X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FTargetLowering.cpp;h=1e7e847b8adba831b856087144f6a0fb927bf946;hb=b3bc6352defdf1a5c6b1b0770d0c4d603f6524a8;hp=cd43349411ee317327c94ad252a0f901c9738816;hpb=4376fea6631d41fff3f2a7c6186faed9eff59619;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp index cd43349411e..1e7e847b8ad 100644 --- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -19,6 +19,7 @@ #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/GlobalVariable.h" #include "llvm/DerivedTypes.h" +#include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" @@ -30,20 +31,28 @@ using namespace llvm; static void InitLibcallNames(const char **Names) { Names[RTLIB::SHL_I32] = "__ashlsi3"; Names[RTLIB::SHL_I64] = "__ashldi3"; + Names[RTLIB::SHL_I128] = "__ashlti3"; Names[RTLIB::SRL_I32] = "__lshrsi3"; Names[RTLIB::SRL_I64] = "__lshrdi3"; + Names[RTLIB::SRL_I128] = "__lshrti3"; Names[RTLIB::SRA_I32] = "__ashrsi3"; Names[RTLIB::SRA_I64] = "__ashrdi3"; + Names[RTLIB::SRA_I128] = "__ashrti3"; Names[RTLIB::MUL_I32] = "__mulsi3"; Names[RTLIB::MUL_I64] = "__muldi3"; + Names[RTLIB::MUL_I128] = "__multi3"; Names[RTLIB::SDIV_I32] = "__divsi3"; Names[RTLIB::SDIV_I64] = "__divdi3"; + Names[RTLIB::SDIV_I128] = "__divti3"; Names[RTLIB::UDIV_I32] = "__udivsi3"; Names[RTLIB::UDIV_I64] = "__udivdi3"; + Names[RTLIB::UDIV_I128] = "__udivti3"; Names[RTLIB::SREM_I32] = "__modsi3"; Names[RTLIB::SREM_I64] = "__moddi3"; + Names[RTLIB::SREM_I128] = "__modti3"; Names[RTLIB::UREM_I32] = "__umodsi3"; Names[RTLIB::UREM_I64] = "__umoddi3"; + Names[RTLIB::UREM_I128] = "__umodti3"; Names[RTLIB::NEG_I32] = "__negsi2"; Names[RTLIB::NEG_I64] = "__negdi2"; Names[RTLIB::ADD_F32] = "__addsf3"; @@ -74,6 +83,26 @@ static void InitLibcallNames(const char **Names) { Names[RTLIB::SQRT_F64] = "sqrt"; Names[RTLIB::SQRT_F80] = "sqrtl"; Names[RTLIB::SQRT_PPCF128] = "sqrtl"; + Names[RTLIB::LOG_F32] = "logf"; + Names[RTLIB::LOG_F64] = "log"; + Names[RTLIB::LOG_F80] = "logl"; + Names[RTLIB::LOG_PPCF128] = "logl"; + Names[RTLIB::LOG2_F32] = "log2f"; + Names[RTLIB::LOG2_F64] = "log2"; + Names[RTLIB::LOG2_F80] = "log2l"; + Names[RTLIB::LOG2_PPCF128] = "log2l"; + Names[RTLIB::LOG10_F32] = "log10f"; + Names[RTLIB::LOG10_F64] = "log10"; + Names[RTLIB::LOG10_F80] = "log10l"; + Names[RTLIB::LOG10_PPCF128] = "log10l"; + Names[RTLIB::EXP_F32] = "expf"; + Names[RTLIB::EXP_F64] = "exp"; + Names[RTLIB::EXP_F80] = "expl"; + Names[RTLIB::EXP_PPCF128] = "expl"; + Names[RTLIB::EXP2_F32] = "exp2f"; + Names[RTLIB::EXP2_F64] = "exp2"; + Names[RTLIB::EXP2_F80] = "exp2l"; + Names[RTLIB::EXP2_PPCF128] = "exp2l"; Names[RTLIB::SIN_F32] = "sinf"; Names[RTLIB::SIN_F64] = "sin"; Names[RTLIB::SIN_F80] = "sinl"; @@ -86,16 +115,42 @@ static void InitLibcallNames(const char **Names) { Names[RTLIB::POW_F64] = "pow"; Names[RTLIB::POW_F80] = "powl"; Names[RTLIB::POW_PPCF128] = "powl"; + Names[RTLIB::CEIL_F32] = "ceilf"; + Names[RTLIB::CEIL_F64] = "ceil"; + Names[RTLIB::CEIL_F80] = "ceill"; + Names[RTLIB::CEIL_PPCF128] = "ceill"; + Names[RTLIB::TRUNC_F32] = "truncf"; + Names[RTLIB::TRUNC_F64] = "trunc"; + Names[RTLIB::TRUNC_F80] = "truncl"; + Names[RTLIB::TRUNC_PPCF128] = "truncl"; + Names[RTLIB::RINT_F32] = "rintf"; + Names[RTLIB::RINT_F64] = "rint"; + Names[RTLIB::RINT_F80] = "rintl"; + Names[RTLIB::RINT_PPCF128] = "rintl"; + Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; + Names[RTLIB::NEARBYINT_F64] = "nearbyint"; + Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; + Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; + Names[RTLIB::FLOOR_F32] = "floorf"; + Names[RTLIB::FLOOR_F64] = "floor"; + Names[RTLIB::FLOOR_F80] = "floorl"; + Names[RTLIB::FLOOR_PPCF128] = "floorl"; Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; + Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; + Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; + Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; + Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; + Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; + Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; @@ -107,10 +162,13 @@ static void InitLibcallNames(const char **Names) { Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; + Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; + Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; + Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; @@ -121,8 +179,16 @@ static void InitLibcallNames(const char **Names) { Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; + Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; + Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; + Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; + Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; + Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; + Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; + Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; + Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; Names[RTLIB::OEQ_F32] = "__eqsf2"; Names[RTLIB::OEQ_F64] = "__eqdf2"; Names[RTLIB::UNE_F32] = "__nesf2"; @@ -141,6 +207,173 @@ static void InitLibcallNames(const char **Names) { Names[RTLIB::O_F64] = "__unorddf2"; } +/// getFPEXT - Return the FPEXT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::f64) + return FPEXT_F32_F64; + } + return UNKNOWN_LIBCALL; +} + +/// getFPROUND - Return the FPROUND_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) { + if (RetVT == MVT::f32) { + if (OpVT == MVT::f64) + return FPROUND_F64_F32; + if (OpVT == MVT::f80) + return FPROUND_F80_F32; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F32; + } else if (RetVT == MVT::f64) { + if (OpVT == MVT::f80) + return FPROUND_F80_F64; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F64; + } + return UNKNOWN_LIBCALL; +} + +/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOSINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOSINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOSINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F80_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOSINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOUINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOUINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOUINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F80_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOUINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return SINTTOFP_I32_F32; + else if (RetVT == MVT::f64) + return SINTTOFP_I32_F64; + else if (RetVT == MVT::f80) + return SINTTOFP_I32_F80; + else if (RetVT == MVT::ppcf128) + return SINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return SINTTOFP_I64_F32; + else if (RetVT == MVT::f64) + return SINTTOFP_I64_F64; + else if (RetVT == MVT::f80) + return SINTTOFP_I64_F80; + else if (RetVT == MVT::ppcf128) + return SINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return SINTTOFP_I128_F32; + else if (RetVT == MVT::f64) + return SINTTOFP_I128_F64; + else if (RetVT == MVT::f80) + return SINTTOFP_I128_F80; + else if (RetVT == MVT::ppcf128) + return SINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return UINTTOFP_I32_F32; + else if (RetVT == MVT::f64) + return UINTTOFP_I32_F64; + else if (RetVT == MVT::f80) + return UINTTOFP_I32_F80; + else if (RetVT == MVT::ppcf128) + return UINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return UINTTOFP_I64_F32; + else if (RetVT == MVT::f64) + return UINTTOFP_I64_F64; + else if (RetVT == MVT::f80) + return UINTTOFP_I64_F80; + else if (RetVT == MVT::ppcf128) + return UINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return UINTTOFP_I128_F32; + else if (RetVT == MVT::f64) + return UINTTOFP_I128_F64; + else if (RetVT == MVT::f80) + return UINTTOFP_I128_F80; + else if (RetVT == MVT::ppcf128) + return UINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + /// InitCmpLibcallCCs - Set default comparison libcall CC. /// static void InitCmpLibcallCCs(ISD::CondCode *CCs) { @@ -165,26 +398,27 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) { TargetLowering::TargetLowering(TargetMachine &tm) : TM(tm), TD(TM.getTargetData()) { - assert(ISD::BUILTIN_OP_END <= 156 && + assert(ISD::BUILTIN_OP_END <= OpActionsCapacity && "Fixed size array in TargetLowering is not large enough!"); // All operations default to being supported. memset(OpActions, 0, sizeof(OpActions)); - memset(LoadXActions, 0, sizeof(LoadXActions)); + memset(LoadExtActions, 0, sizeof(LoadExtActions)); memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); memset(ConvertActions, 0, sizeof(ConvertActions)); + memset(CondCodeActions, 0, sizeof(CondCodeActions)); // Set default actions for various operations. for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { // Default all indexed load / store to expand. for (unsigned IM = (unsigned)ISD::PRE_INC; IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { - setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand); - setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand); + setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); + setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); } // These operations default to expand. - setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand); + setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); } // Most targets ignore the @llvm.prefetch intrinsic. @@ -197,6 +431,18 @@ TargetLowering::TargetLowering(TargetMachine &tm) setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f80, Expand); + // These library functions default to expand. + setOperationAction(ISD::FLOG , MVT::f64, Expand); + setOperationAction(ISD::FLOG2, MVT::f64, Expand); + setOperationAction(ISD::FLOG10,MVT::f64, Expand); + setOperationAction(ISD::FEXP , MVT::f64, Expand); + setOperationAction(ISD::FEXP2, MVT::f64, Expand); + setOperationAction(ISD::FLOG , MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG10,MVT::f32, Expand); + setOperationAction(ISD::FEXP , MVT::f32, Expand); + setOperationAction(ISD::FEXP2, MVT::f32, Expand); + // Default ISD::TRAP to expand (which turns it into abort). setOperationAction(ISD::TRAP, MVT::Other, Expand); @@ -228,7 +474,8 @@ TargetLowering::TargetLowering(TargetMachine &tm) InitCmpLibcallCCs(CmpLibcallCCs); // Tell Legalize whether the assembler supports DEBUG_LOC. - if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile()) + const TargetAsmInfo *TASM = TM.getTargetAsmInfo(); + if (!TASM || !TASM->hasDotLocAndDotFile()) setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); } @@ -243,36 +490,40 @@ void TargetLowering::computeRegisterProperties() { // Everything defaults to needing one register. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { NumRegistersForVT[i] = 1; - RegisterTypeForVT[i] = TransformToType[i] = i; + RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; } // ...except isVoid, which doesn't need any registers. NumRegistersForVT[MVT::isVoid] = 0; // Find the largest integer register class. - unsigned LargestIntReg = MVT::i128; + unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); // Every integer value type larger than this largest register takes twice as // many registers to represent as the previous ValueType. - for (MVT::ValueType ExpandedReg = LargestIntReg + 1; - MVT::isInteger(ExpandedReg); ++ExpandedReg) { + for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { + MVT EVT = (MVT::SimpleValueType)ExpandedReg; + if (!EVT.isInteger()) + break; NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; - RegisterTypeForVT[ExpandedReg] = LargestIntReg; - TransformToType[ExpandedReg] = ExpandedReg - 1; - ValueTypeActions.setTypeAction(ExpandedReg, Expand); + RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; + TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); + ValueTypeActions.setTypeAction(EVT, Expand); } // Inspect all of the ValueType's smaller than the largest integer // register to see which ones need promotion. - MVT::ValueType LegalIntReg = LargestIntReg; - for (MVT::ValueType IntReg = LargestIntReg - 1; - IntReg >= MVT::i1; --IntReg) { - if (isTypeLegal(IntReg)) { + unsigned LegalIntReg = LargestIntReg; + for (unsigned IntReg = LargestIntReg - 1; + IntReg >= (unsigned)MVT::i1; --IntReg) { + MVT IVT = (MVT::SimpleValueType)IntReg; + if (isTypeLegal(IVT)) { LegalIntReg = IntReg; } else { - RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg; - ValueTypeActions.setTypeAction(IntReg, Promote); + RegisterTypeForVT[IntReg] = TransformToType[IntReg] = + (MVT::SimpleValueType)LegalIntReg; + ValueTypeActions.setTypeAction(IVT, Promote); } } @@ -310,18 +561,19 @@ void TargetLowering::computeRegisterProperties() { } // Loop over all of the vector value types to see which need transformations. - for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE; - i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { - if (!isTypeLegal(i)) { - MVT::ValueType IntermediateVT, RegisterVT; + for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; + i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType)i; + if (!isTypeLegal(VT)) { + MVT IntermediateVT, RegisterVT; unsigned NumIntermediates; NumRegistersForVT[i] = - getVectorTypeBreakdown(i, + getVectorTypeBreakdown(VT, IntermediateVT, NumIntermediates, RegisterVT); RegisterTypeForVT[i] = RegisterVT; TransformToType[i] = MVT::Other; // this isn't actually used - ValueTypeActions.setTypeAction(i, Expand); + ValueTypeActions.setTypeAction(VT, Expand); } } } @@ -331,8 +583,7 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { } -MVT::ValueType -TargetLowering::getSetCCResultType(const SDOperand &) const { +MVT TargetLowering::getSetCCResultType(const SDValue &) const { return getValueType(TD->getIntPtrType()); } @@ -346,13 +597,13 @@ TargetLowering::getSetCCResultType(const SDOperand &) const { /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. /// -unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT, - MVT::ValueType &IntermediateVT, +unsigned TargetLowering::getVectorTypeBreakdown(MVT VT, + MVT &IntermediateVT, unsigned &NumIntermediates, - MVT::ValueType &RegisterVT) const { + MVT &RegisterVT) const { // Figure out the right, legal destination reg to copy into. - unsigned NumElts = MVT::getVectorNumElements(VT); - MVT::ValueType EltTy = MVT::getVectorElementType(VT); + unsigned NumElts = VT.getVectorNumElements(); + MVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; @@ -365,24 +616,23 @@ unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT, // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && - !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) { + while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; - MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts); + MVT NewVT = MVT::getVectorVT(EltTy, NumElts); if (!isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; - MVT::ValueType DestVT = getTypeToTransformTo(NewVT); + MVT DestVT = getTypeToTransformTo(NewVT); RegisterVT = DestVT; - if (DestVT < NewVT) { + if (DestVT.bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT)); + return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); } else { // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. @@ -399,13 +649,30 @@ unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const { return TD->getCallFrameTypeAlignment(Ty); } -SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table, - SelectionDAG &DAG) const { +SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { if (usesGlobalOffsetTable()) return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); return Table; } +bool +TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // Assume that everything is safe in static mode. + if (getTargetMachine().getRelocationModel() == Reloc::Static) + return true; + + // In dynamic-no-pic mode, assume that known defined values are safe. + if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && + GA && + !GA->getGlobal()->isDeclaration() && + !GA->getGlobal()->mayBeOverridden()) + return true; + + // Otherwise assume nothing is safe. + return false; +} + //===----------------------------------------------------------------------===// // Optimization Methods //===----------------------------------------------------------------------===// @@ -414,7 +681,7 @@ SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table, /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. -bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, +bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded) { // FIXME: ISD::SELECT, ISD::SELECT_CC switch(Op.getOpcode()) { @@ -424,8 +691,8 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, case ISD::XOR: if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) if (C->getAPIntValue().intersects(~Demanded)) { - MVT::ValueType VT = Op.getValueType(); - SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), + MVT VT = Op.getValueType(); + SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), DAG.getConstant(Demanded & C->getAPIntValue(), VT)); @@ -443,7 +710,7 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, /// analyze the expression and return a mask of KnownOne and KnownZero bits for /// the expression (used to simplify the caller). The KnownZero/One bits may /// only be accurate for those bits in the DemandedMask. -bool TargetLowering::SimplifyDemandedBits(SDOperand Op, +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, @@ -458,7 +725,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, KnownZero = KnownOne = APInt(BitWidth, 0); // Other users may use these bits. - if (!Op.Val->hasOneUse()) { + if (!Op.getNode()->hasOneUse()) { if (Depth != 0) { // If not at the root, Just compute the KnownZero/KnownOne bits to // simplify things downstream. @@ -596,8 +863,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known if ((KnownOne & KnownOne2) == KnownOne) { - MVT::ValueType VT = Op.getValueType(); - SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); + MVT VT = Op.getValueType(); + SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), ANDC)); } @@ -611,8 +878,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, // if we can expand it to have all bits set, do it if (Expanded.isAllOnesValue()) { if (Expanded != C->getAPIntValue()) { - MVT::ValueType VT = Op.getValueType(); - SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), + MVT VT = Op.getValueType(); + SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), TLO.DAG.getConstant(Expanded, VT)); return TLO.CombineTo(Op, New); } @@ -664,8 +931,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, break; case ISD::SHL: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { - unsigned ShAmt = SA->getValue(); - SDOperand InOp = Op.getOperand(0); + unsigned ShAmt = SA->getZExtValue(); + SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) @@ -677,7 +944,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, if (InOp.getOpcode() == ISD::SRL && isa(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { - unsigned C1 = cast(InOp.getOperand(1))->getValue(); + unsigned C1= cast(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SHL; int Diff = ShAmt-C1; if (Diff < 0) { @@ -685,9 +952,9 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, Opc = ISD::SRL; } - SDOperand NewSA = + SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); - MVT::ValueType VT = Op.getValueType(); + MVT VT = Op.getValueType(); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT, InOp.getOperand(0), NewSA)); } @@ -696,18 +963,18 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; - KnownZero <<= SA->getValue(); - KnownOne <<= SA->getValue(); + KnownZero <<= SA->getZExtValue(); + KnownOne <<= SA->getZExtValue(); // low bits known zero. - KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue()); + KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); } break; case ISD::SRL: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { - MVT::ValueType VT = Op.getValueType(); - unsigned ShAmt = SA->getValue(); - unsigned VTSize = MVT::getSizeInBits(VT); - SDOperand InOp = Op.getOperand(0); + MVT VT = Op.getValueType(); + unsigned ShAmt = SA->getZExtValue(); + unsigned VTSize = VT.getSizeInBits(); + SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) @@ -719,7 +986,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, if (InOp.getOpcode() == ISD::SHL && isa(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { - unsigned C1 = cast(InOp.getOperand(1))->getValue(); + unsigned C1= cast(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SRL; int Diff = ShAmt-C1; if (Diff < 0) { @@ -727,7 +994,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, Opc = ISD::SHL; } - SDOperand NewSA = + SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT, InOp.getOperand(0), NewSA)); @@ -748,8 +1015,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, break; case ISD::SRA: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { - MVT::ValueType VT = Op.getValueType(); - unsigned ShAmt = SA->getValue(); + MVT VT = Op.getValueType(); + unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) @@ -761,7 +1028,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, // demand the input sign bit. APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); if (HighBits.intersects(NewMask)) - InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT)); + InDemandedMask |= APInt::getSignBit(VT.getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, TLO, Depth+1)) @@ -784,22 +1051,22 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, } break; case ISD::SIGN_EXTEND_INREG: { - MVT::ValueType EVT = cast(Op.getOperand(1))->getVT(); + MVT EVT = cast(Op.getOperand(1))->getVT(); // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, - BitWidth - MVT::getSizeInBits(EVT)) & + BitWidth - EVT.getSizeInBits()) & NewMask; // If none of the extended bits are demanded, eliminate the sextinreg. if (NewBits == 0) return TLO.CombineTo(Op, Op.getOperand(0)); - APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT)); + APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits()); InSignBit.zext(BitWidth); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, - MVT::getSizeInBits(EVT)) & + EVT.getSizeInBits()) & NewMask; // Since the sign extended bits are demanded, we know that the sign @@ -851,8 +1118,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, break; } case ISD::SIGN_EXTEND: { - MVT::ValueType InVT = Op.getOperand(0).getValueType(); - unsigned InBits = MVT::getSizeInBits(InVT); + MVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getSizeInBits(); APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); APInt NewBits = ~InMask & NewMask; @@ -915,8 +1182,8 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, // If the input is only used by this truncate, see if we can shrink it based // on the known demanded bits. - if (Op.getOperand(0).Val->hasOneUse()) { - SDOperand In = Op.getOperand(0); + if (Op.getOperand(0).getNode()->hasOneUse()) { + SDValue In = Op.getOperand(0); unsigned InBitWidth = In.getValueSizeInBits(); switch (In.getOpcode()) { default: break; @@ -926,13 +1193,13 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, if (ConstantSDNode *ShAmt = dyn_cast(In.getOperand(1))){ APInt HighBits = APInt::getHighBitsSet(InBitWidth, InBitWidth - BitWidth); - HighBits = HighBits.lshr(ShAmt->getValue()); + HighBits = HighBits.lshr(ShAmt->getZExtValue()); HighBits.trunc(BitWidth); - if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) { + if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { // None of the shifted in bits are needed. Add a truncate of the // shift input, then shift it. - SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, + SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, Op.getValueType(), In.getOperand(0)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), @@ -947,9 +1214,9 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, break; } case ISD::AssertZext: { - MVT::ValueType VT = cast(Op.getOperand(1))->getVT(); + MVT VT = cast(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, - MVT::getSizeInBits(VT)); + VT.getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; @@ -961,7 +1228,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, #if 0 // If this is an FP->Int bitcast and if the sign bit is the only thing that // is demanded, turn this into a FGETSIGN. - if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) && + if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) && MVT::isFloatingPoint(Op.getOperand(0).getValueType()) && !MVT::isVector(Op.getOperand(0).getValueType())) { // Only do this xform if FGETSIGN is valid or if before legalize. @@ -969,27 +1236,17 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, isOperationLegal(ISD::FGETSIGN, Op.getValueType())) { // Make a FGETSIGN + SHL to move the sign bit into the appropriate // place. We expect the SHL to be eliminated by other optimizations. - SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), + SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), Op.getOperand(0)); - unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1; - SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy()); + unsigned ShVal = Op.getValueType().getSizeInBits()-1; + SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(), Sign, ShAmt)); } } #endif break; - case ISD::ADD: - case ISD::SUB: - case ISD::INTRINSIC_WO_CHAIN: - case ISD::INTRINSIC_W_CHAIN: - case ISD::INTRINSIC_VOID: - case ISD::CTTZ: - case ISD::CTLZ: - case ISD::CTPOP: - case ISD::LOAD: - case ISD::SETCC: - case ISD::FGETSIGN: + default: // Just use ComputeMaskedBits to compute output bits. TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); break; @@ -1006,7 +1263,7 @@ bool TargetLowering::SimplifyDemandedBits(SDOperand Op, /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. -void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, +void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, @@ -1024,7 +1281,7 @@ void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. -unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, +unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || @@ -1037,9 +1294,9 @@ unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, /// SimplifySetCC - Try to simplify a setcc built with the specified operands -/// and cc. If it is unable to simplify it, return a null SDOperand. -SDOperand -TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, +/// and cc. If it is unable to simplify it, return a null SDValue. +SDValue +TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; @@ -1053,9 +1310,9 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, case ISD::SETTRUE2: return DAG.getConstant(1, VT); } - if (ConstantSDNode *N1C = dyn_cast(N1.Val)) { + if (ConstantSDNode *N1C = dyn_cast(N1.getNode())) { const APInt &C1 = N1C->getAPIntValue(); - if (isa(N0.Val)) { + if (isa(N0.getNode())) { return DAG.FoldSetCC(VT, N0, N1, Cond); } else { // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an @@ -1064,9 +1321,9 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && N0.getOperand(0).getOpcode() == ISD::CTLZ && N0.getOperand(1).getOpcode() == ISD::Constant) { - unsigned ShAmt = cast(N0.getOperand(1))->getValue(); + unsigned ShAmt = cast(N0.getOperand(1))->getZExtValue(); if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) { + ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { if ((C1 == 0) == (Cond == ISD::SETEQ)) { // (srl (ctlz x), 5) == 0 -> X != 0 // (srl (ctlz x), 5) != 1 -> X != 0 @@ -1076,7 +1333,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, // (srl (ctlz x), 5) == 1 -> X == 0 Cond = ISD::SETEQ; } - SDOperand Zero = DAG.getConstant(0, N0.getValueType()); + SDValue Zero = DAG.getConstant(0, N0.getValueType()); return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0), Zero, Cond); } @@ -1084,7 +1341,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, // If the LHS is a ZERO_EXTEND, perform the comparison on the input. if (N0.getOpcode() == ISD::ZERO_EXTEND) { - unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); + unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. @@ -1127,10 +1384,10 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { - MVT::ValueType ExtSrcTy = cast(N0.getOperand(1))->getVT(); - unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); - MVT::ValueType ExtDstTy = N0.getValueType(); - unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); + MVT ExtSrcTy = cast(N0.getOperand(1))->getVT(); + unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); + MVT ExtDstTy = N0.getValueType(); + unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); // If the extended part has any inconsistent bits, it cannot ever // compare equal. In other words, they have to be all ones or all @@ -1140,8 +1397,8 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) return DAG.getConstant(Cond == ISD::SETNE, VT); - SDOperand ZextOp; - MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); + SDValue ZextOp; + MVT Op0Ty = N0.getOperand(0).getValueType(); if (Op0Ty == ExtSrcTy) { ZextOp = N0.getOperand(0); } else { @@ -1150,7 +1407,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, DAG.getConstant(Imm, Op0Ty)); } if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(ZextOp.Val); + DCI.AddToWorklist(ZextOp.getNode()); // Otherwise, make this a use of a zext. return DAG.getSetCC(VT, ZextOp, DAG.getConstant(C1 & APInt::getLowBitsSet( @@ -1163,14 +1420,14 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC if (N0.getOpcode() == ISD::SETCC) { - bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1); + bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1); if (TrueWhenTrue) return N0; // Invert the condition. ISD::CondCode CC = cast(N0.getOperand(2))->get(); CC = ISD::getSetCCInverse(CC, - MVT::isInteger(N0.getOperand(0).getValueType())); + N0.getOperand(0).getValueType().isInteger()); return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC); } @@ -1187,7 +1444,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, APInt::getHighBitsSet(BitWidth, BitWidth-1))) { // Okay, get the un-inverted input value. - SDOperand Val; + SDValue Val; if (N0.getOpcode() == ISD::XOR) Val = N0.getOperand(0); else { @@ -1205,7 +1462,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } APInt MinVal, MaxVal; - unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); + unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); if (ISD::isSignedIntSetCC(Cond)) { MinVal = APInt::getSignedMinValue(OperandBitSize); MaxVal = APInt::getSignedMaxValue(OperandBitSize); @@ -1272,12 +1529,12 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, dyn_cast(N0.getOperand(1))) { if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. - if (isPowerOf2_64(AndRHS->getValue())) { + if (isPowerOf2_64(AndRHS->getZExtValue())) { return DAG.getNode(ISD::SRL, VT, N0, - DAG.getConstant(Log2_64(AndRHS->getValue()), + DAG.getConstant(Log2_64(AndRHS->getZExtValue()), getShiftAmountTy())); } - } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { + } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C1 is a single bit. if (C1.isPowerOf2()) { @@ -1287,16 +1544,16 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } } } - } else if (isa(N0.Val)) { + } else if (isa(N0.getNode())) { // Ensure that the constant occurs on the RHS. return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); } - if (isa(N0.Val)) { + if (isa(N0.getNode())) { // Constant fold or commute setcc. - SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond); - if (O.Val) return O; - } else if (ConstantFPSDNode *CFP = dyn_cast(N1.Val)) { + SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond); + if (O.getNode()) return O; + } else if (ConstantFPSDNode *CFP = dyn_cast(N1.getNode())) { // If the RHS of an FP comparison is a constant, simplify it away in // some cases. if (CFP->getValueAPF().isNaN()) { @@ -1322,7 +1579,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if (N0 == N1) { // We can always fold X == X for integer setcc's. - if (MVT::isInteger(N0.getValueType())) + if (N0.getValueType().isInteger()) return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. @@ -1337,7 +1594,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - MVT::isInteger(N0.getValueType())) { + N0.getValueType().isInteger()) { if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || N0.getOpcode() == ISD::XOR) { // Simplify (X+Y) == (X+Z) --> Y == Z @@ -1358,9 +1615,10 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if (ConstantSDNode *RHSC = dyn_cast(N1)) { if (ConstantSDNode *LHSR = dyn_cast(N0.getOperand(1))) { // Turn (X+C1) == C2 --> X == C2-C1 - if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { + if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { return DAG.getSetCC(VT, N0.getOperand(0), - DAG.getConstant(RHSC->getValue()-LHSR->getValue(), + DAG.getConstant(RHSC->getAPIntValue()- + LHSR->getAPIntValue(), N0.getValueType()), Cond); } @@ -1379,7 +1637,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, // Turn (C1-X) == C2 --> X == C1-C2 if (ConstantSDNode *SUBC = dyn_cast(N0.getOperand(0))) { - if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { + if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { return DAG.getSetCC(VT, N0.getOperand(1), DAG.getConstant(SUBC->getAPIntValue() - @@ -1398,14 +1656,14 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if (DAG.isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(VT, N0.getOperand(0), DAG.getConstant(0, N0.getValueType()), Cond); - else if (N0.Val->hasOneUse()) { + else if (N0.getNode()->hasOneUse()) { assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 - SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), + SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N1, DAG.getConstant(1, getShiftAmountTy())); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(SH.Val); + DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); } } @@ -1421,13 +1679,13 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, if (DAG.isCommutativeBinOp(N1.getOpcode())) { return DAG.getSetCC(VT, N1.getOperand(0), DAG.getConstant(0, N1.getValueType()), Cond); - } else if (N1.Val->hasOneUse()) { + } else if (N1.getNode()->hasOneUse()) { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z - SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, + SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, DAG.getConstant(1, getShiftAmountTy())); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(SH.Val); + DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); } } @@ -1435,7 +1693,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } // Fold away ALL boolean setcc's. - SDOperand Temp; + SDValue Temp; if (N0.getValueType() == MVT::i1 && foldBooleans) { switch (Cond) { default: assert(0 && "Unknown integer setcc!"); @@ -1443,7 +1701,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.Val); + DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETNE: // X != Y --> (X^Y) N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); @@ -1453,21 +1711,21 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.Val); + DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETLT: // X X == 1 & Y == 0 --> Y^1 & X case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.Val); + DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.Val); + DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X @@ -1477,7 +1735,7 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } if (VT != MVT::i1) { if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(N0.Val); + DCI.AddToWorklist(N0.getNode()); // FIXME: If running after legalize, we probably can't do this. N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); } @@ -1485,13 +1743,82 @@ TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, } // Could not fold it. - return SDOperand(); + return SDValue(); +} + +/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the +/// node is a GlobalAddress + offset. +bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA, + int64_t &Offset) const { + if (isa(N)) { + GlobalAddressSDNode *GASD = cast(N); + GA = GASD->getGlobal(); + Offset += GASD->getOffset(); + return true; + } + + if (N->getOpcode() == ISD::ADD) { + SDValue N1 = N->getOperand(0); + SDValue N2 = N->getOperand(1); + if (isGAPlusOffset(N1.getNode(), GA, Offset)) { + ConstantSDNode *V = dyn_cast(N2); + if (V) { + Offset += V->getSExtValue(); + return true; + } + } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { + ConstantSDNode *V = dyn_cast(N1); + if (V) { + Offset += V->getSExtValue(); + return true; + } + } + } + return false; +} + + +/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is +/// loading 'Bytes' bytes from a location that is 'Dist' units away from the +/// location that the 'Base' load is loading from. +bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base, + unsigned Bytes, int Dist, + const MachineFrameInfo *MFI) const { + if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode()) + return false; + MVT VT = LD->getValueType(0); + if (VT.getSizeInBits() / 8 != Bytes) + return false; + + SDValue Loc = LD->getOperand(1); + SDValue BaseLoc = Base->getOperand(1); + if (Loc.getOpcode() == ISD::FrameIndex) { + if (BaseLoc.getOpcode() != ISD::FrameIndex) + return false; + int FI = cast(Loc)->getIndex(); + int BFI = cast(BaseLoc)->getIndex(); + int FS = MFI->getObjectSize(FI); + int BFS = MFI->getObjectSize(BFI); + if (FS != BFS || FS != (int)Bytes) return false; + return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); + } + + GlobalValue *GV1 = NULL; + GlobalValue *GV2 = NULL; + int64_t Offset1 = 0; + int64_t Offset2 = 0; + bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1); + bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); + if (isGA1 && isGA2 && GV1 == GV2) + return Offset1 == (Offset2 + Dist*Bytes); + return false; } -SDOperand TargetLowering:: + +SDValue TargetLowering:: PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { // Default implementation: no optimization. - return SDOperand(); + return SDValue(); } //===----------------------------------------------------------------------===// @@ -1535,19 +1862,20 @@ TargetLowering::getConstraintType(const std::string &Constraint) const { /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. -const char *TargetLowering::LowerXConstraint(MVT::ValueType ConstraintVT) const{ - if (MVT::isInteger(ConstraintVT)) +const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{ + if (ConstraintVT.isInteger()) return "r"; - if (MVT::isFloatingPoint(ConstraintVT)) + if (ConstraintVT.isFloatingPoint()) return "f"; // works for many targets return 0; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. -void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, +void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, - std::vector &Ops, + bool hasMemory, + std::vector &Ops, SelectionDAG &DAG) const { switch (ConstraintLetter) { default: break; @@ -1583,7 +1911,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, if (GA) { // Either &GV or &GV+C if (ConstraintLetter != 'n') { int64_t Offs = GA->getOffset(); - if (C) Offs += C->getValue(); + if (C) Offs += C->getZExtValue(); Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(), Offs)); return; @@ -1592,7 +1920,8 @@ void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, if (C) { // just C, no GV. // Simple constants are not allowed for 's'. if (ConstraintLetter != 's') { - Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType())); + Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(), + Op.getValueType())); return; } } @@ -1603,14 +1932,14 @@ void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, std::vector TargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, - MVT::ValueType VT) const { + MVT VT) const { return std::vector(); } std::pair TargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, - MVT::ValueType VT) const { + MVT VT) const { if (Constraint[0] != '{') return std::pair(0, 0); assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); @@ -1650,6 +1979,21 @@ getRegForInlineAsmConstraint(const std::string &Constraint, //===----------------------------------------------------------------------===// // Constraint Selection. +/// isMatchingInputConstraint - Return true of this is an input operand that is +/// a matching constraint like "4". +bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return isdigit(ConstraintCode[0]); +} + +/// getMatchedOperand - If this is an input matching constraint, this method +/// returns the output operand it matches. +unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return atoi(ConstraintCode.c_str()); +} + + /// getConstraintGenerality - Return an integer indicating how general CT /// is. static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { @@ -1669,7 +2013,7 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { /// ChooseConstraint - If there are multiple different constraints that we /// could pick for this operand (e.g. "imr") try to pick the 'best' one. -/// This is somewhat tricky: constraints fall into three four classes: +/// This is somewhat tricky: constraints fall into four classes: /// Other -> immediates and magic values /// Register -> one specific register /// RegisterClass -> a group of regs @@ -1688,7 +2032,8 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { /// 'm' over 'r', for example. /// static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, - const TargetLowering &TLI) { + bool hasMemory, const TargetLowering &TLI, + SDValue Op, SelectionDAG *DAG) { assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); unsigned BestIdx = 0; TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; @@ -1699,6 +2044,23 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[i]); + // If this is an 'other' constraint, see if the operand is valid for it. + // For example, on X86 we might have an 'rI' constraint. If the operand + // is an integer in the range [0..31] we want to use I (saving a load + // of a register), otherwise we must use 'r'. + if (CType == TargetLowering::C_Other && Op.getNode()) { + assert(OpInfo.Codes[i].size() == 1 && + "Unhandled multi-letter 'other' constraint"); + std::vector ResultOps; + TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory, + ResultOps, *DAG); + if (!ResultOps.empty()) { + BestType = CType; + BestIdx = i; + break; + } + } + // This constraint letter is more general than the previous one, use it. int Generality = getConstraintGenerality(CType); if (Generality > BestGenerality) { @@ -1715,7 +2077,10 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, /// ComputeConstraintToUse - Determines the constraint code and constraint /// type to use for the specific AsmOperandInfo, setting /// OpInfo.ConstraintCode and OpInfo.ConstraintType. -void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo) const { +void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, + SDValue Op, + bool hasMemory, + SelectionDAG *DAG) const { assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); // Single-letter constraints ('r') are very common. @@ -1723,7 +2088,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo) const { OpInfo.ConstraintCode = OpInfo.Codes[0]; OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); } else { - ChooseConstraint(OpInfo, *this); + ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG); } // 'X' matches anything. @@ -1959,53 +2324,53 @@ static mu magicu64(uint64_t d) /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// -SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, - std::vector* Created) const { - MVT::ValueType VT = N->getValueType(0); +SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, + std::vector* Created) const { + MVT VT = N->getValueType(0); // Check to see if we can do this. if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) - return SDOperand(); // BuildSDIV only operates on i32 or i64 + return SDValue(); // BuildSDIV only operates on i32 or i64 - int64_t d = cast(N->getOperand(1))->getSignExtended(); + int64_t d = cast(N->getOperand(1))->getSExtValue(); ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); // Multiply the numerator (operand 0) by the magic value - SDOperand Q; + SDValue Q; if (isOperationLegal(ISD::MULHS, VT)) Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); else if (isOperationLegal(ISD::SMUL_LOHI, VT)) - Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT), + Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT), N->getOperand(0), - DAG.getConstant(magics.m, VT)).Val, 1); + DAG.getConstant(magics.m, VT)).getNode(), 1); else - return SDOperand(); // No mulhs or equvialent + return SDValue(); // No mulhs or equvialent // If d > 0 and m < 0, add the numerator if (d > 0 && magics.m < 0) { Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); if (Created) - Created->push_back(Q.Val); + Created->push_back(Q.getNode()); } // If d < 0 and m > 0, subtract the numerator. if (d < 0 && magics.m > 0) { Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); if (Created) - Created->push_back(Q.Val); + Created->push_back(Q.getNode()); } // Shift right algebraic if shift value is nonzero if (magics.s > 0) { Q = DAG.getNode(ISD::SRA, VT, Q, DAG.getConstant(magics.s, getShiftAmountTy())); if (Created) - Created->push_back(Q.Val); + Created->push_back(Q.getNode()); } // Extract the sign bit and add it to the quotient - SDOperand T = - DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, + SDValue T = + DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, getShiftAmountTy())); if (Created) - Created->push_back(T.Val); + Created->push_back(T.getNode()); return DAG.getNode(ISD::ADD, VT, Q, T); } @@ -2013,45 +2378,45 @@ SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// -SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, - std::vector* Created) const { - MVT::ValueType VT = N->getValueType(0); +SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, + std::vector* Created) const { + MVT VT = N->getValueType(0); // Check to see if we can do this. if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) - return SDOperand(); // BuildUDIV only operates on i32 or i64 + return SDValue(); // BuildUDIV only operates on i32 or i64 - uint64_t d = cast(N->getOperand(1))->getValue(); + uint64_t d = cast(N->getOperand(1))->getZExtValue(); mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); // Multiply the numerator (operand 0) by the magic value - SDOperand Q; + SDValue Q; if (isOperationLegal(ISD::MULHU, VT)) Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); else if (isOperationLegal(ISD::UMUL_LOHI, VT)) - Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT), + Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT), N->getOperand(0), - DAG.getConstant(magics.m, VT)).Val, 1); + DAG.getConstant(magics.m, VT)).getNode(), 1); else - return SDOperand(); // No mulhu or equvialent + return SDValue(); // No mulhu or equvialent if (Created) - Created->push_back(Q.Val); + Created->push_back(Q.getNode()); if (magics.a == 0) { return DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(magics.s, getShiftAmountTy())); } else { - SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); + SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); if (Created) - Created->push_back(NPQ.Val); + Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::SRL, VT, NPQ, DAG.getConstant(1, getShiftAmountTy())); if (Created) - Created->push_back(NPQ.Val); + Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); if (Created) - Created->push_back(NPQ.Val); + Created->push_back(NPQ.getNode()); return DAG.getNode(ISD::SRL, VT, NPQ, DAG.getConstant(magics.s-1, getShiftAmountTy())); }