "Node should be ready if on worklist!"); - + + if (IgnoreNodeResults(N)) + goto ScanOperands; + // Scan the values produced by the node, checking to see if any result // types are illegal. - unsigned i = 0; - unsigned NumResults = N->getNumValues(); - do { - MVT::ValueType ResultVT = N->getValueType(i); + for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) { + MVT ResultVT = N->getValueType(i); switch (getTypeAction(ResultVT)) { default: assert(false && "Unknown action!"); case Legal: break; - case Promote: - PromoteResult(N, i); + // The following calls must take care of *all* of the node's results, + // not just the illegal result they were passed (this includes results + // with a legal type). Results can be remapped using ReplaceValueWith, + // or their promoted/expanded/etc values registered in PromotedIntegers, + // ExpandedIntegers etc. + case PromoteInteger: + PromoteIntegerResult(N, i); + Changed = true; goto NodeDone; - case Expand: - ExpandResult(N, i); + case ExpandInteger: + ExpandIntegerResult(N, i); + Changed = true; goto NodeDone; - case FloatToInt: - FloatToIntResult(N, i); + case SoftenFloat: + SoftenFloatResult(N, i); + Changed = true; goto NodeDone; - case Scalarize: - ScalarizeResult(N, i); + case ExpandFloat: + ExpandFloatResult(N, i); + Changed = true; goto NodeDone; - case Split: - SplitResult(N, i); + case ScalarizeVector: + ScalarizeVectorResult(N, i); + Changed = true; + goto NodeDone; + case SplitVector: + SplitVectorResult(N, i); + Changed = true; + goto NodeDone; + case WidenVector: + WidenVectorResult(N, i); + Changed = true; goto NodeDone; } - } while (++i < NumResults); + } +ScanOperands: // Scan the operand list for the node, handling any nodes with operands that // are illegal. { unsigned NumOperands = N->getNumOperands(); - bool NeedsRevisit = false; + bool NeedsReanalyzing = false; + unsigned i; for (i = 0; i != NumOperands; ++i) { - MVT::ValueType OpVT = N->getOperand(i).getValueType(); + if (IgnoreNodeResults(N->getOperand(i).getNode())) + continue; + + if (N->getOpcode() == ISD::VECTOR_SHUFFLE && i == 2) { + // The shuffle mask doesn't need to be a legal vector type. + // FIXME: We can remove this once we fix PR2957. + SetIgnoredNodeResult(N->getOperand(2).getNode()); + continue; + } + + MVT OpVT = N->getOperand(i).getValueType(); switch (getTypeAction(OpVT)) { default: assert(false && "Unknown action!"); case Legal: continue; - case Promote: - NeedsRevisit = PromoteOperand(N, i); + // The following calls must either replace all of the node's results + // using ReplaceValueWith, and return "false"; or update the node's + // operands in place, and return "true". + case PromoteInteger: + NeedsReanalyzing = PromoteIntegerOperand(N, i); + Changed = true; + break; + case ExpandInteger: + NeedsReanalyzing = ExpandIntegerOperand(N, i); + Changed = true; break; - case Expand: - NeedsRevisit = ExpandOperand(N, i); + case SoftenFloat: + NeedsReanalyzing = SoftenFloatOperand(N, i); + Changed = true; break; - case FloatToInt: - NeedsRevisit = FloatToIntOperand(N, i); + case ExpandFloat: + NeedsReanalyzing = ExpandFloatOperand(N, i); + Changed = true; break; - case Scalarize: - NeedsRevisit = ScalarizeOperand(N, i); + case ScalarizeVector: + NeedsReanalyzing = ScalarizeVectorOperand(N, i); + Changed = true; break; - case Split: - NeedsRevisit = SplitOperand(N, i); + case SplitVector: + NeedsReanalyzing = SplitVectorOperand(N, i); + Changed = true; + break; + case WidenVector: + NeedsReanalyzing = WidenVectorOperand(N, i); + Changed = true; break; } break; } - // If the node needs revisiting, don't add all users to the worklist etc. - if (NeedsRevisit) + // The sub-method updated N in place. Check to see if any operands are new, + // and if so, mark them. If the node needs revisiting, don't add all users + // to the worklist etc. + if (NeedsReanalyzing) { + assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?"); + N->setNodeId(NewNode); + // Recompute the NodeId and correct processed operands, adding the node to + // the worklist if ready. + SDNode *M = AnalyzeNewNode(N); + if (M == N) + // The node didn't morph - nothing special to do, it will be revisited. + continue; + + // The node morphed - this is equivalent to legalizing by replacing every + // value of N with the corresponding value of M. So do that now. However + // there is no need to remember the replacement - morphing will make sure + // it is never used non-trivially. + assert(N->getNumValues() == M->getNumValues() && + "Node morphing changed the number of results!"); + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) + // Replacing the value takes care of remapping the new value. Do the + // replacement without recording it in ReplacedValues. This does not + // expunge From but that is fine - it is not really a new node. + ReplaceValueWithHelper(SDValue(N, i), SDValue(M, i)); + assert(N->getNodeId() == NewNode && "Unexpected node state!"); + // The node continues to live on as part of the NewNode fungus that + // grows on top of the useful nodes. Nothing more needs to be done + // with it - move on to the next node. continue; - - if (i == NumOperands) + } + + if (i == NumOperands) { DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n"); } + } NodeDone: // If we reach here, the node was processed, potentially creating new nodes. // Mark it as processed and add its users to the worklist as appropriate. + assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?"); N->setNodeId(Processed); - + for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) { SDNode *User = *UI; - int NodeID = User->getNodeId(); - assert(NodeID != ReadyToProcess && NodeID != Processed && - "Invalid node id for user of unprocessed node!"); - + int NodeId = User->getNodeId(); + // This node has two options: it can either be a new node or its Node ID // may be a count of the number of operands it has that are not ready. - if (NodeID > 0) { - User->setNodeId(NodeID-1); - + if (NodeId > 0) { + User->setNodeId(NodeId-1); + // If this was the last use it was waiting on, add it to the ready list. - if (NodeID-1 == ReadyToProcess) + if (NodeId-1 == ReadyToProcess) Worklist.push_back(User); continue; } - + + // If this is an unreachable new node, then ignore it. If it ever becomes + // reachable by being used by a newly created node then it will be handled + // by AnalyzeNewNode. + if (NodeId == NewNode) + continue; + // Otherwise, this node is new: this is the first operand of it that - // became ready. Its new NodeID is the number of operands it has minus 1 + // became ready. Its new NodeId is the number of operands it has minus 1 // (as this node is now processed). - assert(NodeID == NewNode && "Unknown node ID!"); - User->setNodeId(User->getNumOperands()-1); - + assert(NodeId == Unanalyzed && "Unknown node ID!"); + User->setNodeId(User->getNumOperands() - 1); + // If the node only has a single operand, it is now ready. if (User->getNumOperands() == 1) Worklist.push_back(User); } } - - // If the root changed (e.g. it was a dead load, update the root). - DAG.setRoot(Dummy.getValue()); - //DAG.viewGraph(); +#ifndef XDEBUG + if (EnableExpensiveChecks) +#endif + PerformExpensiveChecks(); + + // If the root changed (e.g. it was a dead load) update the root. + DAG.setRoot(Dummy.getValue()); // Remove dead nodes. This is important to do for cleanliness but also before - // the checking loop below. Implicit folding by the DAG.getNode operators can - // cause unreachable nodes to be around with their flags set to new. + // the checking loop below. Implicit folding by the DAG.getNode operators and + // node morphing can cause unreachable nodes to be around with their flags set + // to new. DAG.RemoveDeadNodes(); // In a debug build, scan all the nodes to make sure we found them all. This @@ -183,22 +412,26 @@ NodeDone: bool Failed = false; // Check that all result types are legal. - for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i) - if (!isTypeLegal(I->getValueType(i))) { - cerr << "Result type " << i << " illegal!\n"; - Failed = true; - } + if (!IgnoreNodeResults(I)) + for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i) + if (!isTypeLegal(I->getValueType(i))) { + cerr << "Result type " << i << " illegal!\n"; + Failed = true; + } // Check that all operand types are legal. for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i) - if (!isTypeLegal(I->getOperand(i).getValueType())) { + if (!IgnoreNodeResults(I->getOperand(i).getNode()) && + !isTypeLegal(I->getOperand(i).getValueType())) { cerr << "Operand type " << i << " illegal!\n"; Failed = true; } if (I->getNodeId() != Processed) { if (I->getNodeId() == NewNode) - cerr << "New node not 'noticed'?\n"; + cerr << "New node not analyzed?\n"; + else if (I->getNodeId() == Unanalyzed) + cerr << "Unanalyzed node not noticed?\n"; else if (I->getNodeId() > 0) cerr << "Operand not processed?\n"; else if (I->getNodeId() == ReadyToProcess) @@ -212,15 +445,22 @@ NodeDone: } } #endif + + return Changed; } /// AnalyzeNewNode - The specified node is the root of a subtree of potentially /// new nodes. Correct any processed operands (this may change the node) and -/// calculate the NodeId. -void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) { +/// calculate the NodeId. If the node itself changes to a processed node, it +/// is not remapped - the caller needs to take care of this. +/// Returns the potentially changed node. +SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) { // If this was an existing node that is already done, we're done. - if (N->getNodeId() != NewNode) - return; + if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed) + return N; + + // Remove any stale map entries. + ExpungeNode(N); // Okay, we know that this node is new. Recursively walk all of its operands // to see if they are new also. The depth of this walk is bounded by the size @@ -229,22 +469,19 @@ void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) { // // As we walk the operands, keep track of the number of nodes that are // processed. If non-zero, this will become the new nodeid of this node. - // Already processed operands may need to be remapped to the node that - // replaced them, which can result in our node changing. Since remapping - // is rare, the code tries to minimize overhead in the non-remapping case. + // Operands may morph when they are analyzed. If so, the node will be + // updated after all operands have been analyzed. Since this is rare, + // the code tries to minimize overhead in the non-morphing case. - SmallVector NewOps; + SmallVector NewOps; unsigned NumProcessed = 0; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - SDOperand OrigOp = N->getOperand(i); - SDOperand Op = OrigOp; + SDValue OrigOp = N->getOperand(i); + SDValue Op = OrigOp; - if (Op.Val->getNodeId() == Processed) - RemapNode(Op); + AnalyzeNewValue(Op); // Op may morph. - if (Op.Val->getNodeId() == NewNode) - AnalyzeNewNode(Op.Val); - else if (Op.Val->getNodeId() == Processed) + if (Op.getNode()->getNodeId() == Processed) ++NumProcessed; if (!NewOps.empty()) { @@ -259,12 +496,137 @@ void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) { } // Some operands changed - update the node. - if (!NewOps.empty()) - N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val; + if (!NewOps.empty()) { + SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0], + NewOps.size()).getNode(); + if (M != N) { + // The node morphed into a different node. Normally for this to happen + // the original node would have to be marked NewNode. However this can + // in theory momentarily not be the case while ReplaceValueWith is doing + // its stuff. Mark the original node NewNode to help sanity checking. + N->setNodeId(NewNode); + if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed) + // It morphed into a previously analyzed node - nothing more to do. + return M; + + // It morphed into a different new node. Do the equivalent of passing + // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need + // to remap the operands, since they are the same as the operands we + // remapped above. + N = M; + ExpungeNode(N); + } + } - N->setNodeId(N->getNumOperands()-NumProcessed); + // Calculate the NodeId. + N->setNodeId(N->getNumOperands() - NumProcessed); if (N->getNodeId() == ReadyToProcess) Worklist.push_back(N); + + return N; +} + +/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed. +/// If the node changes to a processed node, then remap it. +void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) { + Val.setNode(AnalyzeNewNode(Val.getNode())); + if (Val.getNode()->getNodeId() == Processed) + // We were passed a processed node, or it morphed into one - remap it. + RemapValue(Val); +} + +/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it. +/// This can occur when a node is deleted then reallocated as a new node - +/// the mapping in ReplacedValues applies to the deleted node, not the new +/// one. +/// The only map that can have a deleted node as a source is ReplacedValues. +/// Other maps can have deleted nodes as targets, but since their looked-up +/// values are always immediately remapped using RemapValue, resulting in a +/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue +/// always performs correct mappings. In order to keep the mapping correct, +/// ExpungeNode should be called on any new nodes *before* adding them as +/// either source or target to ReplacedValues (which typically means calling +/// Expunge when a new node is first seen, since it may no longer be marked +/// NewNode by the time it is added to ReplacedValues). +void DAGTypeLegalizer::ExpungeNode(SDNode *N) { + if (N->getNodeId() != NewNode) + return; + + // If N is not remapped by ReplacedValues then there is nothing to do. + unsigned i, e; + for (i = 0, e = N->getNumValues(); i != e; ++i) + if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end()) + break; + + if (i == e) + return; + + // Remove N from all maps - this is expensive but rare. + + for (DenseMap::iterator I = PromotedIntegers.begin(), + E = PromotedIntegers.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap::iterator I = SoftenedFloats.begin(), + E = SoftenedFloats.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap::iterator I = ScalarizedVectors.begin(), + E = ScalarizedVectors.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap::iterator I = WidenedVectors.begin(), + E = WidenedVectors.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap >::iterator + I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){ + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } + + for (DenseMap >::iterator + I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } + + for (DenseMap >::iterator + I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } + + for (DenseMap::iterator I = ReplacedValues.begin(), + E = ReplacedValues.end(); I != E; ++I) + RemapValue(I->second); + + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) + ReplacedValues.erase(SDValue(N, i)); +} + +/// RemapValue - If the specified value was already legalized to another value, +/// replace it by that value. +void DAGTypeLegalizer::RemapValue(SDValue &N) { + DenseMap::iterator I = ReplacedValues.find(N); + if (I != ReplacedValues.end()) { + // Use path compression to speed up future lookups if values get multiply + // replaced with other values. + RemapValue(I->second); + N = I->second; + assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!"); + } } namespace { @@ -273,265 +635,432 @@ namespace { class VISIBILITY_HIDDEN NodeUpdateListener : public SelectionDAG::DAGUpdateListener { DAGTypeLegalizer &DTL; + SmallSetVector &NodesToAnalyze; public: - NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {} - - virtual void NodeDeleted(SDNode *N) { - // Ignore deletes. - assert(N->getNodeId() != DAGTypeLegalizer::Processed && - N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && - "RAUW deleted processed node!"); + explicit NodeUpdateListener(DAGTypeLegalizer &dtl, + SmallSetVector &nta) + : DTL(dtl), NodesToAnalyze(nta) {} + + virtual void NodeDeleted(SDNode *N, SDNode *E) { + assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && + N->getNodeId() != DAGTypeLegalizer::Processed && + "Invalid node ID for RAUW deletion!"); + // It is possible, though rare, for the deleted node N to occur as a + // target in a map, so note the replacement N -> E in ReplacedValues. + assert(E && "Node not replaced?"); + DTL.NoteDeletion(N, E); + + // In theory the deleted node could also have been scheduled for analysis. + // So remove it from the set of nodes which will be analyzed. + NodesToAnalyze.remove(N); + + // In general nothing needs to be done for E, since it didn't change but + // only gained new uses. However N -> E was just added to ReplacedValues, + // and the result of a ReplacedValues mapping is not allowed to be marked + // NewNode. So if E is marked NewNode, then it needs to be analyzed. + if (E->getNodeId() == DAGTypeLegalizer::NewNode) + NodesToAnalyze.insert(E); } virtual void NodeUpdated(SDNode *N) { // Node updates can mean pretty much anything. It is possible that an // operand was set to something already processed (f.e.) in which case // this node could become ready. Recompute its flags. - assert(N->getNodeId() != DAGTypeLegalizer::Processed && - N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && - "RAUW updated processed node!"); - DTL.ReanalyzeNode(N); + assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && + N->getNodeId() != DAGTypeLegalizer::Processed && + "Invalid node ID for RAUW deletion!"); + N->setNodeId(DAGTypeLegalizer::NewNode); + NodesToAnalyze.insert(N); } }; } -/// ReplaceValueWith - The specified value was legalized to the specified other -/// value. If they are different, update the DAG and NodeIDs replacing any uses -/// of From to use To instead. -void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) { - if (From == To) return; +/// ReplaceValueWithHelper - Internal helper for ReplaceValueWith. Updates the +/// DAG causing any uses of From to use To instead, but without expunging From +/// or recording the replacement in ReplacedValues. Do not call directly unless +/// you really know what you are doing! +void DAGTypeLegalizer::ReplaceValueWithHelper(SDValue From, SDValue To) { + assert(From.getNode() != To.getNode() && "Potential legalization loop!"); // If expansion produced new nodes, make sure they are properly marked. - AnalyzeNewNode(To.Val); + AnalyzeNewValue(To); // Expunges To. // Anything that used the old node should now use the new one. Note that this // can potentially cause recursive merging. - NodeUpdateListener NUL(*this); + SmallSetVector NodesToAnalyze; + NodeUpdateListener NUL(*this, NodesToAnalyze); DAG.ReplaceAllUsesOfValueWith(From, To, &NUL); - // The old node may still be present in ExpandedNodes or PromotedNodes. - // Inform them about the replacement. - ReplacedNodes[From] = To; + // Process the list of nodes that need to be reanalyzed. + while (!NodesToAnalyze.empty()) { + SDNode *N = NodesToAnalyze.back(); + NodesToAnalyze.pop_back(); + if (N->getNodeId() != DAGTypeLegalizer::NewNode) + // The node was analyzed while reanalyzing an earlier node - it is safe to + // skip. Note that this is not a morphing node - otherwise it would still + // be marked NewNode. + continue; + + // Analyze the node's operands and recalculate the node ID. + SDNode *M = AnalyzeNewNode(N); + if (M != N) { + // The node morphed into a different node. Make everyone use the new node + // instead. + assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!"); + assert(N->getNumValues() == M->getNumValues() && + "Node morphing changed the number of results!"); + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { + SDValue OldVal(N, i); + SDValue NewVal(M, i); + if (M->getNodeId() == Processed) + RemapValue(NewVal); + DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL); + } + // The original node continues to exist in the DAG, marked NewNode. + } + } } -/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to' -/// node's results. The from and to node must define identical result types. -void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) { - if (From == To) return; +/// ReplaceValueWith - The specified value was legalized to the specified other +/// value. Update the DAG and NodeIds replacing any uses of From to use To +/// instead. +void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) { + assert(From.getNode()->getNodeId() == ReadyToProcess && + "Only the node being processed may be remapped!"); // If expansion produced new nodes, make sure they are properly marked. - AnalyzeNewNode(To); + ExpungeNode(From.getNode()); + AnalyzeNewValue(To); // Expunges To. - assert(From->getNumValues() == To->getNumValues() && - "Node results don't match"); + // The old node may still be present in a map like ExpandedIntegers or + // PromotedIntegers. Inform maps about the replacement. + ReplacedValues[From] = To; - // Anything that used the old node should now use the new one. Note that this - // can potentially cause recursive merging. - NodeUpdateListener NUL(*this); - DAG.ReplaceAllUsesWith(From, To, &NUL); - - // The old node may still be present in ExpandedNodes or PromotedNodes. - // Inform them about the replacement. - for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) { - assert(From->getValueType(i) == To->getValueType(i) && - "Node results don't match"); - ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i); - } + // Do the replacement. + ReplaceValueWithHelper(From, To); } +void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); -/// RemapNode - If the specified value was already legalized to another value, -/// replace it by that value. -void DAGTypeLegalizer::RemapNode(SDOperand &N) { - DenseMap::iterator I = ReplacedNodes.find(N); - if (I != ReplacedNodes.end()) { - // Use path compression to speed up future lookups if values get multiply - // replaced with other values. - RemapNode(I->second); - N = I->second; - } + SDValue &OpEntry = PromotedIntegers[Op]; + assert(OpEntry.getNode() == 0 && "Node is already promoted!"); + OpEntry = Result; } -void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) { - AnalyzeNewNode(Result.Val); +void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); - SDOperand &OpEntry = PromotedNodes[Op]; - assert(OpEntry.Val == 0 && "Node is already promoted!"); + SDValue &OpEntry = SoftenedFloats[Op]; + assert(OpEntry.getNode() == 0 && "Node is already converted to integer!"); OpEntry = Result; } -void DAGTypeLegalizer::SetIntegerOp(SDOperand Op, SDOperand Result) { - AnalyzeNewNode(Result.Val); +void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); - SDOperand &OpEntry = FloatToIntedNodes[Op]; - assert(OpEntry.Val == 0 && "Node is already converted to integer!"); + SDValue &OpEntry = ScalarizedVectors[Op]; + assert(OpEntry.getNode() == 0 && "Node is already scalarized!"); OpEntry = Result; } -void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) { - AnalyzeNewNode(Result.Val); +void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = ExpandedIntegers[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't expanded"); + Lo = Entry.first; + Hi = Entry.second; +} - SDOperand &OpEntry = ScalarizedNodes[Op]; - assert(OpEntry.Val == 0 && "Node is already scalarized!"); - OpEntry = Result; +void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo, + SDValue Hi) { + // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); + + // Remember that this is the result of the node. + std::pair &Entry = ExpandedIntegers[Op]; + assert(Entry.first.getNode() == 0 && "Node already expanded"); + Entry.first = Lo; + Entry.second = Hi; } -void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo, - SDOperand &Hi) { - std::pair &Entry = ExpandedNodes[Op]; - RemapNode(Entry.first); - RemapNode(Entry.second); - assert(Entry.first.Val && "Operand isn't expanded"); +void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = ExpandedFloats[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't expanded"); Lo = Entry.first; Hi = Entry.second; } -void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { +void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo, + SDValue Hi) { // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. - AnalyzeNewNode(Lo.Val); - AnalyzeNewNode(Hi.Val); + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); // Remember that this is the result of the node. - std::pair &Entry = ExpandedNodes[Op]; - assert(Entry.first.Val == 0 && "Node already expanded"); + std::pair &Entry = ExpandedFloats[Op]; + assert(Entry.first.getNode() == 0 && "Node already expanded"); Entry.first = Lo; Entry.second = Hi; } -void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { - std::pair &Entry = SplitNodes[Op]; - RemapNode(Entry.first); - RemapNode(Entry.second); - assert(Entry.first.Val && "Operand isn't split"); +void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = SplitVectors[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't split"); Lo = Entry.first; Hi = Entry.second; } -void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { +void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo, + SDValue Hi) { // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. - AnalyzeNewNode(Lo.Val); - AnalyzeNewNode(Hi.Val); + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); // Remember that this is the result of the node. - std::pair &Entry = SplitNodes[Op]; - assert(Entry.first.Val == 0 && "Node already split"); + std::pair &Entry = SplitVectors[Op]; + assert(Entry.first.getNode() == 0 && "Node already split"); Entry.first = Lo; Entry.second = Hi; } +void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); + + SDValue &OpEntry = WidenedVectors[Op]; + assert(OpEntry.getNode() == 0 && "Node already widened!"); + OpEntry = Result; +} + +// Set to ignore result +void DAGTypeLegalizer::SetIgnoredNodeResult(SDNode* N) { + IgnoredNodesResultsSet.insert(N); +} + +//===----------------------------------------------------------------------===// +// Utilities. +//===----------------------------------------------------------------------===// /// BitConvertToInteger - Convert to an integer of the same size. -SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) { - return DAG.getNode(ISD::BIT_CONVERT, - MVT::getIntegerType(MVT::getSizeInBits(Op.getValueType())), - Op); +SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) { + unsigned BitWidth = Op.getValueType().getSizeInBits(); + return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(), + MVT::getIntegerVT(BitWidth), Op); } -SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op, - MVT::ValueType DestVT) { - // Create the stack frame object. - SDOperand FIPtr = DAG.CreateStackTemporary(DestVT); - +SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op, + MVT DestVT) { + DebugLoc dl = Op.getDebugLoc(); + // Create the stack frame object. Make sure it is aligned for both + // the source and destination types. + SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT); // Emit a store to the stack slot. - SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, NULL, 0); // Result is a load from the stack slot. - return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); -} - -/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid -/// operands. This promotes or expands the operands as required. -SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) { - // The chain and pointer [operands #0 and #1] are always valid types. - SDOperand Chain = N->getOperand(0); - SDOperand Ptr = N->getOperand(1); - SDOperand Op2 = N->getOperand(2); - - // Op #2 is either a value (memset) or a pointer. Promote it if required. - switch (getTypeAction(Op2.getValueType())) { - default: assert(0 && "Unknown action for pointer/value operand"); - case Legal: break; - case Promote: Op2 = GetPromotedOp(Op2); break; - } + return DAG.getLoad(DestVT, dl, Store, StackPtr, NULL, 0); +} - // The length could have any action required. - SDOperand Length = N->getOperand(3); - switch (getTypeAction(Length.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: Length = GetPromotedZExtOp(Length); break; - case Expand: - SDOperand Dummy; // discard the high part. - GetExpandedOp(Length, Length, Dummy); - break; - } +/// CustomLowerResults - Replace the node's results with custom code provided +/// by the target and return "true", or do nothing and return "false". +/// The last parameter is FALSE if we are dealing with a node with legal +/// result types and illegal operand. The second parameter denotes the type of +/// illegal OperandNo in that case. +/// The last parameter being TRUE means we are dealing with a +/// node with illegal result types. The second parameter denotes the type of +/// illegal ResNo in that case. +bool DAGTypeLegalizer::CustomLowerResults(SDNode *N, MVT VT, + bool LegalizeResult) { + // See if the target wants to custom lower this node. + if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom) + return false; + + SmallVector Results; + if (LegalizeResult) + TLI.ReplaceNodeResults(N, Results, DAG); + else + TLI.LowerOperationWrapper(N, Results, DAG); + + if (Results.empty()) + // The target didn't want to custom lower it after all. + return false; + + // Make everything that once used N's values now use those in Results instead. + assert(Results.size() == N->getNumValues() && + "Custom lowering returned the wrong number of results!"); + for (unsigned i = 0, e = Results.size(); i != e; ++i) + ReplaceValueWith(SDValue(N, i), Results[i]); + return true; +} - SDOperand Align = N->getOperand(4); - switch (getTypeAction(Align.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: Align = GetPromotedZExtOp(Align); break; +/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type +/// which is split into two not necessarily identical pieces. +void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) { + if (!InVT.isVector()) { + LoVT = HiVT = TLI.getTypeToTransformTo(InVT); + } else { + MVT NewEltVT = InVT.getVectorElementType(); + unsigned NumElements = InVT.getVectorNumElements(); + if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector. + NumElements >>= 1; + LoVT = HiVT = MVT::getVectorVT(NewEltVT, NumElements); + } else { // Non-power-of-two vectors. + unsigned NewNumElts_Lo = 1 << Log2_32(NumElements); + unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; + LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); + HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); + } } +} - SDOperand AlwaysInline = N->getOperand(5); - switch (getTypeAction(AlwaysInline.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break; +SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT, + SDValue Index) { + DebugLoc dl = Index.getDebugLoc(); + // Make sure the index type is big enough to compute in. + if (Index.getValueType().bitsGT(TLI.getPointerTy())) + Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index); + else + Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index); + + // Calculate the element offset and add it to the pointer. + unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. + + Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, + DAG.getConstant(EltSize, Index.getValueType())); + return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr); +} + +/// JoinIntegers - Build an integer with low bits Lo and high bits Hi. +SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) { + // Arbitrarily use dlHi for result DebugLoc + DebugLoc dlHi = Hi.getDebugLoc(); + DebugLoc dlLo = Lo.getDebugLoc(); + MVT LVT = Lo.getValueType(); + MVT HVT = Hi.getValueType(); + MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits()); + + Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo); + Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi); + Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi, + DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy())); + return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi); +} + +/// LibCallify - Convert the node into a libcall with the same prototype. +SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N, + bool isSigned) { + unsigned NumOps = N->getNumOperands(); + DebugLoc dl = N->getDebugLoc(); + if (NumOps == 0) { + return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl); + } else if (NumOps == 1) { + SDValue Op = N->getOperand(0); + return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl); + } else if (NumOps == 2) { + SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; + return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl); } + SmallVector Ops(NumOps); + for (unsigned i = 0; i < NumOps; ++i) + Ops[i] = N->getOperand(i); - SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline }; - return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6); + return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl); } -/// JoinIntegers - Build an integer with low bits Lo and high bits Hi. -SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) { - MVT::ValueType LVT = Lo.getValueType(); - MVT::ValueType HVT = Hi.getValueType(); - MVT::ValueType NVT = MVT::getIntegerType(MVT::getSizeInBits(LVT) + - MVT::getSizeInBits(HVT)); +/// MakeLibCall - Generate a libcall taking the given operands as arguments and +/// returning a result of type RetVT. +SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT, + const SDValue *Ops, unsigned NumOps, + bool isSigned, DebugLoc dl) { + TargetLowering::ArgListTy Args; + Args.reserve(NumOps); + + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0; i != NumOps; ++i) { + Entry.Node = Ops[i]; + Entry.Ty = Entry.Node.getValueType().getTypeForMVT(); + Entry.isSExt = isSigned; + Entry.isZExt = !isSigned; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy()); + + const Type *RetTy = RetVT.getTypeForMVT(); + std::pair CallInfo = + TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, + false, CallingConv::C, false, Callee, Args, DAG, dl); + return CallInfo.first; +} - Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo); - Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi); - Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(MVT::getSizeInBits(LVT), - TLI.getShiftAmountTy())); - return DAG.getNode(ISD::OR, NVT, Lo, Hi); +/// PromoteTargetBoolean - Promote the given target boolean to a target boolean +/// of the given type. A target boolean is an integer value, not necessarily of +/// type i1, the bits of which conform to getBooleanContents. +SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) { + DebugLoc dl = Bool.getDebugLoc(); + ISD::NodeType ExtendCode; + switch (TLI.getBooleanContents()) { + default: + assert(false && "Unknown BooleanContent!"); + case TargetLowering::UndefinedBooleanContent: + // Extend to VT by adding rubbish bits. + ExtendCode = ISD::ANY_EXTEND; + break; + case TargetLowering::ZeroOrOneBooleanContent: + // Extend to VT by adding zero bits. + ExtendCode = ISD::ZERO_EXTEND; + break; + case TargetLowering::ZeroOrNegativeOneBooleanContent: { + // Extend to VT by copying the sign bit. + ExtendCode = ISD::SIGN_EXTEND; + break; + } + } + return DAG.getNode(ExtendCode, dl, VT, Bool); } /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT /// bits in Hi. -void DAGTypeLegalizer::SplitInteger(SDOperand Op, - MVT::ValueType LoVT, MVT::ValueType HiVT, - SDOperand &Lo, SDOperand &Hi) { - assert(MVT::getSizeInBits(LoVT) + MVT::getSizeInBits(HiVT) == - MVT::getSizeInBits(Op.getValueType()) && "Invalid integer splitting!"); - Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op); - Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op, - DAG.getConstant(MVT::getSizeInBits(LoVT), - TLI.getShiftAmountTy())); - Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi); -} - -/// SplitInteger - Return the lower and upper halves of Op's bits in a value type -/// half the size of Op's. -void DAGTypeLegalizer::SplitInteger(SDOperand Op, - SDOperand &Lo, SDOperand &Hi) { - MVT::ValueType HalfVT = - MVT::getIntegerType(MVT::getSizeInBits(Op.getValueType())/2); +void DAGTypeLegalizer::SplitInteger(SDValue Op, + MVT LoVT, MVT HiVT, + SDValue &Lo, SDValue &Hi) { + DebugLoc dl = Op.getDebugLoc(); + assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() == + Op.getValueType().getSizeInBits() && "Invalid integer splitting!"); + Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op); + Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op, + DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy())); + Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi); +} + +/// SplitInteger - Return the lower and upper halves of Op's bits in a value +/// type half the size of Op's. +void DAGTypeLegalizer::SplitInteger(SDValue Op, + SDValue &Lo, SDValue &Hi) { + MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2); SplitInteger(Op, HalfVT, HalfVT, Lo, Hi); } + //===----------------------------------------------------------------------===// // Entry Point //===----------------------------------------------------------------------===// /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that -/// only uses types natively supported by the target. +/// only uses types natively supported by the target. Returns "true" if it made +/// any changes. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. -void SelectionDAG::LegalizeTypes() { - if (ViewLegalizeTypesDAGs) viewGraph(); - - DAGTypeLegalizer(*this).run(); +bool SelectionDAG::LegalizeTypes() { + return DAGTypeLegalizer(*this).run(); }