X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FLegalizeTypes.h;h=32a89ecbb4274fa275ddbf85d427e7fb05277a9f;hb=9a6b92de4c2207b427f3b9cd67cd122dafc5b6c6;hp=2030eda41eecc3b490460da2dcdc165ef59b7a28;hpb=13c6a1740cb8877f10e202ee1442231e0c4a903a;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/lib/CodeGen/SelectionDAG/LegalizeTypes.h index 2030eda41ee..32a89ecbb42 100644 --- a/lib/CodeGen/SelectionDAG/LegalizeTypes.h +++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -26,253 +26,567 @@ namespace llvm { //===----------------------------------------------------------------------===// -/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and -/// hacks on it until the target machine can handle it. This involves -/// eliminating value sizes the machine cannot handle (promoting small sizes to -/// large sizes or splitting up large values into small values) as well as -/// eliminating operations the machine cannot handle. -/// -/// This code also does a small amount of optimization and recognition of idioms -/// as part of its processing. For example, if a target does not support a -/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this -/// will attempt merge setcc and brc instructions into brcc's. +/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks +/// on it until only value types the target machine can handle are left. This +/// involves promoting small sizes to large sizes or splitting up large values +/// into small values. /// class VISIBILITY_HIDDEN DAGTypeLegalizer { TargetLowering &TLI; SelectionDAG &DAG; - - // NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information +public: + // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information // about the state of the node. The enum has all the values. - enum NodeIDFlags { + enum NodeIdFlags { /// ReadyToProcess - All operands have been processed, so this node is ready /// to be handled. ReadyToProcess = 0, - + /// NewNode - This is a new node that was created in the process of /// legalizing some other node. NewNode = -1, - + /// Processed - This is a node that has already been processed. Processed = -2 - + // 1+ - This is a node which has this many unlegalized operands. }; - +private: enum LegalizeAction { - Legal, // The target natively supports this type. - Promote, // This type should be executed in a larger type. - Expand // This type should be split into two types of half the size. + Legal, // The target natively supports this type. + PromoteInteger, // Replace this integer type with a larger one. + ExpandInteger, // Split this integer type into two of half the size. + SoftenFloat, // Convert this float type to a same size integer type. + ExpandFloat, // Split this float type into two of half the size. + ScalarizeVector, // Replace this one-element vector with its element type. + SplitVector // This vector type should be split into smaller vectors. }; - + /// ValueTypeActions - This is a bitvector that contains two bits for each /// simple value type, where the two bits correspond to the LegalizeAction - /// enum. This can be queried with "getTypeAction(VT)". + /// enum from TargetLowering. This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; - + /// getTypeAction - Return how we should legalize values of this type, either - /// it is already legal or we need to expand it into multiple registers of - /// smaller integer type, or we need to promote it to a larger type. - LegalizeAction getTypeAction(MVT::ValueType VT) const { - return (LegalizeAction)ValueTypeActions.getTypeAction(VT); + /// it is already legal, or we need to promote it to a larger integer type, or + /// we need to expand it into multiple registers of a smaller integer type, or + /// we need to split a vector type into smaller vector types, or we need to + /// convert it to a different type of the same size. + LegalizeAction getTypeAction(MVT VT) const { + switch (ValueTypeActions.getTypeAction(VT)) { + default: + assert(false && "Unknown legalize action!"); + case TargetLowering::Legal: + return Legal; + case TargetLowering::Promote: + // Promote can mean + // 1) For integers, use a larger integer type (e.g. i8 -> i32). + // 2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32). + if (!VT.isVector()) + return PromoteInteger; + else if (VT.getVectorNumElements() == 1) + return ScalarizeVector; + else + // TODO: move widen code to LegalizeTypes. + return SplitVector; + case TargetLowering::Expand: + // Expand can mean + // 1) split scalar in half, 2) convert a float to an integer, + // 3) scalarize a single-element vector, 4) split a vector in two. + if (!VT.isVector()) { + if (VT.isInteger()) + return ExpandInteger; + else if (VT.getSizeInBits() == + TLI.getTypeToTransformTo(VT).getSizeInBits()) + return SoftenFloat; + else + return ExpandFloat; + } else if (VT.getVectorNumElements() == 1) { + return ScalarizeVector; + } else { + return SplitVector; + } + } } - + /// isTypeLegal - Return true if this type is legal on this target. - /// - bool isTypeLegal(MVT::ValueType VT) const { - return getTypeAction(VT) == Legal; + bool isTypeLegal(MVT VT) const { + return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal; } - - SDOperand getIntPtrConstant(uint64_t Val) { - return DAG.getConstant(Val, TLI.getPointerTy()); + + /// IgnoreNodeResults - Pretend all of this node's results are legal. + bool IgnoreNodeResults(SDNode *N) const { + return N->getOpcode() == ISD::TargetConstant; } - - /// PromotedNodes - For nodes that are below legal width, this map indicates - /// what promoted value to use. - DenseMap PromotedNodes; - - /// ExpandedNodes - For nodes that need to be expanded this map indicates - /// which operands are the expanded version of the input. - DenseMap > ExpandedNodes; - /// ScalarizedNodes - For nodes that are <1 x ty>, this map indicates the + /// PromotedIntegers - For integer nodes that are below legal width, this map + /// indicates what promoted value to use. + DenseMap PromotedIntegers; + + /// ExpandedIntegers - For integer nodes that need to be expanded this map + /// indicates which operands are the expanded version of the input. + DenseMap > ExpandedIntegers; + + /// SoftenedFloats - For floating point nodes converted to integers of + /// the same size, this map indicates the converted value to use. + DenseMap SoftenedFloats; + + /// ExpandedFloats - For float nodes that need to be expanded this map + /// indicates which operands are the expanded version of the input. + DenseMap > ExpandedFloats; + + /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the /// scalar value of type 'ty' to use. - DenseMap ScalarizedNodes; - - /// ReplacedNodes - For nodes that have been replaced with another, - /// indicates the replacement node to use. - DenseMap ReplacedNodes; + DenseMap ScalarizedVectors; + + /// SplitVectors - For nodes that need to be split this map indicates + /// which operands are the expanded version of the input. + DenseMap > SplitVectors; + + /// ReplacedValues - For values that have been replaced with another, + /// indicates the replacement value to use. + DenseMap ReplacedValues; /// Worklist - This defines a worklist of nodes to process. In order to be /// pushed onto this worklist, all operands of a node must have already been /// processed. SmallVector Worklist; - + public: explicit DAGTypeLegalizer(SelectionDAG &dag) : TLI(dag.getTargetLoweringInfo()), DAG(dag), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= 32 && "Too many value types for ValueTypeActions to hold!"); - } - + } + void run(); - + + /// ReanalyzeNode - Recompute the NodeId and correct processed operands + /// for the specified node, adding it to the worklist if ready. + void ReanalyzeNode(SDNode *N) { + N->setNodeId(NewNode); + AnalyzeNewNode(N); + // The node may have changed but we don't care. + } + + void NoteDeletion(SDNode *Old, SDNode *New) { + ExpungeNode(Old); + ExpungeNode(New); + for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) + ReplacedValues[SDValue(Old, i)] = SDValue(New, i); + } + private: - void MarkNewNodes(SDNode *N); - - void ReplaceValueWith(SDOperand From, SDOperand To); + SDNode *AnalyzeNewNode(SDNode *N); + void AnalyzeNewValue(SDValue &Val); + + void ReplaceValueWith(SDValue From, SDValue To); void ReplaceNodeWith(SDNode *From, SDNode *To); - void RemapNode(SDOperand &N); + void RemapValue(SDValue &N); + void ExpungeNode(SDNode *N); // Common routines. - SDOperand CreateStackStoreLoad(SDOperand Op, MVT::ValueType DestVT); - SDOperand HandleMemIntrinsic(SDNode *N); - void SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi); + SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT); + SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT, + const SDValue *Ops, unsigned NumOps, bool isSigned); + SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned); + + SDValue BitConvertToInteger(SDValue Op); + SDValue JoinIntegers(SDValue Lo, SDValue Hi); + void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); + void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT, + SDValue &Lo, SDValue &Hi); + + SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index); //===--------------------------------------------------------------------===// - // Promotion Support: LegalizeTypesPromote.cpp + // Integer Promotion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// - - SDOperand GetPromotedOp(SDOperand Op) { - SDOperand &PromotedOp = PromotedNodes[Op]; - RemapNode(PromotedOp); - assert(PromotedOp.Val && "Operand wasn't promoted?"); + + /// GetPromotedInteger - Given a processed operand Op which was promoted to a + /// larger integer type, this returns the promoted value. The bits of the + /// promoted value corresponding to the original type are exactly equal to Op. + /// The extra bits contain rubbish, so the promoted value may need to be zero- + /// or sign-extended from the original type before it is usable (the helpers + /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). + /// For example, if Op is an i16 and was promoted to an i32, then this method + /// returns an i32, the lower 16 bits of which coincide with Op, and the upper + /// 16 bits of which contain rubbish. + SDValue GetPromotedInteger(SDValue Op) { + SDValue &PromotedOp = PromotedIntegers[Op]; + RemapValue(PromotedOp); + assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } - void SetPromotedOp(SDOperand Op, SDOperand Result); - - /// GetPromotedZExtOp - Get a promoted operand and zero extend it to the final - /// size. - SDOperand GetPromotedZExtOp(SDOperand Op) { - MVT::ValueType OldVT = Op.getValueType(); - Op = GetPromotedOp(Op); + void SetPromotedInteger(SDValue Op, SDValue Result); + + /// SExtPromotedInteger - Get a promoted operand and sign extend it to the + /// final size. + SDValue SExtPromotedInteger(SDValue Op) { + MVT OldVT = Op.getValueType(); + Op = GetPromotedInteger(Op); + return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op, + DAG.getValueType(OldVT)); + } + + /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the + /// final size. + SDValue ZExtPromotedInteger(SDValue Op) { + MVT OldVT = Op.getValueType(); + Op = GetPromotedInteger(Op); return DAG.getZeroExtendInReg(Op, OldVT); - } - - // Result Promotion. - void PromoteResult(SDNode *N, unsigned ResNo); - SDOperand PromoteResult_UNDEF(SDNode *N); - SDOperand PromoteResult_Constant(SDNode *N); - SDOperand PromoteResult_TRUNCATE(SDNode *N); - SDOperand PromoteResult_INT_EXTEND(SDNode *N); - SDOperand PromoteResult_FP_ROUND(SDNode *N); - SDOperand PromoteResult_FP_TO_XINT(SDNode *N); - SDOperand PromoteResult_SETCC(SDNode *N); - SDOperand PromoteResult_LOAD(LoadSDNode *N); - SDOperand PromoteResult_SimpleIntBinOp(SDNode *N); - SDOperand PromoteResult_SDIV(SDNode *N); - SDOperand PromoteResult_UDIV(SDNode *N); - SDOperand PromoteResult_SHL(SDNode *N); - SDOperand PromoteResult_SRA(SDNode *N); - SDOperand PromoteResult_SRL(SDNode *N); - SDOperand PromoteResult_SELECT (SDNode *N); - SDOperand PromoteResult_SELECT_CC(SDNode *N); - - // Operand Promotion. - bool PromoteOperand(SDNode *N, unsigned OperandNo); - SDOperand PromoteOperand_ANY_EXTEND(SDNode *N); - SDOperand PromoteOperand_ZERO_EXTEND(SDNode *N); - SDOperand PromoteOperand_SIGN_EXTEND(SDNode *N); - SDOperand PromoteOperand_TRUNCATE(SDNode *N); - SDOperand PromoteOperand_FP_EXTEND(SDNode *N); - SDOperand PromoteOperand_FP_ROUND(SDNode *N); - SDOperand PromoteOperand_INT_TO_FP(SDNode *N); - SDOperand PromoteOperand_SELECT(SDNode *N, unsigned OpNo); - SDOperand PromoteOperand_BRCOND(SDNode *N, unsigned OpNo); - SDOperand PromoteOperand_BR_CC(SDNode *N, unsigned OpNo); - SDOperand PromoteOperand_SETCC(SDNode *N, unsigned OpNo); - SDOperand PromoteOperand_STORE(StoreSDNode *N, unsigned OpNo); - - void PromoteSetCCOperands(SDOperand &LHS,SDOperand &RHS, ISD::CondCode Code); + } + + // Integer Result Promotion. + void PromoteIntegerResult(SDNode *N, unsigned ResNo); + SDValue PromoteIntRes_AssertSext(SDNode *N); + SDValue PromoteIntRes_AssertZext(SDNode *N); + SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); + SDValue PromoteIntRes_Atomic2(AtomicSDNode *N); + SDValue PromoteIntRes_BIT_CONVERT(SDNode *N); + SDValue PromoteIntRes_BSWAP(SDNode *N); + SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); + SDValue PromoteIntRes_Constant(SDNode *N); + SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N); + SDValue PromoteIntRes_CTLZ(SDNode *N); + SDValue PromoteIntRes_CTPOP(SDNode *N); + SDValue PromoteIntRes_CTTZ(SDNode *N); + SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); + SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); + SDValue PromoteIntRes_INT_EXTEND(SDNode *N); + SDValue PromoteIntRes_LOAD(LoadSDNode *N); + SDValue PromoteIntRes_SDIV(SDNode *N); + SDValue PromoteIntRes_SELECT(SDNode *N); + SDValue PromoteIntRes_SELECT_CC(SDNode *N); + SDValue PromoteIntRes_SETCC(SDNode *N); + SDValue PromoteIntRes_SHL(SDNode *N); + SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); + SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); + SDValue PromoteIntRes_SRA(SDNode *N); + SDValue PromoteIntRes_SRL(SDNode *N); + SDValue PromoteIntRes_TRUNCATE(SDNode *N); + SDValue PromoteIntRes_UDIV(SDNode *N); + SDValue PromoteIntRes_UNDEF(SDNode *N); + SDValue PromoteIntRes_VAARG(SDNode *N); + + // Integer Operand Promotion. + bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo); + SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); + SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); + SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); + SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N); + SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_MEMBARRIER(SDNode *N); + SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); + SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); + SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); + SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); + SDValue PromoteIntOp_TRUNCATE(SDNode *N); + SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); + SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); + + void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); //===--------------------------------------------------------------------===// - // Expansion Support: LegalizeTypesExpand.cpp + // Integer Expansion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// - - void GetExpandedOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi); - void SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi); - - // Result Expansion. - void ExpandResult(SDNode *N, unsigned ResNo); - void ExpandResult_UNDEF (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_Constant (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_BUILD_PAIR (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_MERGE_VALUES(SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_ANY_EXTEND (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_ZERO_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_SIGN_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_LOAD (LoadSDNode *N, SDOperand &Lo, SDOperand &Hi); - - void ExpandResult_Logical (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_BSWAP (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_ADDSUB (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_ADDSUBC (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_ADDSUBE (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_SELECT (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_SELECT_CC (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_MUL (SDNode *N, SDOperand &Lo, SDOperand &Hi); - void ExpandResult_Shift (SDNode *N, SDOperand &Lo, SDOperand &Hi); - - void ExpandShiftByConstant(SDNode *N, unsigned Amt, - SDOperand &Lo, SDOperand &Hi); - bool ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi); - - // Operand Expansion. - bool ExpandOperand(SDNode *N, unsigned OperandNo); - SDOperand ExpandOperand_TRUNCATE(SDNode *N); - SDOperand ExpandOperand_BIT_CONVERT(SDNode *N); - SDOperand ExpandOperand_UINT_TO_FP(SDOperand Source, MVT::ValueType DestTy); - SDOperand ExpandOperand_SINT_TO_FP(SDOperand Source, MVT::ValueType DestTy); - SDOperand ExpandOperand_EXTRACT_ELEMENT(SDNode *N); - SDOperand ExpandOperand_SETCC(SDNode *N); - SDOperand ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo); - - void ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS, + + void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); + void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); + + // Integer Result Expansion. + void ExpandIntegerResult(SDNode *N, unsigned ResNo); + void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); + + void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); + + void ExpandShiftByConstant(SDNode *N, unsigned Amt, + SDValue &Lo, SDValue &Hi); + bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); + + // Integer Operand Expansion. + bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo); + SDValue ExpandIntOp_BIT_CONVERT(SDNode *N); + SDValue ExpandIntOp_BR_CC(SDNode *N); + SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N); + SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N); + SDValue ExpandIntOp_SELECT_CC(SDNode *N); + SDValue ExpandIntOp_SETCC(SDNode *N); + SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); + SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); + SDValue ExpandIntOp_TRUNCATE(SDNode *N); + SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); + + void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode); + + //===--------------------------------------------------------------------===// + // Float to Integer Conversion Support: LegalizeFloatTypes.cpp + //===--------------------------------------------------------------------===// + + SDValue GetSoftenedFloat(SDValue Op) { + SDValue &SoftenedOp = SoftenedFloats[Op]; + RemapValue(SoftenedOp); + assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?"); + return SoftenedOp; + } + void SetSoftenedFloat(SDValue Op, SDValue Result); + + // Result Float to Integer Conversion. + void SoftenFloatResult(SDNode *N, unsigned OpNo); + SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N); + SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); + SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N); + SDValue SoftenFloatRes_FABS(SDNode *N); + SDValue SoftenFloatRes_FADD(SDNode *N); + SDValue SoftenFloatRes_FCEIL(SDNode *N); + SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); + SDValue SoftenFloatRes_FCOS(SDNode *N); + SDValue SoftenFloatRes_FDIV(SDNode *N); + SDValue SoftenFloatRes_FEXP(SDNode *N); + SDValue SoftenFloatRes_FEXP2(SDNode *N); + SDValue SoftenFloatRes_FFLOOR(SDNode *N); + SDValue SoftenFloatRes_FLOG(SDNode *N); + SDValue SoftenFloatRes_FLOG2(SDNode *N); + SDValue SoftenFloatRes_FLOG10(SDNode *N); + SDValue SoftenFloatRes_FMUL(SDNode *N); + SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); + SDValue SoftenFloatRes_FNEG(SDNode *N); + SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); + SDValue SoftenFloatRes_FP_ROUND(SDNode *N); + SDValue SoftenFloatRes_FPOW(SDNode *N); + SDValue SoftenFloatRes_FPOWI(SDNode *N); + SDValue SoftenFloatRes_FRINT(SDNode *N); + SDValue SoftenFloatRes_FSIN(SDNode *N); + SDValue SoftenFloatRes_FSQRT(SDNode *N); + SDValue SoftenFloatRes_FSUB(SDNode *N); + SDValue SoftenFloatRes_FTRUNC(SDNode *N); + SDValue SoftenFloatRes_LOAD(SDNode *N); + SDValue SoftenFloatRes_SELECT(SDNode *N); + SDValue SoftenFloatRes_SELECT_CC(SDNode *N); + SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); + + // Operand Float to Integer Conversion. + bool SoftenFloatOperand(SDNode *N, unsigned OpNo); + SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N); + SDValue SoftenFloatOp_BR_CC(SDNode *N); + SDValue SoftenFloatOp_FP_ROUND(SDNode *N); + SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N); + SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N); + SDValue SoftenFloatOp_SELECT_CC(SDNode *N); + SDValue SoftenFloatOp_SETCC(SDNode *N); + SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); + + void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode); - + + //===--------------------------------------------------------------------===// + // Float Expansion Support: LegalizeFloatTypes.cpp + //===--------------------------------------------------------------------===// + + void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); + void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); + + // Float Result Expansion. + void ExpandFloatResult(SDNode *N, unsigned ResNo); + void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); + + // Float Operand Expansion. + bool ExpandFloatOperand(SDNode *N, unsigned OperandNo); + SDValue ExpandFloatOp_BR_CC(SDNode *N); + SDValue ExpandFloatOp_FP_ROUND(SDNode *N); + SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); + SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); + SDValue ExpandFloatOp_SELECT_CC(SDNode *N); + SDValue ExpandFloatOp_SETCC(SDNode *N); + SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); + + void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode); + + //===--------------------------------------------------------------------===// + // Scalarization Support: LegalizeVectorTypes.cpp + //===--------------------------------------------------------------------===// + + SDValue GetScalarizedVector(SDValue Op) { + SDValue &ScalarizedOp = ScalarizedVectors[Op]; + RemapValue(ScalarizedOp); + assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); + return ScalarizedOp; + } + void SetScalarizedVector(SDValue Op, SDValue Result); + + // Vector Result Scalarization: <1 x ty> -> ty. + void ScalarizeVectorResult(SDNode *N, unsigned OpNo); + SDValue ScalarizeVecRes_BinOp(SDNode *N); + SDValue ScalarizeVecRes_UnaryOp(SDNode *N); + + SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N); + SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N); + SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); + SDValue ScalarizeVecRes_FPOWI(SDNode *N); + SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); + SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); + SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); + SDValue ScalarizeVecRes_SELECT(SDNode *N); + SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); + SDValue ScalarizeVecRes_UNDEF(SDNode *N); + SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); + SDValue ScalarizeVecRes_VSETCC(SDNode *N); + + // Vector Operand Scalarization: <1 x ty> -> ty. + bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); + SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N); + SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); + SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); + SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); + + //===--------------------------------------------------------------------===// + // Vector Splitting Support: LegalizeVectorTypes.cpp + //===--------------------------------------------------------------------===// + + void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); + void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); + + // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. + void SplitVectorResult(SDNode *N, unsigned OpNo); + void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); + + void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi); + + // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. + bool SplitVectorOperand(SDNode *N, unsigned OpNo); + SDValue SplitVecOp_UnaryOp(SDNode *N); + + SDValue SplitVecOp_BIT_CONVERT(SDNode *N); + SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); + SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); + SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); + SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo); + //===--------------------------------------------------------------------===// - // Scalarization Support: LegalizeTypesScalarize.cpp + // Generic Splitting: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// - - SDOperand GetScalarizedOp(SDOperand Op) { - SDOperand &ScalarOp = ScalarizedNodes[Op]; - RemapNode(ScalarOp); - assert(ScalarOp.Val && "Operand wasn't scalarized?"); - return ScalarOp; + + // Legalization methods which only use that the illegal type is split into two + // not necessarily identical types. As such they can be used for splitting + // vectors and expanding integers and floats. + + void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { + if (Op.getValueType().isVector()) + GetSplitVector(Op, Lo, Hi); + else if (Op.getValueType().isInteger()) + GetExpandedInteger(Op, Lo, Hi); + else + GetExpandedFloat(Op, Lo, Hi); } - void SetScalarizedOp(SDOperand Op, SDOperand Result); - - // Result Vector Scalarization: <1 x ty> -> ty. - void ScalarizeResult(SDNode *N, unsigned OpNo); - SDOperand ScalarizeRes_UNDEF(SDNode *N); - SDOperand ScalarizeRes_LOAD(LoadSDNode *N); - SDOperand ScalarizeRes_BinOp(SDNode *N); - SDOperand ScalarizeRes_UnaryOp(SDNode *N); - SDOperand ScalarizeRes_FPOWI(SDNode *N); - SDOperand ScalarizeRes_VECTOR_SHUFFLE(SDNode *N); - SDOperand ScalarizeRes_BIT_CONVERT(SDNode *N); - SDOperand ScalarizeRes_SELECT(SDNode *N); - - // Operand Vector Scalarization: <1 x ty> -> ty. - bool ScalarizeOperand(SDNode *N, unsigned OpNo); - SDOperand ScalarizeOp_EXTRACT_VECTOR_ELT(SDNode *N, unsigned OpNo); + + /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type + /// which is split (or expanded) into two not necessarily identical pieces. + void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT); + + // Generic Result Splitting. + void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); + void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// - // Vector Splitting Support: LegalizeTypesSplit.cpp + // Generic Expansion: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// - - void GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi); - void SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi); - - // Result Vector Splitting: <128 x ty> -> 2 x <64 x ty>. - void SplitResult(SDNode *N, unsigned OpNo); - - // Operand Vector Scalarization: <128 x ty> -> 2 x <64 x ty>. - bool SplitOperand(SDNode *N, unsigned OpNo); - + + // Legalization methods which only use that the illegal type is split into two + // identical types of half the size, and that the Lo/Hi part is stored first + // in memory on little/big-endian machines, followed by the Hi/Lo part. As + // such they can be used for expanding integers and floats. + + void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { + if (Op.getValueType().isInteger()) + GetExpandedInteger(Op, Lo, Hi); + else + GetExpandedFloat(Op, Lo, Hi); + } + + // Generic Result Expansion. + void ExpandRes_BIT_CONVERT (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); + void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); + + // Generic Operand Expansion. + SDValue ExpandOp_BIT_CONVERT (SDNode *N); + SDValue ExpandOp_BUILD_VECTOR (SDNode *N); + SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N); + SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); + }; } // end namespace llvm.