X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FTargetLowering.cpp;h=82b068d25c8eb912fec23080637be56384bd82ed;hb=5be77762a3aa434ee877b0a03b98b5c3a7571918;hp=82a91de2bbc9edcb8e4baae2a24e1e7d7cd7cc5f;hpb=34797136cb9fa9f450c0e1c47983482083979dd4;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp index 82a91de2bbc..82b068d25c8 100644 --- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -12,1054 +12,209 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetLowering.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetLoweringObjectFile.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/GlobalVariable.h" -#include "llvm/DerivedTypes.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCExpr.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" #include using namespace llvm; -/// We are in the process of implementing a new TypeLegalization action -/// - the promotion of vector elements. This feature is disabled by default -/// and only enabled using this flag. -static cl::opt -AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true), - cl::desc("Allow promotion of integer vector element types")); - -/// InitLibcallNames - Set default libcall names. -/// -static void InitLibcallNames(const char **Names) { - Names[RTLIB::SHL_I16] = "__ashlhi3"; - Names[RTLIB::SHL_I32] = "__ashlsi3"; - Names[RTLIB::SHL_I64] = "__ashldi3"; - Names[RTLIB::SHL_I128] = "__ashlti3"; - Names[RTLIB::SRL_I16] = "__lshrhi3"; - Names[RTLIB::SRL_I32] = "__lshrsi3"; - Names[RTLIB::SRL_I64] = "__lshrdi3"; - Names[RTLIB::SRL_I128] = "__lshrti3"; - Names[RTLIB::SRA_I16] = "__ashrhi3"; - Names[RTLIB::SRA_I32] = "__ashrsi3"; - Names[RTLIB::SRA_I64] = "__ashrdi3"; - Names[RTLIB::SRA_I128] = "__ashrti3"; - Names[RTLIB::MUL_I8] = "__mulqi3"; - Names[RTLIB::MUL_I16] = "__mulhi3"; - Names[RTLIB::MUL_I32] = "__mulsi3"; - Names[RTLIB::MUL_I64] = "__muldi3"; - Names[RTLIB::MUL_I128] = "__multi3"; - Names[RTLIB::MULO_I32] = "__mulosi4"; - Names[RTLIB::MULO_I64] = "__mulodi4"; - Names[RTLIB::MULO_I128] = "__muloti4"; - Names[RTLIB::SDIV_I8] = "__divqi3"; - Names[RTLIB::SDIV_I16] = "__divhi3"; - Names[RTLIB::SDIV_I32] = "__divsi3"; - Names[RTLIB::SDIV_I64] = "__divdi3"; - Names[RTLIB::SDIV_I128] = "__divti3"; - Names[RTLIB::UDIV_I8] = "__udivqi3"; - Names[RTLIB::UDIV_I16] = "__udivhi3"; - Names[RTLIB::UDIV_I32] = "__udivsi3"; - Names[RTLIB::UDIV_I64] = "__udivdi3"; - Names[RTLIB::UDIV_I128] = "__udivti3"; - Names[RTLIB::SREM_I8] = "__modqi3"; - Names[RTLIB::SREM_I16] = "__modhi3"; - Names[RTLIB::SREM_I32] = "__modsi3"; - Names[RTLIB::SREM_I64] = "__moddi3"; - Names[RTLIB::SREM_I128] = "__modti3"; - Names[RTLIB::UREM_I8] = "__umodqi3"; - Names[RTLIB::UREM_I16] = "__umodhi3"; - Names[RTLIB::UREM_I32] = "__umodsi3"; - Names[RTLIB::UREM_I64] = "__umoddi3"; - Names[RTLIB::UREM_I128] = "__umodti3"; - - // These are generally not available. - Names[RTLIB::SDIVREM_I8] = 0; - Names[RTLIB::SDIVREM_I16] = 0; - Names[RTLIB::SDIVREM_I32] = 0; - Names[RTLIB::SDIVREM_I64] = 0; - Names[RTLIB::SDIVREM_I128] = 0; - Names[RTLIB::UDIVREM_I8] = 0; - Names[RTLIB::UDIVREM_I16] = 0; - Names[RTLIB::UDIVREM_I32] = 0; - Names[RTLIB::UDIVREM_I64] = 0; - Names[RTLIB::UDIVREM_I128] = 0; - - Names[RTLIB::NEG_I32] = "__negsi2"; - Names[RTLIB::NEG_I64] = "__negdi2"; - Names[RTLIB::ADD_F32] = "__addsf3"; - Names[RTLIB::ADD_F64] = "__adddf3"; - Names[RTLIB::ADD_F80] = "__addxf3"; - Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; - Names[RTLIB::SUB_F32] = "__subsf3"; - Names[RTLIB::SUB_F64] = "__subdf3"; - Names[RTLIB::SUB_F80] = "__subxf3"; - Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; - Names[RTLIB::MUL_F32] = "__mulsf3"; - Names[RTLIB::MUL_F64] = "__muldf3"; - Names[RTLIB::MUL_F80] = "__mulxf3"; - Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; - Names[RTLIB::DIV_F32] = "__divsf3"; - Names[RTLIB::DIV_F64] = "__divdf3"; - Names[RTLIB::DIV_F80] = "__divxf3"; - Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; - Names[RTLIB::REM_F32] = "fmodf"; - Names[RTLIB::REM_F64] = "fmod"; - Names[RTLIB::REM_F80] = "fmodl"; - Names[RTLIB::REM_PPCF128] = "fmodl"; - Names[RTLIB::FMA_F32] = "fmaf"; - Names[RTLIB::FMA_F64] = "fma"; - Names[RTLIB::FMA_F80] = "fmal"; - Names[RTLIB::FMA_PPCF128] = "fmal"; - Names[RTLIB::POWI_F32] = "__powisf2"; - Names[RTLIB::POWI_F64] = "__powidf2"; - Names[RTLIB::POWI_F80] = "__powixf2"; - Names[RTLIB::POWI_PPCF128] = "__powitf2"; - Names[RTLIB::SQRT_F32] = "sqrtf"; - Names[RTLIB::SQRT_F64] = "sqrt"; - Names[RTLIB::SQRT_F80] = "sqrtl"; - Names[RTLIB::SQRT_PPCF128] = "sqrtl"; - Names[RTLIB::LOG_F32] = "logf"; - Names[RTLIB::LOG_F64] = "log"; - Names[RTLIB::LOG_F80] = "logl"; - Names[RTLIB::LOG_PPCF128] = "logl"; - Names[RTLIB::LOG2_F32] = "log2f"; - Names[RTLIB::LOG2_F64] = "log2"; - Names[RTLIB::LOG2_F80] = "log2l"; - Names[RTLIB::LOG2_PPCF128] = "log2l"; - Names[RTLIB::LOG10_F32] = "log10f"; - Names[RTLIB::LOG10_F64] = "log10"; - Names[RTLIB::LOG10_F80] = "log10l"; - Names[RTLIB::LOG10_PPCF128] = "log10l"; - Names[RTLIB::EXP_F32] = "expf"; - Names[RTLIB::EXP_F64] = "exp"; - Names[RTLIB::EXP_F80] = "expl"; - Names[RTLIB::EXP_PPCF128] = "expl"; - Names[RTLIB::EXP2_F32] = "exp2f"; - Names[RTLIB::EXP2_F64] = "exp2"; - Names[RTLIB::EXP2_F80] = "exp2l"; - Names[RTLIB::EXP2_PPCF128] = "exp2l"; - Names[RTLIB::SIN_F32] = "sinf"; - Names[RTLIB::SIN_F64] = "sin"; - Names[RTLIB::SIN_F80] = "sinl"; - Names[RTLIB::SIN_PPCF128] = "sinl"; - Names[RTLIB::COS_F32] = "cosf"; - Names[RTLIB::COS_F64] = "cos"; - Names[RTLIB::COS_F80] = "cosl"; - Names[RTLIB::COS_PPCF128] = "cosl"; - Names[RTLIB::POW_F32] = "powf"; - Names[RTLIB::POW_F64] = "pow"; - Names[RTLIB::POW_F80] = "powl"; - Names[RTLIB::POW_PPCF128] = "powl"; - Names[RTLIB::CEIL_F32] = "ceilf"; - Names[RTLIB::CEIL_F64] = "ceil"; - Names[RTLIB::CEIL_F80] = "ceill"; - Names[RTLIB::CEIL_PPCF128] = "ceill"; - Names[RTLIB::TRUNC_F32] = "truncf"; - Names[RTLIB::TRUNC_F64] = "trunc"; - Names[RTLIB::TRUNC_F80] = "truncl"; - Names[RTLIB::TRUNC_PPCF128] = "truncl"; - Names[RTLIB::RINT_F32] = "rintf"; - Names[RTLIB::RINT_F64] = "rint"; - Names[RTLIB::RINT_F80] = "rintl"; - Names[RTLIB::RINT_PPCF128] = "rintl"; - Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; - Names[RTLIB::NEARBYINT_F64] = "nearbyint"; - Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; - Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; - Names[RTLIB::FLOOR_F32] = "floorf"; - Names[RTLIB::FLOOR_F64] = "floor"; - Names[RTLIB::FLOOR_F80] = "floorl"; - Names[RTLIB::FLOOR_PPCF128] = "floorl"; - Names[RTLIB::COPYSIGN_F32] = "copysignf"; - Names[RTLIB::COPYSIGN_F64] = "copysign"; - Names[RTLIB::COPYSIGN_F80] = "copysignl"; - Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; - Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; - Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; - Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; - Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; - Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; - Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; - Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; - Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; - Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; - Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; - Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; - Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; - Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; - Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; - Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; - Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; - Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; - Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; - Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; - Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; - Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; - Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; - Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; - Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; - Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; - Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; - Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; - Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; - Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; - Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; - Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; - Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; - Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; - Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; - Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; - Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; - Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; - Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; - Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; - Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; - Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; - Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; - Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; - Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; - Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; - Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; - Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; - Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; - Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; - Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; - Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; - Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; - Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; - Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; - Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; - Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; - Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; - Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; - Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; - Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; - Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; - Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; - Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; - Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; - Names[RTLIB::OEQ_F32] = "__eqsf2"; - Names[RTLIB::OEQ_F64] = "__eqdf2"; - Names[RTLIB::UNE_F32] = "__nesf2"; - Names[RTLIB::UNE_F64] = "__nedf2"; - Names[RTLIB::OGE_F32] = "__gesf2"; - Names[RTLIB::OGE_F64] = "__gedf2"; - Names[RTLIB::OLT_F32] = "__ltsf2"; - Names[RTLIB::OLT_F64] = "__ltdf2"; - Names[RTLIB::OLE_F32] = "__lesf2"; - Names[RTLIB::OLE_F64] = "__ledf2"; - Names[RTLIB::OGT_F32] = "__gtsf2"; - Names[RTLIB::OGT_F64] = "__gtdf2"; - Names[RTLIB::UO_F32] = "__unordsf2"; - Names[RTLIB::UO_F64] = "__unorddf2"; - Names[RTLIB::O_F32] = "__unordsf2"; - Names[RTLIB::O_F64] = "__unorddf2"; - Names[RTLIB::MEMCPY] = "memcpy"; - Names[RTLIB::MEMMOVE] = "memmove"; - Names[RTLIB::MEMSET] = "memset"; - Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; - Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; - Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; - Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; - Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; - Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; - Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; - Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; - Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; - Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; - Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; - Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; - Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; - Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; - Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; - Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; - Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; - Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; - Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; - Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; - Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; - Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; - Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; - Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; - Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; -} - -/// InitLibcallCallingConvs - Set default libcall CallingConvs. -/// -static void InitLibcallCallingConvs(CallingConv::ID *CCs) { - for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { - CCs[i] = CallingConv::C; - } -} - -/// getFPEXT - Return the FPEXT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f32) { - if (RetVT == MVT::f64) - return FPEXT_F32_F64; - } - - return UNKNOWN_LIBCALL; -} - -/// getFPROUND - Return the FPROUND_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { - if (RetVT == MVT::f32) { - if (OpVT == MVT::f64) - return FPROUND_F64_F32; - if (OpVT == MVT::f80) - return FPROUND_F80_F32; - if (OpVT == MVT::ppcf128) - return FPROUND_PPCF128_F32; - } else if (RetVT == MVT::f64) { - if (OpVT == MVT::f80) - return FPROUND_F80_F64; - if (OpVT == MVT::ppcf128) - return FPROUND_PPCF128_F64; - } - - return UNKNOWN_LIBCALL; -} - -/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f32) { - if (RetVT == MVT::i8) - return FPTOSINT_F32_I8; - if (RetVT == MVT::i16) - return FPTOSINT_F32_I16; - if (RetVT == MVT::i32) - return FPTOSINT_F32_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F32_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F32_I128; - } else if (OpVT == MVT::f64) { - if (RetVT == MVT::i8) - return FPTOSINT_F64_I8; - if (RetVT == MVT::i16) - return FPTOSINT_F64_I16; - if (RetVT == MVT::i32) - return FPTOSINT_F64_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F64_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F64_I128; - } else if (OpVT == MVT::f80) { - if (RetVT == MVT::i32) - return FPTOSINT_F80_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F80_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F80_I128; - } else if (OpVT == MVT::ppcf128) { - if (RetVT == MVT::i32) - return FPTOSINT_PPCF128_I32; - if (RetVT == MVT::i64) - return FPTOSINT_PPCF128_I64; - if (RetVT == MVT::i128) - return FPTOSINT_PPCF128_I128; - } - return UNKNOWN_LIBCALL; -} - -/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f32) { - if (RetVT == MVT::i8) - return FPTOUINT_F32_I8; - if (RetVT == MVT::i16) - return FPTOUINT_F32_I16; - if (RetVT == MVT::i32) - return FPTOUINT_F32_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F32_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F32_I128; - } else if (OpVT == MVT::f64) { - if (RetVT == MVT::i8) - return FPTOUINT_F64_I8; - if (RetVT == MVT::i16) - return FPTOUINT_F64_I16; - if (RetVT == MVT::i32) - return FPTOUINT_F64_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F64_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F64_I128; - } else if (OpVT == MVT::f80) { - if (RetVT == MVT::i32) - return FPTOUINT_F80_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F80_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F80_I128; - } else if (OpVT == MVT::ppcf128) { - if (RetVT == MVT::i32) - return FPTOUINT_PPCF128_I32; - if (RetVT == MVT::i64) - return FPTOUINT_PPCF128_I64; - if (RetVT == MVT::i128) - return FPTOUINT_PPCF128_I128; - } - return UNKNOWN_LIBCALL; -} - -/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::i32) { - if (RetVT == MVT::f32) - return SINTTOFP_I32_F32; - else if (RetVT == MVT::f64) - return SINTTOFP_I32_F64; - else if (RetVT == MVT::f80) - return SINTTOFP_I32_F80; - else if (RetVT == MVT::ppcf128) - return SINTTOFP_I32_PPCF128; - } else if (OpVT == MVT::i64) { - if (RetVT == MVT::f32) - return SINTTOFP_I64_F32; - else if (RetVT == MVT::f64) - return SINTTOFP_I64_F64; - else if (RetVT == MVT::f80) - return SINTTOFP_I64_F80; - else if (RetVT == MVT::ppcf128) - return SINTTOFP_I64_PPCF128; - } else if (OpVT == MVT::i128) { - if (RetVT == MVT::f32) - return SINTTOFP_I128_F32; - else if (RetVT == MVT::f64) - return SINTTOFP_I128_F64; - else if (RetVT == MVT::f80) - return SINTTOFP_I128_F80; - else if (RetVT == MVT::ppcf128) - return SINTTOFP_I128_PPCF128; - } - return UNKNOWN_LIBCALL; -} - -/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::i32) { - if (RetVT == MVT::f32) - return UINTTOFP_I32_F32; - else if (RetVT == MVT::f64) - return UINTTOFP_I32_F64; - else if (RetVT == MVT::f80) - return UINTTOFP_I32_F80; - else if (RetVT == MVT::ppcf128) - return UINTTOFP_I32_PPCF128; - } else if (OpVT == MVT::i64) { - if (RetVT == MVT::f32) - return UINTTOFP_I64_F32; - else if (RetVT == MVT::f64) - return UINTTOFP_I64_F64; - else if (RetVT == MVT::f80) - return UINTTOFP_I64_F80; - else if (RetVT == MVT::ppcf128) - return UINTTOFP_I64_PPCF128; - } else if (OpVT == MVT::i128) { - if (RetVT == MVT::f32) - return UINTTOFP_I128_F32; - else if (RetVT == MVT::f64) - return UINTTOFP_I128_F64; - else if (RetVT == MVT::f80) - return UINTTOFP_I128_F80; - else if (RetVT == MVT::ppcf128) - return UINTTOFP_I128_PPCF128; - } - return UNKNOWN_LIBCALL; -} - -/// InitCmpLibcallCCs - Set default comparison libcall CC. -/// -static void InitCmpLibcallCCs(ISD::CondCode *CCs) { - memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); - CCs[RTLIB::OEQ_F32] = ISD::SETEQ; - CCs[RTLIB::OEQ_F64] = ISD::SETEQ; - CCs[RTLIB::UNE_F32] = ISD::SETNE; - CCs[RTLIB::UNE_F64] = ISD::SETNE; - CCs[RTLIB::OGE_F32] = ISD::SETGE; - CCs[RTLIB::OGE_F64] = ISD::SETGE; - CCs[RTLIB::OLT_F32] = ISD::SETLT; - CCs[RTLIB::OLT_F64] = ISD::SETLT; - CCs[RTLIB::OLE_F32] = ISD::SETLE; - CCs[RTLIB::OLE_F64] = ISD::SETLE; - CCs[RTLIB::OGT_F32] = ISD::SETGT; - CCs[RTLIB::OGT_F64] = ISD::SETGT; - CCs[RTLIB::UO_F32] = ISD::SETNE; - CCs[RTLIB::UO_F64] = ISD::SETNE; - CCs[RTLIB::O_F32] = ISD::SETEQ; - CCs[RTLIB::O_F64] = ISD::SETEQ; -} - /// NOTE: The constructor takes ownership of TLOF. TargetLowering::TargetLowering(const TargetMachine &tm, const TargetLoweringObjectFile *tlof) - : TM(tm), TD(TM.getTargetData()), TLOF(*tlof), - mayPromoteElements(AllowPromoteIntElem) { - // All operations default to being supported. - memset(OpActions, 0, sizeof(OpActions)); - memset(LoadExtActions, 0, sizeof(LoadExtActions)); - memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); - memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); - memset(CondCodeActions, 0, sizeof(CondCodeActions)); - - // Set default actions for various operations. - for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { - // Default all indexed load / store to expand. - for (unsigned IM = (unsigned)ISD::PRE_INC; - IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { - setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); - setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); - } + : TargetLoweringBase(tm, tlof) {} - // These operations default to expand. - setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); - } - - // Most targets ignore the @llvm.prefetch intrinsic. - setOperationAction(ISD::PREFETCH, MVT::Other, Expand); - - // ConstantFP nodes default to expand. Targets can either change this to - // Legal, in which case all fp constants are legal, or use isFPImmLegal() - // to optimize expansions for certain constants. - setOperationAction(ISD::ConstantFP, MVT::f16, Expand); - setOperationAction(ISD::ConstantFP, MVT::f32, Expand); - setOperationAction(ISD::ConstantFP, MVT::f64, Expand); - setOperationAction(ISD::ConstantFP, MVT::f80, Expand); - - // These library functions default to expand. - setOperationAction(ISD::FLOG , MVT::f16, Expand); - setOperationAction(ISD::FLOG2, MVT::f16, Expand); - setOperationAction(ISD::FLOG10, MVT::f16, Expand); - setOperationAction(ISD::FEXP , MVT::f16, Expand); - setOperationAction(ISD::FEXP2, MVT::f16, Expand); - setOperationAction(ISD::FFLOOR, MVT::f16, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); - setOperationAction(ISD::FCEIL, MVT::f16, Expand); - setOperationAction(ISD::FRINT, MVT::f16, Expand); - setOperationAction(ISD::FTRUNC, MVT::f16, Expand); - setOperationAction(ISD::FLOG , MVT::f32, Expand); - setOperationAction(ISD::FLOG2, MVT::f32, Expand); - setOperationAction(ISD::FLOG10, MVT::f32, Expand); - setOperationAction(ISD::FEXP , MVT::f32, Expand); - setOperationAction(ISD::FEXP2, MVT::f32, Expand); - setOperationAction(ISD::FFLOOR, MVT::f32, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); - setOperationAction(ISD::FCEIL, MVT::f32, Expand); - setOperationAction(ISD::FRINT, MVT::f32, Expand); - setOperationAction(ISD::FTRUNC, MVT::f32, Expand); - setOperationAction(ISD::FLOG , MVT::f64, Expand); - setOperationAction(ISD::FLOG2, MVT::f64, Expand); - setOperationAction(ISD::FLOG10, MVT::f64, Expand); - setOperationAction(ISD::FEXP , MVT::f64, Expand); - setOperationAction(ISD::FEXP2, MVT::f64, Expand); - setOperationAction(ISD::FFLOOR, MVT::f64, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); - setOperationAction(ISD::FCEIL, MVT::f64, Expand); - setOperationAction(ISD::FRINT, MVT::f64, Expand); - setOperationAction(ISD::FTRUNC, MVT::f64, Expand); - - // Default ISD::TRAP to expand (which turns it into abort). - setOperationAction(ISD::TRAP, MVT::Other, Expand); - - IsLittleEndian = TD->isLittleEndian(); - PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); - memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); - memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); - maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; - maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize - = maxStoresPerMemmoveOptSize = 4; - benefitFromCodePlacementOpt = false; - UseUnderscoreSetJmp = false; - UseUnderscoreLongJmp = false; - SelectIsExpensive = false; - IntDivIsCheap = false; - Pow2DivIsCheap = false; - JumpIsExpensive = false; - StackPointerRegisterToSaveRestore = 0; - ExceptionPointerRegister = 0; - ExceptionSelectorRegister = 0; - BooleanContents = UndefinedBooleanContent; - BooleanVectorContents = UndefinedBooleanContent; - SchedPreferenceInfo = Sched::ILP; - JumpBufSize = 0; - JumpBufAlignment = 0; - MinFunctionAlignment = 0; - PrefFunctionAlignment = 0; - PrefLoopAlignment = 0; - MinStackArgumentAlignment = 1; - ShouldFoldAtomicFences = false; - InsertFencesForAtomic = false; - - InitLibcallNames(LibcallRoutineNames); - InitCmpLibcallCCs(CmpLibcallCCs); - InitLibcallCallingConvs(LibcallCallingConvs); -} - -TargetLowering::~TargetLowering() { - delete &TLOF; -} - -MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { - return MVT::getIntegerVT(8*TD->getPointerSize()); +const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { + return NULL; } -/// canOpTrap - Returns true if the operation can trap for the value type. -/// VT must be a legal type. -bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { - assert(isTypeLegal(VT)); - switch (Op) { - default: +/// Check whether a given call node is in tail position within its function. If +/// so, it sets Chain to the input chain of the tail call. +bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, + SDValue &Chain) const { + const Function *F = DAG.getMachineFunction().getFunction(); + + // Conservatively require the attributes of the call to match those of + // the return. Ignore noalias because it doesn't affect the call sequence. + AttributeSet CallerAttrs = F->getAttributes(); + if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) + .removeAttribute(Attribute::NoAlias).hasAttributes()) return false; - case ISD::FDIV: - case ISD::FREM: - case ISD::SDIV: - case ISD::UDIV: - case ISD::SREM: - case ISD::UREM: - return true; - } -} - - -static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, - unsigned &NumIntermediates, - EVT &RegisterVT, - TargetLowering *TLI) { - // Figure out the right, legal destination reg to copy into. - unsigned NumElts = VT.getVectorNumElements(); - MVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - MVT NewVT = MVT::getVectorVT(EltTy, NumElts); - if (!TLI->isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - EVT DestVT = TLI->getRegisterType(NewVT); - RegisterVT = DestVT; - if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - -/// isLegalRC - Return true if the value types that can be represented by the -/// specified register class are all legal. -bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { - for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); - I != E; ++I) { - if (isTypeLegal(*I)) - return true; - } - return false; -} - -/// hasLegalSuperRegRegClasses - Return true if the specified register class -/// has one or more super-reg register classes that are legal. -bool -TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ - if (*RC->superregclasses_begin() == 0) + // It's not safe to eliminate the sign / zero extension of the return value. + if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; - for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), - E = RC->superregclasses_end(); I != E; ++I) { - const TargetRegisterClass *RRC = *I; - if (isLegalRC(RRC)) - return true; - } - return false; -} - -/// findRepresentativeClass - Return the largest legal super-reg register class -/// of the register class for the specified type and its associated "cost". -std::pair -TargetLowering::findRepresentativeClass(EVT VT) const { - const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; - if (!RC) - return std::make_pair(RC, 0); - const TargetRegisterClass *BestRC = RC; - for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), - E = RC->superregclasses_end(); I != E; ++I) { - const TargetRegisterClass *RRC = *I; - if (RRC->isASubClass() || !isLegalRC(RRC)) - continue; - if (!hasLegalSuperRegRegClasses(RRC)) - return std::make_pair(RRC, 1); - BestRC = RRC; - } - return std::make_pair(BestRC, 1); -} - - -/// computeRegisterProperties - Once all of the register classes are added, -/// this allows us to compute derived properties we expose. -void TargetLowering::computeRegisterProperties() { - assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && - "Too many value types for ValueTypeActions to hold!"); - - // Everything defaults to needing one register. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - NumRegistersForVT[i] = 1; - RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; - } - // ...except isVoid, which doesn't need any registers. - NumRegistersForVT[MVT::isVoid] = 0; - - // Find the largest integer register class. - unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; - for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) - assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); - - // Every integer value type larger than this largest register takes twice as - // many registers to represent as the previous ValueType. - for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { - EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; - if (!ExpandedVT.isInteger()) - break; - NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; - RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; - TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); - ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger); - } - - // Inspect all of the ValueType's smaller than the largest integer - // register to see which ones need promotion. - unsigned LegalIntReg = LargestIntReg; - for (unsigned IntReg = LargestIntReg - 1; - IntReg >= (unsigned)MVT::i1; --IntReg) { - EVT IVT = (MVT::SimpleValueType)IntReg; - if (isTypeLegal(IVT)) { - LegalIntReg = IntReg; - } else { - RegisterTypeForVT[IntReg] = TransformToType[IntReg] = - (MVT::SimpleValueType)LegalIntReg; - ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); - } - } - - // ppcf128 type is really two f64's. - if (!isTypeLegal(MVT::ppcf128)) { - NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; - RegisterTypeForVT[MVT::ppcf128] = MVT::f64; - TransformToType[MVT::ppcf128] = MVT::f64; - ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); - } - - // Decide how to handle f64. If the target does not have native f64 support, - // expand it to i64 and we will be generating soft float library calls. - if (!isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; - RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; - TransformToType[MVT::f64] = MVT::i64; - ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); - } - - // Decide how to handle f32. If the target does not have native support for - // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. - if (!isTypeLegal(MVT::f32)) { - if (isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; - RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; - TransformToType[MVT::f32] = MVT::f64; - ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); - } else { - NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; - RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; - TransformToType[MVT::f32] = MVT::i32; - ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); - } - } - - // Loop over all of the vector value types to see which need transformations. - for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; - i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { - MVT VT = (MVT::SimpleValueType)i; - if (isTypeLegal(VT)) continue; - - // Determine if there is a legal wider type. If so, we should promote to - // that wider vector type. - EVT EltVT = VT.getVectorElementType(); - unsigned NElts = VT.getVectorNumElements(); - if (NElts != 1) { - bool IsLegalWiderType = false; - // If we allow the promotion of vector elements using a flag, - // then return TypePromoteInteger on vector elements. - // First try to promote the elements of integer vectors. If no legal - // promotion was found, fallback to the widen-vector method. - if (mayPromoteElements) - for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { - EVT SVT = (MVT::SimpleValueType)nVT; - // Promote vectors of integers to vectors with the same number - // of elements, with a wider element type. - if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() - && SVT.getVectorNumElements() == NElts && - isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypePromoteInteger); - IsLegalWiderType = true; - break; - } - } - - if (IsLegalWiderType) continue; - - // Try to widen the vector. - for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { - EVT SVT = (MVT::SimpleValueType)nVT; - if (SVT.getVectorElementType() == EltVT && - SVT.getVectorNumElements() > NElts && - isTypeLegal(SVT)) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - IsLegalWiderType = true; - break; - } - } - if (IsLegalWiderType) continue; - } - MVT IntermediateVT; - EVT RegisterVT; - unsigned NumIntermediates; - NumRegistersForVT[i] = - getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, - RegisterVT, this); - RegisterTypeForVT[i] = RegisterVT; - - EVT NVT = VT.getPow2VectorType(); - if (NVT == VT) { - // Type is already a power of 2. The default action is to split. - TransformToType[i] = MVT::Other; - unsigned NumElts = VT.getVectorNumElements(); - ValueTypeActions.setTypeAction(VT, - NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); - } else { - TransformToType[i] = NVT; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - } - } - - // Determine the 'representative' register class for each value type. - // An representative register class is the largest (meaning one which is - // not a sub-register class / subreg register class) legal register class for - // a group of value types. For example, on i386, i8, i16, and i32 - // representative would be GR32; while on x86_64 it's GR64. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - const TargetRegisterClass* RRC; - uint8_t Cost; - tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); - RepRegClassForVT[i] = RRC; - RepRegClassCostForVT[i] = Cost; - } + // Check if the only use is a function return node. + return isUsedByReturnOnly(Node, Chain); } -const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { - return NULL; +/// \brief Set CallLoweringInfo attribute flags based on a call instruction +/// and called function attributes. +void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, + unsigned AttrIdx) { + isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); + isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); + isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); + isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); + isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); + isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); + isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); + Alignment = CS->getParamAlignment(AttrIdx); } - -EVT TargetLowering::getSetCCResultType(EVT VT) const { - assert(!VT.isVector() && "No default SetCC type for vectors!"); - return PointerTy.SimpleTy; +/// Generate a libcall taking the given operands as arguments and returning a +/// result of type RetVT. +std::pair +TargetLowering::makeLibCall(SelectionDAG &DAG, + RTLIB::Libcall LC, EVT RetVT, + const SDValue *Ops, unsigned NumOps, + bool isSigned, SDLoc dl, + bool doesNotReturn, + bool isReturnValueUsed) const { + TargetLowering::ArgListTy Args; + Args.reserve(NumOps); + + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0; i != NumOps; ++i) { + Entry.Node = Ops[i]; + Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); + Entry.isSExt = isSigned; + Entry.isZExt = !isSigned; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); + + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + TargetLowering:: + CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, + false, 0, getLibcallCallingConv(LC), + /*isTailCall=*/false, + doesNotReturn, isReturnValueUsed, Callee, Args, + DAG, dl); + return LowerCallTo(CLI); } -MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { - return MVT::i32; // return the default value -} -/// getVectorTypeBreakdown - Vector types are broken down into some number of -/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 -/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. -/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. -/// -/// This method returns the number of registers needed, and the VT for each -/// register. It also returns the VT and quantity of the intermediate values -/// before they are promoted/expanded. -/// -unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, - EVT &IntermediateVT, - unsigned &NumIntermediates, - EVT &RegisterVT) const { - unsigned NumElts = VT.getVectorNumElements(); - - // If there is a wider vector type with the same element type as this one, - // we should widen to that legal vector type. This handles things like - // <2 x float> -> <4 x float>. - if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) { - RegisterVT = getTypeToTransformTo(Context, VT); - if (isTypeLegal(RegisterVT)) { - IntermediateVT = RegisterVT; - NumIntermediates = 1; - return 1; +/// SoftenSetCCOperands - Soften the operands of a comparison. This code is +/// shared among BR_CC, SELECT_CC, and SETCC handlers. +void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, + SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode, + SDLoc dl) const { + assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) + && "Unsupported setcc type!"); + + // Expand into one or more soft-fp libcall(s). + RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; + switch (CCCode) { + case ISD::SETEQ: + case ISD::SETOEQ: + LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; + break; + case ISD::SETNE: + case ISD::SETUNE: + LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : + (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; + break; + case ISD::SETGE: + case ISD::SETOGE: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; + break; + case ISD::SETLT: + case ISD::SETOLT: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + break; + case ISD::SETLE: + case ISD::SETOLE: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; + break; + case ISD::SETGT: + case ISD::SETOGT: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; + break; + case ISD::SETUO: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; + break; + case ISD::SETO: + LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : + (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; + break; + default: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; + switch (CCCode) { + case ISD::SETONE: + // SETONE = SETOLT | SETOGT + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + // Fallthrough + case ISD::SETUGT: + LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; + break; + case ISD::SETUGE: + LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; + break; + case ISD::SETULT: + LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + break; + case ISD::SETULE: + LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; + break; + case ISD::SETUEQ: + LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; + break; + default: llvm_unreachable("Do not know how to soften this setcc!"); } } - // Figure out the right, legal destination reg to copy into. - EVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !isTypeLegal( - EVT::getVectorVT(Context, EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - - EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); - if (!isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - EVT DestVT = getRegisterType(Context, NewVT); - RegisterVT = DestVT; - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - -/// Get the EVTs and ArgFlags collections that represent the legalized return -/// type of the given function. This does not require a DAG or a return value, -/// and is suitable for use before any DAGs for the function are constructed. -/// TODO: Move this out of TargetLowering.cpp. -void llvm::GetReturnInfo(Type* ReturnType, Attributes attr, - SmallVectorImpl &Outs, - const TargetLowering &TLI, - SmallVectorImpl *Offsets) { - SmallVector ValueVTs; - ComputeValueVTs(TLI, ReturnType, ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) return; - unsigned Offset = 0; - - for (unsigned j = 0, f = NumValues; j != f; ++j) { - EVT VT = ValueVTs[j]; - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - if (attr & Attribute::SExt) - ExtendKind = ISD::SIGN_EXTEND; - else if (attr & Attribute::ZExt) - ExtendKind = ISD::ZERO_EXTEND; - - // FIXME: C calling convention requires the return type to be promoted to - // at least 32-bit. But this is not necessary for non-C calling - // conventions. The frontend should mark functions whose return values - // require promoting with signext or zeroext attributes. - if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { - EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); - if (VT.bitsLT(MinVT)) - VT = MinVT; - } - - unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); - EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); - unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( - PartVT.getTypeForEVT(ReturnType->getContext())); - - // 'inreg' on function refers to return value - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - if (attr & Attribute::InReg) - Flags.setInReg(); - - // Propagate extension type if any - if (attr & Attribute::SExt) - Flags.setSExt(); - else if (attr & Attribute::ZExt) - Flags.setZExt(); - - for (unsigned i = 0; i < NumParts; ++i) { - Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); - if (Offsets) { - Offsets->push_back(Offset); - Offset += PartSize; - } - } + // Use the target specific return value for comparions lib calls. + EVT RetVT = getCmpLibcallReturnType(); + SDValue Ops[2] = { NewLHS, NewRHS }; + NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, + dl).first; + NewRHS = DAG.getConstant(0, RetVT); + CCCode = getCmpLibcallCC(LC1); + if (LC2 != RTLIB::UNKNOWN_LIBCALL) { + SDValue Tmp = DAG.getNode(ISD::SETCC, dl, + getSetCCResultType(*DAG.getContext(), RetVT), + NewLHS, NewRHS, DAG.getCondCode(CCCode)); + NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, + dl).first; + NewLHS = DAG.getNode(ISD::SETCC, dl, + getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, + NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); + NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); + NewRHS = SDValue(); } } -/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate -/// function arguments in the caller parameter area. This is the actual -/// alignment, not its logarithm. -unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const { - return TD->getCallFrameTypeAlignment(Ty); -} - /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. @@ -1079,8 +234,12 @@ unsigned TargetLowering::getJumpTableEncoding() const { SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { // If our PIC model is GP relative, use the global offset table as the base. - if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) - return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); + unsigned JTEncoding = getJumpTableEncoding(); + + if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || + (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) + return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); + return Table; } @@ -1121,7 +280,7 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { /// constant and return true. bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded) { - DebugLoc dl = Op.getDebugLoc(); + SDLoc dl(Op); // FIXME: ISD::SELECT, ISD::SELECT_CC switch (Op.getOpcode()) { @@ -1161,7 +320,7 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, - DebugLoc dl) { + SDLoc dl) { assert(Op.getNumOperands() == 2 && "ShrinkDemandedOp only supports binary operators!"); assert(Op.getNode()->getNumValues() == 1 && @@ -1175,7 +334,8 @@ TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, // Search for the smallest integer type with free casts to and from // Op's type. For expedience, just check power-of-2 integer types. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); + unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); + unsigned SmallVTBits = DemandedSize; if (!isPowerOf2_32(SmallVTBits)) SmallVTBits = NextPowerOf2(SmallVTBits); for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { @@ -1188,7 +348,9 @@ TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, Op.getNode()->getOperand(0)), DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getNode()->getOperand(1))); - SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); + bool NeedZext = DemandedSize > SmallVTBits; + SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, + dl, Op.getValueType(), X); return CombineTo(Op, Z); } } @@ -1212,7 +374,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && "Mask size mismatches value type size!"); APInt NewMask = DemandedMask; - DebugLoc dl = Op.getDebugLoc(); + SDLoc dl(Op); // Don't know anything. KnownZero = KnownOne = APInt(BitWidth, 0); @@ -1363,8 +525,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 - if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known - if ((KnownOne & KnownOne2) == KnownOne) { + // NB: it is okay if more bits are known than are requested + if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side + if (KnownOne == KnownOne2) { // set bits are the same on both sides EVT VT = Op.getValueType(); SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, @@ -1485,6 +648,31 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), NarrowShl)); } + // Repeat the SHL optimization above in cases where an extension + // intervenes: (shl (anyext (shr x, c1)), c2) to + // (shl (anyext x), c2-c1). This requires that the bottom c1 bits + // aren't demanded (as above) and that the shifted upper c1 bits of + // x aren't demanded. + if (InOp.hasOneUse() && + InnerOp.getOpcode() == ISD::SRL && + InnerOp.hasOneUse() && + isa(InnerOp.getOperand(1))) { + uint64_t InnerShAmt = cast(InnerOp.getOperand(1)) + ->getZExtValue(); + if (InnerShAmt < ShAmt && + InnerShAmt < InnerBits && + NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && + NewMask.trunc(ShAmt) == 0) { + SDValue NewSA = + TLO.DAG.getConstant(ShAmt - InnerShAmt, + Op.getOperand(1).getValueType()); + EVT VT = Op.getValueType(); + SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, + InnerOp.getOperand(0)); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, + NewExt, NewSA)); + } + } } KnownZero <<= SA->getZExtValue(); @@ -1575,13 +763,24 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. - if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { + if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), Op.getOperand(1))); - } else if (KnownOne.intersects(SignBit)) { // New bits are known one. - KnownOne |= HighBits; + + int Log2 = NewMask.exactLogBase2(); + if (Log2 >= 0) { + // The bit must come from the sign. + SDValue NewSA = + TLO.DAG.getConstant(BitWidth - 1 - Log2, + Op.getOperand(1).getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, + Op.getOperand(0), NewSA)); } + + if (KnownOne.intersects(SignBit)) + // New bits are known one. + KnownOne |= HighBits; } break; case ISD::SIGN_EXTEND_INREG: { @@ -1921,7 +1120,7 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, - DAGCombinerInfo &DCI, DebugLoc dl) const { + DAGCombinerInfo &DCI, SDLoc dl) const { SelectionDAG &DAG = DCI.DAG; // These setcc operations always fold. @@ -1930,13 +1129,20 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, case ISD::SETFALSE: case ISD::SETFALSE2: return DAG.getConstant(0, VT); case ISD::SETTRUE: - case ISD::SETTRUE2: return DAG.getConstant(1, VT); + case ISD::SETTRUE2: { + TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector()); + return DAG.getConstant( + Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); + } } // Ensure that the constant occurs on the RHS, and fold constant // comparisons. - if (isa(N0.getNode())) - return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); + ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); + if (isa(N0.getNode()) && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); if (ConstantSDNode *N1C = dyn_cast(N1.getNode())) { const APInt &C1 = N1C->getAPIntValue(); @@ -2014,8 +1220,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } } - // Make sure we're not loosing bits from the constant. - if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) { + // Make sure we're not losing bits from the constant. + if (MinBits > 0 && + MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { // Will get folded away. @@ -2030,6 +1237,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // the test is for equality or unsigned, and all 1 bits of the const are // in the same partial word, see if we can shorten the load. if (DCI.isBeforeLegalize() && + !ISD::isSignedIntSetCC(Cond) && N0.getOpcode() == ISD::AND && C1 == 0 && N0.getNode()->hasOneUse() && isa(N0.getOperand(0)) && @@ -2051,7 +1259,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, APInt newMask = APInt::getLowBitsSet(maskWidth, width); for (unsigned offset=0; offsetisLittleEndian()) + if (!getDataLayout()->isLittleEndian()) bestOffset = (origWidth/width - offset - 1) * (width/8); else bestOffset = (uint64_t)offset * (width/8); @@ -2123,7 +1331,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, EVT newVT = N0.getOperand(0).getValueType(); if (DCI.isBeforeLegalizeOps() || (isOperationLegal(ISD::SETCC, newVT) && - getCondCodeAction(Cond, newVT)==Legal)) + getCondCodeAction(Cond, newVT.getSimpleVT())==Legal)) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(C1.trunc(InSize), newVT), Cond); @@ -2174,7 +1382,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode CC = cast(N0.getOperand(2))->get(); CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType().isInteger()); - return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); } if ((N0.getOpcode() == ISD::XOR || @@ -2219,9 +1429,10 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), Cond); - } else if (Op0.getOpcode() == ISD::AND && - isa(Op0.getOperand(1)) && - cast(Op0.getOperand(1))->getAPIntValue() == 1) { + } + if (Op0.getOpcode() == ISD::AND && + isa(Op0.getOperand(1)) && + cast(Op0.getOperand(1))->getAPIntValue() == 1) { // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. if (Op0.getValueType().bitsGT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, @@ -2236,6 +1447,11 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, DAG.getConstant(0, Op0.getValueType()), Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } + if (Op0.getOpcode() == ISD::AssertZext && + cast(Op0.getOperand(1))->getVT() == MVT::i1) + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } @@ -2288,7 +1504,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, DAG.getConstant(MinVal, N0.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max - else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) + if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), ISD::SETEQ); @@ -2319,7 +1535,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, N0.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N0.getOperand(1))) { - EVT ShiftTy = DCI.isBeforeLegalize() ? + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? getPointerTy() : getShiftAmountTy(N0.getValueType()); if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. @@ -2338,6 +1554,55 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } } } + + if (C1.getMinSignedBits() <= 64 && + !isLegalICmpImmediate(C1.getSExtValue())) { + // (X & -256) == 256 -> (X >> 8) == 1 + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::AND && N0.hasOneUse()) { + if (ConstantSDNode *AndRHS = + dyn_cast(N0.getOperand(1))) { + const APInt &AndRHSC = AndRHS->getAPIntValue(); + if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { + unsigned ShiftBits = AndRHSC.countTrailingZeros(); + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? + getPointerTy() : getShiftAmountTy(N0.getValueType()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), + DAG.getConstant(ShiftBits, ShiftTy)); + SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); + } + } + } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || + Cond == ISD::SETULE || Cond == ISD::SETUGT) { + bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); + // X < 0x100000000 -> (X >> 32) < 1 + // X >= 0x100000000 -> (X >> 32) >= 1 + // X <= 0x0ffffffff -> (X >> 32) < 1 + // X > 0x0ffffffff -> (X >> 32) >= 1 + unsigned ShiftBits; + APInt NewC = C1; + ISD::CondCode NewCond = Cond; + if (AdjOne) { + ShiftBits = C1.countTrailingOnes(); + NewC = NewC + 1; + NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + } else { + ShiftBits = C1.countTrailingZeros(); + } + NewC = NewC.lshr(ShiftBits); + if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? + getPointerTy() : getShiftAmountTy(N0.getValueType()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, + DAG.getConstant(ShiftBits, ShiftTy)); + SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); + } + } + } } if (isa(N0.getNode())) { @@ -2369,36 +1634,36 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // If the condition is not legal, see if we can find an equivalent one // which is legal. - if (!isCondCodeLegal(Cond, N0.getValueType())) { + if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { // If the comparison was an awkward floating-point == or != and one of // the comparison operands is infinity or negative infinity, convert the // condition to a less-awkward <= or >=. if (CFP->getValueAPF().isInfinity()) { if (CFP->getValueAPF().isNegative()) { if (Cond == ISD::SETOEQ && - isCondCodeLegal(ISD::SETOLE, N0.getValueType())) + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); if (Cond == ISD::SETUEQ && - isCondCodeLegal(ISD::SETOLE, N0.getValueType())) + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); if (Cond == ISD::SETUNE && - isCondCodeLegal(ISD::SETUGT, N0.getValueType())) + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); if (Cond == ISD::SETONE && - isCondCodeLegal(ISD::SETUGT, N0.getValueType())) + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); } else { if (Cond == ISD::SETOEQ && - isCondCodeLegal(ISD::SETOGE, N0.getValueType())) + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); if (Cond == ISD::SETUEQ && - isCondCodeLegal(ISD::SETOGE, N0.getValueType())) + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); if (Cond == ISD::SETUNE && - isCondCodeLegal(ISD::SETULT, N0.getValueType())) + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); if (Cond == ISD::SETONE && - isCondCodeLegal(ISD::SETULT, N0.getValueType())) + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); } } @@ -2406,25 +1671,33 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } if (N0 == N1) { + // The sext(setcc()) => setcc() optimization relies on the appropriate + // constant being emitted. + uint64_t EqVal = 0; + switch (getBooleanContents(N0.getValueType().isVector())) { + case UndefinedBooleanContent: + case ZeroOrOneBooleanContent: + EqVal = ISD::isTrueWhenEqual(Cond); + break; + case ZeroOrNegativeOneBooleanContent: + EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; + break; + } + // We can always fold X == X for integer setcc's. if (N0.getValueType().isInteger()) { - switch (getBooleanContents(N0.getValueType().isVector())) { - case UndefinedBooleanContent: - case ZeroOrOneBooleanContent: - return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); - case ZeroOrNegativeOneBooleanContent: - return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT); - } + return DAG.getConstant(EqVal, VT); } unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. - return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); + return DAG.getConstant(EqVal, VT); if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) - return DAG.getConstant(UOF, VT); + return DAG.getConstant(EqVal, VT); // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO // if it is not already. ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; - if (NewCond != Cond) + if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || + getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) return DAG.getSetCC(dl, VT, N0, N1, NewCond); } @@ -2505,7 +1778,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (DAG.isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(0, N0.getValueType()), Cond); - else if (N0.getNode()->hasOneUse()) { + if (N0.getNode()->hasOneUse()) { assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, @@ -2521,14 +1794,14 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::XOR) { // Simplify X == (X+Z) --> Z == 0 - if (N1.getOperand(0) == N0) { + if (N1.getOperand(0) == N0) return DAG.getSetCC(dl, VT, N1.getOperand(1), DAG.getConstant(0, N1.getValueType()), Cond); - } else if (N1.getOperand(1) == N0) { - if (DAG.isCommutativeBinOp(N1.getOpcode())) { + if (N1.getOperand(1) == N0) { + if (DAG.isCommutativeBinOp(N1.getOpcode())) return DAG.getSetCC(dl, VT, N1.getOperand(0), DAG.getConstant(0, N1.getValueType()), Cond); - } else if (N1.getNode()->hasOneUse()) { + if (N1.getNode()->hasOneUse()) { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, @@ -2548,16 +1821,22 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { if (ValueHasExactlyOneBitSet(N1, DAG)) { Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); - SDValue Zero = DAG.getConstant(0, N1.getValueType()); - return DAG.getSetCC(dl, VT, N0, Zero, Cond); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N0.getSimpleValueType())) { + SDValue Zero = DAG.getConstant(0, N1.getValueType()); + return DAG.getSetCC(dl, VT, N0, Zero, Cond); + } } } if (N1.getOpcode() == ISD::AND) if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { if (ValueHasExactlyOneBitSet(N0, DAG)) { Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); - SDValue Zero = DAG.getConstant(0, N0.getValueType()); - return DAG.getSetCC(dl, VT, N1, Zero, Cond); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N1.getSimpleValueType())) { + SDValue Zero = DAG.getConstant(0, N0.getValueType()); + return DAG.getSetCC(dl, VT, N1, Zero, Cond); + } } } } @@ -2662,7 +1941,9 @@ PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { TargetLowering::ConstraintType TargetLowering::getConstraintType(const std::string &Constraint) const { - if (Constraint.size() == 1) { + unsigned S = Constraint.size(); + + if (S == 1) { switch (Constraint[0]) { default: break; case 'r': return C_RegisterClass; @@ -2691,9 +1972,11 @@ TargetLowering::getConstraintType(const std::string &Constraint) const { } } - if (Constraint.size() > 1 && Constraint[0] == '{' && - Constraint[Constraint.size()-1] == '}') + if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { + if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" + return C_Memory; return C_Register; + } return C_Unknown; } @@ -2754,7 +2037,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, int64_t Offs = GA->getOffset(); if (C) Offs += C->getZExtValue(); Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), - C ? C->getDebugLoc() : DebugLoc(), + C ? SDLoc(C) : SDLoc(), Op.getValueType(), Offs)); return; } @@ -2777,16 +2060,19 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::pair TargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, - EVT VT) const { - if (Constraint[0] != '{') + MVT VT) const { + if (Constraint.empty() || Constraint[0] != '{') return std::make_pair(0u, static_cast(0)); assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); // Remove the braces from around the name. StringRef RegName(Constraint.data()+1, Constraint.size()-2); + std::pair R = + std::make_pair(0u, static_cast(0)); + // Figure out which register class contains this reg. - const TargetRegisterInfo *RI = TM.getRegisterInfo(); + const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), E = RI->regclass_end(); RCI != E; ++RCI) { const TargetRegisterClass *RC = *RCI; @@ -2798,12 +2084,22 @@ getRegForInlineAsmConstraint(const std::string &Constraint, for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) { - if (RegName.equals_lower(RI->getName(*I))) - return std::make_pair(*I, RC); + if (RegName.equals_lower(RI->getName(*I))) { + std::pair S = + std::make_pair(*I, RC); + + // If this register class has the requested value type, return it, + // otherwise keep searching and return the first class found + // if no other is found which explicitly has the requested type. + if (RC->hasType(VT)) + return S; + else if (!R.second) + R = S; + } } } - return std::make_pair(0u, static_cast(0)); + return R; } //===----------------------------------------------------------------------===// @@ -2813,7 +2109,7 @@ getRegForInlineAsmConstraint(const std::string &Constraint, /// a matching constraint like "4". bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { assert(!ConstraintCode.empty() && "No known constraint!"); - return isdigit(ConstraintCode[0]); + return isdigit(static_cast(ConstraintCode[0])); } /// getMatchedOperand - If this is an input matching constraint, this method @@ -2868,10 +2164,10 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); if (StructType *STy = dyn_cast(CS.getType())) { - OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); + OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); } else { assert(ResNo == 0 && "Asm only has one result!"); - OpInfo.ConstraintVT = getValueType(CS.getType()); + OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); } ++ResNo; break; @@ -2900,7 +2196,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( // If OpTy is not a single value, it may be a struct/union that we // can tile with integers. if (!OpTy->isSingleValueType() && OpTy->isSized()) { - unsigned BitSize = TD->getTypeSizeInBits(OpTy); + unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); switch (BitSize) { default: break; case 1: @@ -2910,13 +2206,15 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( case 64: case 128: OpInfo.ConstraintVT = - EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); + MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); break; } - } else if (dyn_cast(OpTy)) { - OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); + } else if (PointerType *PT = dyn_cast(OpTy)) { + unsigned PtrSize + = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); + OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); } else { - OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); + OpInfo.ConstraintVT = MVT::getVT(OpTy, true); } } } @@ -2993,10 +2291,12 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { - std::pair MatchRC = - getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); - std::pair InputRC = - getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); + std::pair MatchRC = + getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + std::pair InputRC = + getRegForInlineAsmConstraint(Input.ConstraintCode, + Input.ConstraintVT); if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (MatchRC.second != InputRC.second)) { @@ -3207,47 +2507,9 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, } } -//===----------------------------------------------------------------------===// -// Loop Strength Reduction hooks -//===----------------------------------------------------------------------===// - -/// isLegalAddressingMode - Return true if the addressing mode represented -/// by AM is legal for this target, for a load/store of the specified type. -bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, - Type *Ty) const { - // The default implementation of this implements a conservative RISCy, r+r and - // r+i addr mode. - - // Allows a sign-extended 16-bit immediate field. - if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) - return false; - - // No global is ever allowed as a base. - if (AM.BaseGV) - return false; - - // Only support r+r, - switch (AM.Scale) { - case 0: // "r+i" or just "i", depending on HasBaseReg. - break; - case 1: - if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. - return false; - // Otherwise we have r+r or r+i. - break; - case 2: - if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. - return false; - // Allow 2*r as r+r. - break; - } - - return true; -} - -/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication +/// \brief Given an exact SDIV by a constant, create a multiplication /// with the multiplicative inverse of the constant. -SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, +SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, SelectionDAG &DAG) const { ConstantSDNode *C = cast(Op2); APInt d = C->getAPIntValue(); @@ -3271,15 +2533,15 @@ SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); } -/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, +/// \brief Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDValue TargetLowering:: BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, - std::vector* Created) const { + std::vector *Created) const { EVT VT = N->getValueType(0); - DebugLoc dl= N->getDebugLoc(); + SDLoc dl(N); // Check to see if we can do this. // FIXME: We should be more aggressive here. @@ -3331,15 +2593,15 @@ BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, return DAG.getNode(ISD::ADD, dl, VT, Q, T); } -/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, +/// \brief Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDValue TargetLowering:: BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, - std::vector* Created) const { + std::vector *Created) const { EVT VT = N->getValueType(0); - DebugLoc dl = N->getDebugLoc(); + SDLoc dl(N); // Check to see if we can do this. // FIXME: We should be more aggressive here.