X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FLegalizeTypes.cpp;h=6876e9f94f81f167a5740fed34857a9a28fdc505;hb=9a6b92de4c2207b427f3b9cd67cd122dafc5b6c6;hp=7497ba2c8deaf255e754e6c94271296d4be1f8a8;hpb=1a9c9df1db4ab3bf39f0395a7086576b4491d50b;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp index 7497ba2c8de..6876e9f94f8 100644 --- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp +++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp @@ -14,22 +14,11 @@ //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" +#include "llvm/CallingConv.h" #include "llvm/Support/CommandLine.h" -#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetData.h" using namespace llvm; -#ifndef NDEBUG -static cl::opt -ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, - cl::desc("Pop up a window to show dags before legalize types")); -#else -static const bool ViewLegalizeTypesDAGs = 0; -#endif - - - /// run - This is the main entry point for the type legalizer. This does a /// top-down traversal of the dag, legalizing types as it goes. void DAGTypeLegalizer::run() { @@ -40,9 +29,9 @@ void DAGTypeLegalizer::run() { // The root of the dag may dangle to deleted nodes until the type legalizer is // done. Set it to null to avoid confusion. - DAG.setRoot(SDOperand()); - - // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess' + DAG.setRoot(SDValue()); + + // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess' // (and remembering them) if they are leaves and assigning 'NewNode' if // non-leaves. for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), @@ -54,110 +43,130 @@ void DAGTypeLegalizer::run() { I->setNodeId(NewNode); } } - + // Now that we have a set of nodes to process, handle them all. while (!Worklist.empty()) { SDNode *N = Worklist.back(); Worklist.pop_back(); assert(N->getNodeId() == ReadyToProcess && "Node should be ready if on worklist!"); - + + if (IgnoreNodeResults(N)) + goto ScanOperands; + // Scan the values produced by the node, checking to see if any result // types are illegal. - unsigned i = 0; - unsigned NumResults = N->getNumValues(); - do { - MVT::ValueType ResultVT = N->getValueType(i); - LegalizeAction Action = getTypeAction(ResultVT); - if (Action == Promote) { - PromoteResult(N, i); + for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) { + MVT ResultVT = N->getValueType(i); + switch (getTypeAction(ResultVT)) { + default: + assert(false && "Unknown action!"); + case Legal: + break; + case PromoteInteger: + PromoteIntegerResult(N, i); + goto NodeDone; + case ExpandInteger: + ExpandIntegerResult(N, i); + goto NodeDone; + case SoftenFloat: + SoftenFloatResult(N, i); + goto NodeDone; + case ExpandFloat: + ExpandFloatResult(N, i); goto NodeDone; - } else if (Action == Expand) { - // Expand can mean 1) split integer in half 2) scalarize single-element - // vector 3) split vector in half. - if (!MVT::isVector(ResultVT)) - ExpandResult(N, i); - else if (MVT::getVectorNumElements(ResultVT) == 1) - ScalarizeResult(N, i); // Scalarize the single-element vector. - else - SplitResult(N, i); // Split the vector in half. + case ScalarizeVector: + ScalarizeVectorResult(N, i); + goto NodeDone; + case SplitVector: + SplitVectorResult(N, i); goto NodeDone; - } else { - assert(Action == Legal && "Unknown action!"); } - } while (++i < NumResults); - + } + +ScanOperands: // Scan the operand list for the node, handling any nodes with operands that // are illegal. { unsigned NumOperands = N->getNumOperands(); bool NeedsRevisit = false; + unsigned i; for (i = 0; i != NumOperands; ++i) { - MVT::ValueType OpVT = N->getOperand(i).getValueType(); - LegalizeAction Action = getTypeAction(OpVT); - if (Action == Promote) { - NeedsRevisit = PromoteOperand(N, i); + if (IgnoreNodeResults(N->getOperand(i).getNode())) + continue; + + MVT OpVT = N->getOperand(i).getValueType(); + switch (getTypeAction(OpVT)) { + default: + assert(false && "Unknown action!"); + case Legal: + continue; + case PromoteInteger: + NeedsRevisit = PromoteIntegerOperand(N, i); break; - } else if (Action == Expand) { - // Expand can mean 1) split integer in half 2) scalarize single-element - // vector 3) split vector in half. - if (!MVT::isVector(OpVT)) { - NeedsRevisit = ExpandOperand(N, i); - } else if (MVT::getVectorNumElements(OpVT) == 1) { - // Scalarize the single-element vector. - NeedsRevisit = ScalarizeOperand(N, i); - } else { - NeedsRevisit = SplitOperand(N, i); // Split the vector in half. - } + case ExpandInteger: + NeedsRevisit = ExpandIntegerOperand(N, i); + break; + case SoftenFloat: + NeedsRevisit = SoftenFloatOperand(N, i); + break; + case ExpandFloat: + NeedsRevisit = ExpandFloatOperand(N, i); + break; + case ScalarizeVector: + NeedsRevisit = ScalarizeVectorOperand(N, i); + break; + case SplitVector: + NeedsRevisit = SplitVectorOperand(N, i); break; - } else { - assert(Action == Legal && "Unknown action!"); } + break; } // If the node needs revisiting, don't add all users to the worklist etc. if (NeedsRevisit) continue; - - if (i == NumOperands) + + if (i == NumOperands) { DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n"); } + } NodeDone: // If we reach here, the node was processed, potentially creating new nodes. // Mark it as processed and add its users to the worklist as appropriate. N->setNodeId(Processed); - + for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) { SDNode *User = *UI; - int NodeID = User->getNodeId(); - assert(NodeID != ReadyToProcess && NodeID != Processed && + int NodeId = User->getNodeId(); + assert(NodeId != ReadyToProcess && NodeId != Processed && "Invalid node id for user of unprocessed node!"); - + // This node has two options: it can either be a new node or its Node ID // may be a count of the number of operands it has that are not ready. - if (NodeID > 0) { - User->setNodeId(NodeID-1); - + if (NodeId > 0) { + User->setNodeId(NodeId-1); + // If this was the last use it was waiting on, add it to the ready list. - if (NodeID-1 == ReadyToProcess) + if (NodeId-1 == ReadyToProcess) Worklist.push_back(User); continue; } - + // Otherwise, this node is new: this is the first operand of it that - // became ready. Its new NodeID is the number of operands it has minus 1 + // became ready. Its new NodeId is the number of operands it has minus 1 // (as this node is now processed). - assert(NodeID == NewNode && "Unknown node ID!"); + assert(NodeId == NewNode && "Unknown node ID!"); User->setNodeId(User->getNumOperands()-1); - + // If the node only has a single operand, it is now ready. if (User->getNumOperands() == 1) Worklist.push_back(User); } } - + // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); @@ -176,15 +185,17 @@ NodeDone: bool Failed = false; // Check that all result types are legal. - for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i) - if (!isTypeLegal(I->getValueType(i))) { - cerr << "Result type " << i << " illegal!\n"; - Failed = true; - } + if (!IgnoreNodeResults(I)) + for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i) + if (!isTypeLegal(I->getValueType(i))) { + cerr << "Result type " << i << " illegal!\n"; + Failed = true; + } // Check that all operand types are legal. for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i) - if (!isTypeLegal(I->getOperand(i).getValueType())) { + if (!IgnoreNodeResults(I->getOperand(i).getNode()) && + !isTypeLegal(I->getOperand(i).getValueType())) { cerr << "Operand type " << i << " illegal!\n"; Failed = true; } @@ -207,12 +218,18 @@ NodeDone: #endif } -/// MarkNewNodes - The specified node is the root of a subtree of potentially -/// new nodes. Add the correct NodeId to mark it. -void DAGTypeLegalizer::MarkNewNodes(SDNode *N) { +/// AnalyzeNewNode - The specified node is the root of a subtree of potentially +/// new nodes. Correct any processed operands (this may change the node) and +/// calculate the NodeId. If the node itself changes to a processed node, it +/// is not remapped - the caller needs to take care of this. +/// Returns the potentially changed node. +SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) { // If this was an existing node that is already done, we're done. if (N->getNodeId() != NewNode) - return; + return N; + + // Remove any stale map entries. + ExpungeNode(N); // Okay, we know that this node is new. Recursively walk all of its operands // to see if they are new also. The depth of this walk is bounded by the size @@ -221,20 +238,75 @@ void DAGTypeLegalizer::MarkNewNodes(SDNode *N) { // // As we walk the operands, keep track of the number of nodes that are // processed. If non-zero, this will become the new nodeid of this node. + // Already processed operands may need to be remapped to the node that + // replaced them, which can result in our node changing. Since remapping + // is rare, the code tries to minimize overhead in the non-remapping case. + + SmallVector NewOps; unsigned NumProcessed = 0; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - int OpId = N->getOperand(i).Val->getNodeId(); - if (OpId == NewNode) - MarkNewNodes(N->getOperand(i).Val); - else if (OpId == Processed) + SDValue OrigOp = N->getOperand(i); + SDValue Op = OrigOp; + + if (Op.getNode()->getNodeId() == Processed) + RemapValue(Op); + else if (Op.getNode()->getNodeId() == NewNode) + AnalyzeNewValue(Op); + + if (Op.getNode()->getNodeId() == Processed) ++NumProcessed; + + if (!NewOps.empty()) { + // Some previous operand changed. Add this one to the list. + NewOps.push_back(Op); + } else if (Op != OrigOp) { + // This is the first operand to change - add all operands so far. + for (unsigned j = 0; j < i; ++j) + NewOps.push_back(N->getOperand(j)); + NewOps.push_back(Op); + } } - + + // Some operands changed - update the node. + if (!NewOps.empty()) { + SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0], + NewOps.size()).getNode(); + if (M != N) { + if (M->getNodeId() != NewNode) + // It morphed into a previously analyzed node - nothing more to do. + return M; + + // It morphed into a different new node. Do the equivalent of passing + // it to AnalyzeNewNode: expunge it and calculate the NodeId. + N = M; + ExpungeNode(N); + } + } + + // Calculate the NodeId. N->setNodeId(N->getNumOperands()-NumProcessed); if (N->getNodeId() == ReadyToProcess) Worklist.push_back(N); + + return N; } +/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed. +/// If the node changes to a processed node, then remap it. +void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) { + SDNode *N(Val.getNode()); + // If this was an existing node that is already done, avoid remapping it. + if (N->getNodeId() != NewNode) + return; + SDNode *M(AnalyzeNewNode(N)); + if (M != N) + Val.setNode(M); + if (M->getNodeId() == Processed) + // It morphed into an already processed node - remap it. + RemapValue(Val); +} + + namespace { /// NodeUpdateListener - This class is a DAGUpdateListener that listens for /// updates to nodes and recomputes their ready state. @@ -242,13 +314,16 @@ namespace { public SelectionDAG::DAGUpdateListener { DAGTypeLegalizer &DTL; public: - NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {} + explicit NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {} - virtual void NodeDeleted(SDNode *N) { - // Ignore deletes. + virtual void NodeDeleted(SDNode *N, SDNode *E) { assert(N->getNodeId() != DAGTypeLegalizer::Processed && N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && "RAUW deleted processed node!"); + // It is possible, though rare, for the deleted node N to occur as a + // target in a map, so note the replacement N -> E in ReplacedValues. + assert(E && "Node not replaced?"); + DTL.NoteDeletion(N, E); } virtual void NodeUpdated(SDNode *N) { @@ -258,204 +333,392 @@ namespace { assert(N->getNodeId() != DAGTypeLegalizer::Processed && N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && "RAUW updated processed node!"); - DTL.ReanalyzeNodeFlags(N); + DTL.ReanalyzeNode(N); } }; } /// ReplaceValueWith - The specified value was legalized to the specified other -/// value. If they are different, update the DAG and NodeIDs replacing any uses +/// value. If they are different, update the DAG and NodeIds replacing any uses /// of From to use To instead. -void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) { +void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) { if (From == To) return; - + // If expansion produced new nodes, make sure they are properly marked. - if (To.Val->getNodeId() == NewNode) - MarkNewNodes(To.Val); - + ExpungeNode(From.getNode()); + AnalyzeNewValue(To); // Expunges To. + // Anything that used the old node should now use the new one. Note that this // can potentially cause recursive merging. NodeUpdateListener NUL(*this); DAG.ReplaceAllUsesOfValueWith(From, To, &NUL); - // The old node may still be present in ExpandedNodes or PromotedNodes. - // Inform them about the replacement. - ReplacedNodes[From] = To; + // The old node may still be present in a map like ExpandedIntegers or + // PromotedIntegers. Inform maps about the replacement. + ReplacedValues[From] = To; } /// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to' /// node's results. The from and to node must define identical result types. void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) { if (From == To) return; + + // If expansion produced new nodes, make sure they are properly marked. + ExpungeNode(From); + + To = AnalyzeNewNode(To); // Expunges To. + // If To morphed into an already processed node, its values may need + // remapping. This is done below. + assert(From->getNumValues() == To->getNumValues() && "Node results don't match"); - - // If expansion produced new nodes, make sure they are properly marked. - if (To->getNodeId() == NewNode) - MarkNewNodes(To); - + // Anything that used the old node should now use the new one. Note that this // can potentially cause recursive merging. NodeUpdateListener NUL(*this); - DAG.ReplaceAllUsesWith(From, To, &NUL); - - // The old node may still be present in ExpandedNodes or PromotedNodes. - // Inform them about the replacement. for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) { - assert(From->getValueType(i) == To->getValueType(i) && - "Node results don't match"); - ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i); + SDValue FromVal(From, i); + SDValue ToVal(To, i); + + // AnalyzeNewNode may have morphed a new node into a processed node. Remap + // values now. + if (To->getNodeId() == Processed) + RemapValue(ToVal); + + assert(FromVal.getValueType() == ToVal.getValueType() && + "Node results don't match!"); + + // Make anything that used the old value use the new value. + DAG.ReplaceAllUsesOfValueWith(FromVal, ToVal, &NUL); + + // The old node may still be present in a map like ExpandedIntegers or + // PromotedIntegers. Inform maps about the replacement. + ReplacedValues[FromVal] = ToVal; } } - -/// RemapNode - If the specified value was already legalized to another value, +/// RemapValue - If the specified value was already legalized to another value, /// replace it by that value. -void DAGTypeLegalizer::RemapNode(SDOperand &N) { - DenseMap::iterator I = ReplacedNodes.find(N); - if (I != ReplacedNodes.end()) { +void DAGTypeLegalizer::RemapValue(SDValue &N) { + DenseMap::iterator I = ReplacedValues.find(N); + if (I != ReplacedValues.end()) { // Use path compression to speed up future lookups if values get multiply // replaced with other values. - RemapNode(I->second); + RemapValue(I->second); N = I->second; } + assert(N.getNode()->getNodeId() != NewNode && "Mapped to unanalyzed node!"); } -void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) { - if (Result.Val->getNodeId() == NewNode) - MarkNewNodes(Result.Val); +/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it. +/// This can occur when a node is deleted then reallocated as a new node - +/// the mapping in ReplacedValues applies to the deleted node, not the new +/// one. +/// The only map that can have a deleted node as a source is ReplacedValues. +/// Other maps can have deleted nodes as targets, but since their looked-up +/// values are always immediately remapped using RemapValue, resulting in a +/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue +/// always performs correct mappings. In order to keep the mapping correct, +/// ExpungeNode should be called on any new nodes *before* adding them as +/// either source or target to ReplacedValues (which typically means calling +/// Expunge when a new node is first seen, since it may no longer be marked +/// NewNode by the time it is added to ReplacedValues). +void DAGTypeLegalizer::ExpungeNode(SDNode *N) { + if (N->getNodeId() != NewNode) + return; + + // If N is not remapped by ReplacedValues then there is nothing to do. + unsigned i, e; + for (i = 0, e = N->getNumValues(); i != e; ++i) + if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end()) + break; + + if (i == e) + return; + + // Remove N from all maps - this is expensive but rare. + + for (DenseMap::iterator I = PromotedIntegers.begin(), + E = PromotedIntegers.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap::iterator I = SoftenedFloats.begin(), + E = SoftenedFloats.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap::iterator I = ScalarizedVectors.begin(), + E = ScalarizedVectors.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second); + } + + for (DenseMap >::iterator + I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){ + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } + + for (DenseMap >::iterator + I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } + + for (DenseMap >::iterator + I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) { + assert(I->first.getNode() != N); + RemapValue(I->second.first); + RemapValue(I->second.second); + } - SDOperand &OpEntry = PromotedNodes[Op]; - assert(OpEntry.Val == 0 && "Node is already promoted!"); + for (DenseMap::iterator I = ReplacedValues.begin(), + E = ReplacedValues.end(); I != E; ++I) + RemapValue(I->second); + + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) + ReplacedValues.erase(SDValue(N, i)); +} + +void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); + + SDValue &OpEntry = PromotedIntegers[Op]; + assert(OpEntry.getNode() == 0 && "Node is already promoted!"); OpEntry = Result; } -void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) { - if (Result.Val->getNodeId() == NewNode) - MarkNewNodes(Result.Val); - - SDOperand &OpEntry = ScalarizedNodes[Op]; - assert(OpEntry.Val == 0 && "Node is already scalarized!"); +void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); + + SDValue &OpEntry = SoftenedFloats[Op]; + assert(OpEntry.getNode() == 0 && "Node is already converted to integer!"); OpEntry = Result; } +void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) { + AnalyzeNewValue(Result); + + SDValue &OpEntry = ScalarizedVectors[Op]; + assert(OpEntry.getNode() == 0 && "Node is already scalarized!"); + OpEntry = Result; +} -void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo, - SDOperand &Hi) { - std::pair &Entry = ExpandedNodes[Op]; - RemapNode(Entry.first); - RemapNode(Entry.second); - assert(Entry.first.Val && "Operand isn't expanded"); +void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = ExpandedIntegers[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't expanded"); Lo = Entry.first; Hi = Entry.second; } -void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { +void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo, + SDValue Hi) { + // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); + // Remember that this is the result of the node. - std::pair &Entry = ExpandedNodes[Op]; - assert(Entry.first.Val == 0 && "Node already expanded"); + std::pair &Entry = ExpandedIntegers[Op]; + assert(Entry.first.getNode() == 0 && "Node already expanded"); Entry.first = Lo; Entry.second = Hi; - - // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. - if (Lo.Val->getNodeId() == NewNode) - MarkNewNodes(Lo.Val); - if (Hi.Val->getNodeId() == NewNode) - MarkNewNodes(Hi.Val); } -void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { - std::pair &Entry = SplitNodes[Op]; - RemapNode(Entry.first); - RemapNode(Entry.second); - assert(Entry.first.Val && "Operand isn't split"); +void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = ExpandedFloats[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't expanded"); Lo = Entry.first; Hi = Entry.second; } -void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { +void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo, + SDValue Hi) { + // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); + // Remember that this is the result of the node. - std::pair &Entry = SplitNodes[Op]; - assert(Entry.first.Val == 0 && "Node already split"); + std::pair &Entry = ExpandedFloats[Op]; + assert(Entry.first.getNode() == 0 && "Node already expanded"); Entry.first = Lo; Entry.second = Hi; - +} + +void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo, + SDValue &Hi) { + std::pair &Entry = SplitVectors[Op]; + RemapValue(Entry.first); + RemapValue(Entry.second); + assert(Entry.first.getNode() && "Operand isn't split"); + Lo = Entry.first; + Hi = Entry.second; +} + +void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo, + SDValue Hi) { // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. - if (Lo.Val->getNodeId() == NewNode) - MarkNewNodes(Lo.Val); - if (Hi.Val->getNodeId() == NewNode) - MarkNewNodes(Hi.Val); + AnalyzeNewValue(Lo); + AnalyzeNewValue(Hi); + + // Remember that this is the result of the node. + std::pair &Entry = SplitVectors[Op]; + assert(Entry.first.getNode() == 0 && "Node already split"); + Entry.first = Lo; + Entry.second = Hi; +} + + +//===----------------------------------------------------------------------===// +// Utilities. +//===----------------------------------------------------------------------===// + +/// BitConvertToInteger - Convert to an integer of the same size. +SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) { + unsigned BitWidth = Op.getValueType().getSizeInBits(); + return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op); } +SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op, + MVT DestVT) { + // Create the stack frame object. Make sure it is aligned for both + // the source and destination types. + unsigned SrcAlign = + TLI.getTargetData()->getPrefTypeAlignment(Op.getValueType().getTypeForMVT()); + SDValue FIPtr = DAG.CreateStackTemporary(DestVT, SrcAlign); -SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op, - MVT::ValueType DestVT) { - // Create the stack frame object. - SDOperand FIPtr = DAG.CreateStackTemporary(DestVT); - // Emit a store to the stack slot. - SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0); + SDValue Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0); // Result is a load from the stack slot. return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); } -/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid -/// operands. This promotes or expands the operands as required. -SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) { - // The chain and pointer [operands #0 and #1] are always valid types. - SDOperand Chain = N->getOperand(0); - SDOperand Ptr = N->getOperand(1); - SDOperand Op2 = N->getOperand(2); - - // Op #2 is either a value (memset) or a pointer. Promote it if required. - switch (getTypeAction(Op2.getValueType())) { - default: assert(0 && "Unknown action for pointer/value operand"); - case Legal: break; - case Promote: Op2 = GetPromotedOp(Op2); break; - } - - // The length could have any action required. - SDOperand Length = N->getOperand(3); - switch (getTypeAction(Length.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: Length = GetPromotedZExtOp(Length); break; - case Expand: - SDOperand Dummy; // discard the high part. - GetExpandedOp(Length, Length, Dummy); - break; - } - - SDOperand Align = N->getOperand(4); - switch (getTypeAction(Align.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: Align = GetPromotedZExtOp(Align); break; +/// JoinIntegers - Build an integer with low bits Lo and high bits Hi. +SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) { + MVT LVT = Lo.getValueType(); + MVT HVT = Hi.getValueType(); + MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits()); + + Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo); + Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi); + Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(), + TLI.getShiftAmountTy())); + return DAG.getNode(ISD::OR, NVT, Lo, Hi); +} + +/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT +/// bits in Hi. +void DAGTypeLegalizer::SplitInteger(SDValue Op, + MVT LoVT, MVT HiVT, + SDValue &Lo, SDValue &Hi) { + assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() == + Op.getValueType().getSizeInBits() && "Invalid integer splitting!"); + Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op); + Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op, + DAG.getConstant(LoVT.getSizeInBits(), + TLI.getShiftAmountTy())); + Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi); +} + +/// SplitInteger - Return the lower and upper halves of Op's bits in a value +/// type half the size of Op's. +void DAGTypeLegalizer::SplitInteger(SDValue Op, + SDValue &Lo, SDValue &Hi) { + MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2); + SplitInteger(Op, HalfVT, HalfVT, Lo, Hi); +} + +/// MakeLibCall - Generate a libcall taking the given operands as arguments and +/// returning a result of type RetVT. +SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT, + const SDValue *Ops, unsigned NumOps, + bool isSigned) { + TargetLowering::ArgListTy Args; + Args.reserve(NumOps); + + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0; i != NumOps; ++i) { + Entry.Node = Ops[i]; + Entry.Ty = Entry.Node.getValueType().getTypeForMVT(); + Entry.isSExt = isSigned; + Entry.isZExt = !isSigned; + Args.push_back(Entry); } - - SDOperand AlwaysInline = N->getOperand(5); - switch (getTypeAction(AlwaysInline.getValueType())) { - default: assert(0 && "Unknown action for memop operand"); - case Legal: break; - case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break; + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy()); + + const Type *RetTy = RetVT.getTypeForMVT(); + std::pair CallInfo = + TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, + false, CallingConv::C, false, Callee, Args, DAG); + return CallInfo.first; +} + +/// LibCallify - Convert the node into a libcall with the same prototype. +SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N, + bool isSigned) { + unsigned NumOps = N->getNumOperands(); + if (NumOps == 0) { + return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned); + } else if (NumOps == 1) { + SDValue Op = N->getOperand(0); + return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned); + } else if (NumOps == 2) { + SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; + return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned); } - - SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline }; - return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6); + SmallVector Ops(NumOps); + for (unsigned i = 0; i < NumOps; ++i) + Ops[i] = N->getOperand(i); + + return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned); } -/// SplitOp - Return the lower and upper halves of Op's bits in a value type -/// half the size of Op's. -void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { - unsigned NVTBits = MVT::getSizeInBits(Op.getValueType())/2; - assert(MVT::getSizeInBits(Op.getValueType()) == 2*NVTBits && - "Cannot split odd sized integer type"); - MVT::ValueType NVT = MVT::getIntegerType(NVTBits); - Lo = DAG.getNode(ISD::TRUNCATE, NVT, Op); - Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op, - DAG.getConstant(NVTBits, TLI.getShiftAmountTy())); - Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi); +SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT, + SDValue Index) { + // Make sure the index type is big enough to compute in. + if (Index.getValueType().bitsGT(TLI.getPointerTy())) + Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index); + else + Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index); + + // Calculate the element offset and add it to the pointer. + unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. + + Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index, + DAG.getConstant(EltSize, Index.getValueType())); + return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr); +} + +/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type +/// which is split into two not necessarily identical pieces. +void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) { + if (!InVT.isVector()) { + LoVT = HiVT = TLI.getTypeToTransformTo(InVT); + } else { + MVT NewEltVT = InVT.getVectorElementType(); + unsigned NumElements = InVT.getVectorNumElements(); + if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector. + NumElements >>= 1; + LoVT = HiVT = MVT::getVectorVT(NewEltVT, NumElements); + } else { // Non-power-of-two vectors. + unsigned NewNumElts_Lo = 1 << Log2_32(NumElements); + unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; + LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); + HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); + } + } } @@ -469,7 +732,5 @@ void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { /// Note that this is an involved process that may invalidate pointers into /// the graph. void SelectionDAG::LegalizeTypes() { - if (ViewLegalizeTypesDAGs) viewGraph(); - DAGTypeLegalizer(*this).run(); }