X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FWinEHPrepare.cpp;h=0d26ed333ca7134928023f870ce50082299c389f;hb=00552e3875ee5f382db6c98286a241a7d0efe1b8;hp=05de6bf39faf367c90ec78a77ad4d18b82013ebe;hpb=d24c2c8cdf5a6bad2920092584555ea1a3f4b003;p=oota-llvm.git diff --git a/lib/CodeGen/WinEHPrepare.cpp b/lib/CodeGen/WinEHPrepare.cpp index 05de6bf39fa..0d26ed333ca 100644 --- a/lib/CodeGen/WinEHPrepare.cpp +++ b/lib/CodeGen/WinEHPrepare.cpp @@ -8,19 +8,24 @@ //===----------------------------------------------------------------------===// // // This pass lowers LLVM IR exception handling into something closer to what the -// backend wants. It snifs the personality function to see which kind of -// preparation is necessary. If the personality function uses the Itanium LSDA, -// this pass delegates to the DWARF EH preparation pass. +// backend wants for functions using a personality function from a runtime +// provided by MSVC. Functions with other personality functions are left alone +// and may be prepared by other passes. In particular, all supported MSVC +// personality functions require cleanup code to be outlined, and the C++ +// personality requires catch handler code to be outlined. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Triple.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/LibCallSemantics.h" -#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" @@ -30,9 +35,11 @@ #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" #include using namespace llvm; @@ -49,26 +56,28 @@ namespace { // frame allocation structure. typedef MapVector> FrameVarInfoMap; -typedef SmallSet VisitedBlockSet; +// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't +// quite null. +AllocaInst *getCatchObjectSentinel() { + return static_cast(nullptr) + 1; +} -enum ActionType { Catch, Cleanup }; +typedef SmallSet VisitedBlockSet; class LandingPadActions; -class ActionHandler; -class CatchHandler; -class CleanupHandler; class LandingPadMap; typedef DenseMap CatchHandlerMapTy; typedef DenseMap CleanupHandlerMapTy; class WinEHPrepare : public FunctionPass { - std::unique_ptr DwarfPrepare; - public: static char ID; // Pass identification, replacement for typeid. WinEHPrepare(const TargetMachine *TM = nullptr) - : FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {} + : FunctionPass(ID) { + if (TM) + TheTriple = TM->getTargetTriple(); + } bool runOnFunction(Function &Fn) override; @@ -81,29 +90,87 @@ public: } private: - bool prepareCPPEHHandlers(Function &F, - SmallVectorImpl &LPads); + bool prepareExceptionHandlers(Function &F, + SmallVectorImpl &LPads); + void identifyEHBlocks(Function &F, SmallVectorImpl &LPads); + void promoteLandingPadValues(LandingPadInst *LPad); + void demoteValuesLiveAcrossHandlers(Function &F, + SmallVectorImpl &LPads); + void findSEHEHReturnPoints(Function &F, + SetVector &EHReturnBlocks); + void findCXXEHReturnPoints(Function &F, + SetVector &EHReturnBlocks); + void getPossibleReturnTargets(Function *ParentF, Function *HandlerF, + SetVector &Targets); + void completeNestedLandingPad(Function *ParentFn, + LandingPadInst *OutlinedLPad, + const LandingPadInst *OriginalLPad, + FrameVarInfoMap &VarInfo); + Function *createHandlerFunc(Function *ParentFn, Type *RetTy, + const Twine &Name, Module *M, Value *&ParentFP); bool outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo); + void addStubInvokeToHandlerIfNeeded(Function *Handler); void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks); - CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB); + void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, + BasicBlock *EndBB); + + void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); + + Triple TheTriple; + // All fields are reset by runOnFunction. + DominatorTree *DT = nullptr; + const TargetLibraryInfo *LibInfo = nullptr; + EHPersonality Personality = EHPersonality::Unknown; CatchHandlerMapTy CatchHandlerMap; CleanupHandlerMapTy CleanupHandlerMap; - DenseMap LPadMaps; + DenseMap LPadMaps; + SmallPtrSet NormalBlocks; + SmallPtrSet EHBlocks; + SetVector EHReturnBlocks; + + // This maps landing pad instructions found in outlined handlers to + // the landing pad instruction in the parent function from which they + // were cloned. The cloned/nested landing pad is used as the key + // because the landing pad may be cloned into multiple handlers. + // This map will be used to add the llvm.eh.actions call to the nested + // landing pads after all handlers have been outlined. + DenseMap NestedLPtoOriginalLP; + + // This maps blocks in the parent function which are destinations of + // catch handlers to cloned blocks in (other) outlined handlers. This + // handles the case where a nested landing pads has a catch handler that + // returns to a handler function rather than the parent function. + // The original block is used as the key here because there should only + // ever be one handler function from which the cloned block is not pruned. + // The original block will be pruned from the parent function after all + // handlers have been outlined. This map will be used to adjust the + // return instructions of handlers which return to the block that was + // outlined into a handler. This is done after all handlers have been + // outlined but before the outlined code is pruned from the parent function. + DenseMap LPadTargetBlocks; + + // Map from outlined handler to call to parent local address. Only used for + // 32-bit EH. + DenseMap HandlerToParentFP; + + AllocaInst *SEHExceptionCodeSlot = nullptr; }; class WinEHFrameVariableMaterializer : public ValueMaterializer { public: - WinEHFrameVariableMaterializer(Function *OutlinedFn, + WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo); - ~WinEHFrameVariableMaterializer() {} + ~WinEHFrameVariableMaterializer() override {} - virtual Value *materializeValueFor(Value *V) override; + Value *materializeValueFor(Value *V) override; + + void escapeCatchObject(Value *V); private: FrameVarInfoMap &FrameVarInfo; @@ -117,47 +184,28 @@ public: bool isInitialized() { return OriginLPad != nullptr; } - bool mapIfEHPtrLoad(const LoadInst *Load) { - return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs); - } - bool mapIfSelectorLoad(const LoadInst *Load) { - return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs); - } - + bool isOriginLandingPadBlock(const BasicBlock *BB) const; bool isLandingPadSpecificInst(const Instruction *Inst) const; - void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const; + void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, + Value *SelectorValue) const; private: - bool mapIfEHLoad(const LoadInst *Load, - SmallVectorImpl &Stores, - SmallVectorImpl &StoreAddrs); - const LandingPadInst *OriginLPad; // We will normally only see one of each of these instructions, but // if more than one occurs for some reason we can handle that. TinyPtrVector ExtractedEHPtrs; TinyPtrVector ExtractedSelectors; - - // In optimized code, there will typically be at most one instance of - // each of the following, but in unoptimized IR it is not uncommon - // for the values to be stored, loaded and then stored again. In that - // case we will create a second entry for each store and store address. - SmallVector EHPtrStores; - SmallVector SelectorStores; - SmallVector EHPtrStoreAddrs; - SmallVector SelectorStoreAddrs; }; class WinEHCloningDirectorBase : public CloningDirector { public: - WinEHCloningDirectorBase(Function *HandlerFn, - FrameVarInfoMap &VarInfo, - LandingPadMap &LPadMap) - : Materializer(HandlerFn, VarInfo), + WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP, + FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) + : Materializer(HandlerFn, ParentFP, VarInfo), SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), - LPadMap(LPadMap) {} + LPadMap(LPadMap), ParentFP(ParentFP) {} CloningAction handleInstruction(ValueToValueMapTy &VMap, const Instruction *Inst, @@ -172,12 +220,21 @@ public: virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; + virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap, + const IndirectBrInst *IBr, + BasicBlock *NewBB) = 0; virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) = 0; virtual CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) = 0; + virtual CloningAction handleCompare(ValueToValueMapTy &VMap, + const CmpInst *Compare, + BasicBlock *NewBB) = 0; + virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) = 0; ValueMaterializer *getValueMaterializer() override { return &Materializer; } @@ -186,15 +243,22 @@ protected: Type *SelectorIDType; Type *Int8PtrType; LandingPadMap &LPadMap; + + /// The value representing the parent frame pointer. + Value *ParentFP; }; class WinEHCatchDirector : public WinEHCloningDirectorBase { public: - WinEHCatchDirector(Function *CatchFn, Value *Selector, - FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) - : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap), + WinEHCatchDirector( + Function *CatchFn, Value *ParentFP, Value *Selector, + FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap, + DenseMap &NestedLPads, + DominatorTree *DT, SmallPtrSetImpl &EHBlocks) + : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap), CurrentSelector(Selector->stripPointerCasts()), - ExceptionObjectVar(nullptr) {} + ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads), + DT(DT), EHBlocks(EHBlocks) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, @@ -204,26 +268,41 @@ public: CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; + CloningAction handleIndirectBr(ValueToValueMapTy &VMap, + const IndirectBrInst *IBr, + BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; + CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, + BasicBlock *NewBB) override; + CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) override; - const Value *getExceptionVar() { return ExceptionObjectVar; } + Value *getExceptionVar() { return ExceptionObjectVar; } TinyPtrVector &getReturnTargets() { return ReturnTargets; } private: Value *CurrentSelector; - const Value *ExceptionObjectVar; + Value *ExceptionObjectVar; TinyPtrVector ReturnTargets; + + // This will be a reference to the field of the same name in the WinEHPrepare + // object which instantiates this WinEHCatchDirector object. + DenseMap &NestedLPtoOriginalLP; + DominatorTree *DT; + SmallPtrSetImpl &EHBlocks; }; class WinEHCleanupDirector : public WinEHCloningDirectorBase { public: - WinEHCleanupDirector(Function *CleanupFn, + WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) - : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {} + : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo, + LPadMap) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, @@ -233,68 +312,18 @@ public: CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; + CloningAction handleIndirectBr(ValueToValueMapTy &VMap, + const IndirectBrInst *IBr, + BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; -}; - -class ActionHandler { -public: - ActionHandler(BasicBlock *BB, ActionType Type) - : StartBB(BB), Type(Type), OutlinedFn(nullptr) {} - - ActionType getType() const { return Type; } - BasicBlock *getStartBlock() const { return StartBB; } - - bool hasBeenOutlined() { return OutlinedFn != nullptr; } - - void setOutlinedFunction(Function *F) { OutlinedFn = F; } - Function *getOutlinedFunction() { return OutlinedFn; } - -private: - BasicBlock *StartBB; - ActionType Type; - Function *OutlinedFn; -}; - -class CatchHandler : public ActionHandler { -public: - CatchHandler(BasicBlock *BB, Constant *Selector, BasicBlock *NextBB) - : ActionHandler(BB, ActionType::Catch), Selector(Selector), - NextBB(NextBB), ExceptionObjectVar(nullptr) {} - - // Method for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const ActionHandler *H) { - return H->getType() == ActionType::Catch; - } - - Constant *getSelector() const { return Selector; } - BasicBlock *getNextBB() const { return NextBB; } - - const Value *getExceptionVar() { return ExceptionObjectVar; } - TinyPtrVector &getReturnTargets() { return ReturnTargets; } - - void setExceptionVar(const Value *Val) { ExceptionObjectVar = Val; } - void setReturnTargets(TinyPtrVector &Targets) { - ReturnTargets = Targets; - } - -private: - Constant *Selector; - BasicBlock *NextBB; - const Value *ExceptionObjectVar; - TinyPtrVector ReturnTargets; -}; - -class CleanupHandler : public ActionHandler { -public: - CleanupHandler(BasicBlock *BB) : ActionHandler(BB, ActionType::Cleanup) {} - - // Method for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const ActionHandler *H) { - return H->getType() == ActionType::Cleanup; - } + CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, + BasicBlock *NewBB) override; + CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) override; }; class LandingPadActions { @@ -309,6 +338,7 @@ public: bool includesCleanup() const { return HasCleanupHandlers; } + SmallVectorImpl &actions() { return Actions; } SmallVectorImpl::iterator begin() { return Actions.begin(); } SmallVectorImpl::iterator end() { return Actions.end(); } @@ -323,24 +353,18 @@ private: } // end anonymous namespace char WinEHPrepare::ID = 0; -INITIALIZE_TM_PASS_BEGIN(WinEHPrepare, "winehprepare", - "Prepare Windows exceptions", false, false) -INITIALIZE_PASS_DEPENDENCY(DwarfEHPrepare) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_TM_PASS_END(WinEHPrepare, "winehprepare", - "Prepare Windows exceptions", false, false) +INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", + false, false) FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { return new WinEHPrepare(TM); } -static bool isMSVCPersonality(EHPersonality Pers) { - return Pers == EHPersonality::MSVC_Win64SEH || - Pers == EHPersonality::MSVC_CXX; -} - bool WinEHPrepare::runOnFunction(Function &Fn) { + // No need to prepare outlined handlers. + if (Fn.hasFnAttribute("wineh-parent")) + return false; + SmallVector LPads; SmallVector Resumes; for (BasicBlock &BB : Fn) { @@ -355,55 +379,360 @@ bool WinEHPrepare::runOnFunction(Function &Fn) { return false; // Classify the personality to see what kind of preparation we need. - EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn()); - - // Delegate through to the DWARF pass if this is unrecognized. - if (!isMSVCPersonality(Pers)) { - if (!DwarfPrepare->getResolver()) { - // Build an AnalysisResolver with the analyses needed by DwarfEHPrepare. - // It will take ownership of the AnalysisResolver. - assert(getResolver()); - auto *AR = new AnalysisResolver(getResolver()->getPMDataManager()); - AR->addAnalysisImplsPair( - &TargetTransformInfoWrapperPass::ID, - getResolver()->findImplPass(&TargetTransformInfoWrapperPass::ID)); - AR->addAnalysisImplsPair( - &DominatorTreeWrapperPass::ID, - getResolver()->findImplPass(&DominatorTreeWrapperPass::ID)); - DwarfPrepare->setResolver(AR); + Personality = classifyEHPersonality(Fn.getPersonalityFn()); + + // Do nothing if this is not an MSVC personality. + if (!isMSVCEHPersonality(Personality)) + return false; + + DT = &getAnalysis().getDomTree(); + LibInfo = &getAnalysis().getTLI(); + + // If there were any landing pads, prepareExceptionHandlers will make changes. + prepareExceptionHandlers(Fn, LPads); + return true; +} + +bool WinEHPrepare::doFinalization(Module &M) { return false; } + +void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired(); + AU.addRequired(); +} + +static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, + Constant *&Selector, BasicBlock *&NextBB); + +// Finds blocks reachable from the starting set Worklist. Does not follow unwind +// edges or blocks listed in StopPoints. +static void findReachableBlocks(SmallPtrSetImpl &ReachableBBs, + SetVector &Worklist, + const SetVector *StopPoints) { + while (!Worklist.empty()) { + BasicBlock *BB = Worklist.pop_back_val(); + + // Don't cross blocks that we should stop at. + if (StopPoints && StopPoints->count(BB)) + continue; + + if (!ReachableBBs.insert(BB).second) + continue; // Already visited. + + // Don't follow unwind edges of invokes. + if (auto *II = dyn_cast(BB->getTerminator())) { + Worklist.insert(II->getNormalDest()); + continue; } - return DwarfPrepare->runOnFunction(Fn); + // Otherwise, follow all successors. + Worklist.insert(succ_begin(BB), succ_end(BB)); } +} - // FIXME: This only returns true if the C++ EH handlers were outlined. - // When that code is complete, it should always return whatever - // prepareCPPEHHandlers returns. - if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads)) - return true; +// Attempt to find an instruction where a block can be split before +// a call to llvm.eh.begincatch and its operands. If the block +// begins with the begincatch call or one of its adjacent operands +// the block will not be split. +static Instruction *findBeginCatchSplitPoint(BasicBlock *BB, + IntrinsicInst *II) { + // If the begincatch call is already the first instruction in the block, + // don't split. + Instruction *FirstNonPHI = BB->getFirstNonPHI(); + if (II == FirstNonPHI) + return nullptr; + + // If either operand is in the same basic block as the instruction and + // isn't used by another instruction before the begincatch call, include it + // in the split block. + auto *Op0 = dyn_cast(II->getOperand(0)); + auto *Op1 = dyn_cast(II->getOperand(1)); + + Instruction *I = II->getPrevNode(); + Instruction *LastI = II; + + while (I == Op0 || I == Op1) { + // If the block begins with one of the operands and there are no other + // instructions between the operand and the begincatch call, don't split. + if (I == FirstNonPHI) + return nullptr; - // FIXME: SEH Cleanups are unimplemented. Replace them with unreachable. - if (Resumes.empty()) - return false; + LastI = I; + I = I->getPrevNode(); + } + + // If there is at least one instruction in the block before the begincatch + // call and its operands, split the block at either the begincatch or + // its operand. + return LastI; +} - for (ResumeInst *Resume : Resumes) { - IRBuilder<>(Resume).CreateUnreachable(); - Resume->eraseFromParent(); +/// Find all points where exceptional control rejoins normal control flow via +/// llvm.eh.endcatch. Add them to the normal bb reachability worklist. +void WinEHPrepare::findCXXEHReturnPoints( + Function &F, SetVector &EHReturnBlocks) { + for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { + BasicBlock *BB = BBI; + for (Instruction &I : *BB) { + if (match(&I, m_Intrinsic())) { + Instruction *SplitPt = + findBeginCatchSplitPoint(BB, cast(&I)); + if (SplitPt) { + // Split the block before the llvm.eh.begincatch call to allow + // cleanup and catch code to be distinguished later. + // Do not update BBI because we still need to process the + // portion of the block that we are splitting off. + SplitBlock(BB, SplitPt, DT); + break; + } + } + if (match(&I, m_Intrinsic())) { + // Split the block after the call to llvm.eh.endcatch if there is + // anything other than an unconditional branch, or if the successor + // starts with a phi. + auto *Br = dyn_cast(I.getNextNode()); + if (!Br || !Br->isUnconditional() || + isa(Br->getSuccessor(0)->begin())) { + DEBUG(dbgs() << "splitting block " << BB->getName() + << " with llvm.eh.endcatch\n"); + BBI = SplitBlock(BB, I.getNextNode(), DT); + } + // The next BB is normal control flow. + EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0)); + break; + } + } } +} - return true; +static bool isCatchAllLandingPad(const BasicBlock *BB) { + const LandingPadInst *LP = BB->getLandingPadInst(); + if (!LP) + return false; + unsigned N = LP->getNumClauses(); + return (N > 0 && LP->isCatch(N - 1) && + isa(LP->getClause(N - 1))); } -bool WinEHPrepare::doFinalization(Module &M) { - return DwarfPrepare->doFinalization(M); +/// Find all points where exceptions control rejoins normal control flow via +/// selector dispatch. +void WinEHPrepare::findSEHEHReturnPoints( + Function &F, SetVector &EHReturnBlocks) { + for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { + BasicBlock *BB = BBI; + // If the landingpad is a catch-all, treat the whole lpad as if it is + // reachable from normal control flow. + // FIXME: This is imprecise. We need a better way of identifying where a + // catch-all starts and cleanups stop. As far as LLVM is concerned, there + // is no difference. + if (isCatchAllLandingPad(BB)) { + EHReturnBlocks.insert(BB); + continue; + } + + BasicBlock *CatchHandler; + BasicBlock *NextBB; + Constant *Selector; + if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) { + // Split the edge if there are multiple predecessors. This creates a place + // where we can insert EH recovery code. + if (!CatchHandler->getSinglePredecessor()) { + DEBUG(dbgs() << "splitting EH return edge from " << BB->getName() + << " to " << CatchHandler->getName() << '\n'); + BBI = CatchHandler = SplitCriticalEdge( + BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler)); + } + EHReturnBlocks.insert(CatchHandler); + } + } } -void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { - DwarfPrepare->getAnalysisUsage(AU); +void WinEHPrepare::identifyEHBlocks(Function &F, + SmallVectorImpl &LPads) { + DEBUG(dbgs() << "Demoting values live across exception handlers in function " + << F.getName() << '\n'); + + // Build a set of all non-exceptional blocks and exceptional blocks. + // - Non-exceptional blocks are blocks reachable from the entry block while + // not following invoke unwind edges. + // - Exceptional blocks are blocks reachable from landingpads. Analysis does + // not follow llvm.eh.endcatch blocks, which mark a transition from + // exceptional to normal control. + + if (Personality == EHPersonality::MSVC_CXX) + findCXXEHReturnPoints(F, EHReturnBlocks); + else + findSEHEHReturnPoints(F, EHReturnBlocks); + + DEBUG({ + dbgs() << "identified the following blocks as EH return points:\n"; + for (BasicBlock *BB : EHReturnBlocks) + dbgs() << " " << BB->getName() << '\n'; + }); + +// Join points should not have phis at this point, unless they are a +// landingpad, in which case we will demote their phis later. +#ifndef NDEBUG + for (BasicBlock *BB : EHReturnBlocks) + assert((BB->isLandingPad() || !isa(BB->begin())) && + "non-lpad EH return block has phi"); +#endif + + // Normal blocks are the blocks reachable from the entry block and all EH + // return points. + SetVector Worklist; + Worklist = EHReturnBlocks; + Worklist.insert(&F.getEntryBlock()); + findReachableBlocks(NormalBlocks, Worklist, nullptr); + DEBUG({ + dbgs() << "marked the following blocks as normal:\n"; + for (BasicBlock *BB : NormalBlocks) + dbgs() << " " << BB->getName() << '\n'; + }); + + // Exceptional blocks are the blocks reachable from landingpads that don't + // cross EH return points. + Worklist.clear(); + for (auto *LPI : LPads) + Worklist.insert(LPI->getParent()); + findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks); + DEBUG({ + dbgs() << "marked the following blocks as exceptional:\n"; + for (BasicBlock *BB : EHBlocks) + dbgs() << " " << BB->getName() << '\n'; + }); + } -bool WinEHPrepare::prepareCPPEHHandlers( +/// Ensure that all values live into and out of exception handlers are stored +/// in memory. +/// FIXME: This falls down when values are defined in one handler and live into +/// another handler. For example, a cleanup defines a value used only by a +/// catch handler. +void WinEHPrepare::demoteValuesLiveAcrossHandlers( Function &F, SmallVectorImpl &LPads) { + DEBUG(dbgs() << "Demoting values live across exception handlers in function " + << F.getName() << '\n'); + + // identifyEHBlocks() should have been called before this function. + assert(!NormalBlocks.empty()); + + // Try to avoid demoting EH pointer and selector values. They get in the way + // of our pattern matching. + SmallPtrSet EHVals; + for (BasicBlock &BB : F) { + LandingPadInst *LP = BB.getLandingPadInst(); + if (!LP) + continue; + EHVals.insert(LP); + for (User *U : LP->users()) { + auto *EI = dyn_cast(U); + if (!EI) + continue; + EHVals.insert(EI); + for (User *U2 : EI->users()) { + if (auto *PN = dyn_cast(U2)) + EHVals.insert(PN); + } + } + } + + SetVector ArgsToDemote; + SetVector InstrsToDemote; + for (BasicBlock &BB : F) { + bool IsNormalBB = NormalBlocks.count(&BB); + bool IsEHBB = EHBlocks.count(&BB); + if (!IsNormalBB && !IsEHBB) + continue; // Blocks that are neither normal nor EH are unreachable. + for (Instruction &I : BB) { + for (Value *Op : I.operands()) { + // Don't demote static allocas, constants, and labels. + if (isa(Op) || isa(Op) || isa(Op)) + continue; + auto *AI = dyn_cast(Op); + if (AI && AI->isStaticAlloca()) + continue; + + if (auto *Arg = dyn_cast(Op)) { + if (IsEHBB) { + DEBUG(dbgs() << "Demoting argument " << *Arg + << " used by EH instr: " << I << "\n"); + ArgsToDemote.insert(Arg); + } + continue; + } + + // Don't demote EH values. + auto *OpI = cast(Op); + if (EHVals.count(OpI)) + continue; + + BasicBlock *OpBB = OpI->getParent(); + // If a value is produced and consumed in the same BB, we don't need to + // demote it. + if (OpBB == &BB) + continue; + bool IsOpNormalBB = NormalBlocks.count(OpBB); + bool IsOpEHBB = EHBlocks.count(OpBB); + if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) { + DEBUG({ + dbgs() << "Demoting instruction live in-out from EH:\n"; + dbgs() << "Instr: " << *OpI << '\n'; + dbgs() << "User: " << I << '\n'; + }); + InstrsToDemote.insert(OpI); + } + } + } + } + + // Demote values live into and out of handlers. + // FIXME: This demotion is inefficient. We should insert spills at the point + // of definition, insert one reload in each handler that uses the value, and + // insert reloads in the BB used to rejoin normal control flow. + Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt(); + for (Instruction *I : InstrsToDemote) + DemoteRegToStack(*I, false, AllocaInsertPt); + + // Demote arguments separately, and only for uses in EH blocks. + for (Argument *Arg : ArgsToDemote) { + auto *Slot = new AllocaInst(Arg->getType(), nullptr, + Arg->getName() + ".reg2mem", AllocaInsertPt); + SmallVector Users(Arg->user_begin(), Arg->user_end()); + for (User *U : Users) { + auto *I = dyn_cast(U); + if (I && EHBlocks.count(I->getParent())) { + auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I); + U->replaceUsesOfWith(Arg, Reload); + } + } + new StoreInst(Arg, Slot, AllocaInsertPt); + } + + // Demote landingpad phis, as the landingpad will be removed from the machine + // CFG. + for (LandingPadInst *LPI : LPads) { + BasicBlock *BB = LPI->getParent(); + while (auto *Phi = dyn_cast(BB->begin())) + DemotePHIToStack(Phi, AllocaInsertPt); + } + + DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and " + << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n"); +} + +bool WinEHPrepare::prepareExceptionHandlers( + Function &F, SmallVectorImpl &LPads) { + // Don't run on functions that are already prepared. + for (LandingPadInst *LPad : LPads) { + BasicBlock *LPadBB = LPad->getParent(); + for (Instruction &Inst : *LPadBB) + if (match(&Inst, m_Intrinsic())) + return false; + } + + identifyEHBlocks(F, LPads); + demoteValuesLiveAcrossHandlers(F, LPads); + // These containers are used to re-map frame variables that are used in // outlined catch and cleanup handlers. They will be populated as the // handlers are outlined. @@ -414,28 +743,42 @@ bool WinEHPrepare::prepareCPPEHHandlers( Module *M = F.getParent(); LLVMContext &Context = M->getContext(); - // FIXME: Make this an intrinsic. // Create a new function to receive the handler contents. PointerType *Int8PtrType = Type::getInt8PtrTy(Context); Type *Int32Type = Type::getInt32Ty(Context); - FunctionType *ActionTy = FunctionType::get(Int8PtrType, true); - Value *ActionIntrin = M->getOrInsertFunction("llvm.eh.actions", ActionTy); + Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); + + if (isAsynchronousEHPersonality(Personality)) { + // FIXME: Switch the ehptr type to i32 and then switch this. + SEHExceptionCodeSlot = + new AllocaInst(Int8PtrType, nullptr, "seh_exception_code", + F.getEntryBlock().getFirstInsertionPt()); + } + + // In order to handle the case where one outlined catch handler returns + // to a block within another outlined catch handler that would otherwise + // be unreachable, we need to outline the nested landing pad before we + // outline the landing pad which encloses it. + if (!isAsynchronousEHPersonality(Personality)) + std::sort(LPads.begin(), LPads.end(), + [this](LandingPadInst *const &L, LandingPadInst *const &R) { + return DT->properlyDominates(R->getParent(), L->getParent()); + }); + + // This container stores the llvm.eh.recover and IndirectBr instructions + // that make up the body of each landing pad after it has been outlined. + // We need to defer the population of the target list for the indirectbr + // until all landing pads have been outlined so that we can handle the + // case of blocks in the target that are reached only from nested + // landing pads. + SmallVector, 4> LPadImpls; for (LandingPadInst *LPad : LPads) { // Look for evidence that this landingpad has already been processed. bool LPadHasActionList = false; BasicBlock *LPadBB = LPad->getParent(); - for (Instruction &Inst : LPadBB->getInstList()) { - // FIXME: Make this an intrinsic. - if (auto *Call = dyn_cast(&Inst)) { - if (Call->getCalledFunction()->getName() == "llvm.eh.actions") { - LPadHasActionList = true; - break; - } - } - // FIXME: This is here to help with the development of nested landing pad - // outlining. It should be removed when that is finished. - if (isa(Inst)) { + for (Instruction &Inst : *LPadBB) { + if (match(&Inst, m_Intrinsic())) { LPadHasActionList = true; break; } @@ -446,70 +789,184 @@ bool WinEHPrepare::prepareCPPEHHandlers( if (LPadHasActionList) continue; + // If either of the values in the aggregate returned by the landing pad is + // extracted and stored to memory, promote the stored value to a register. + promoteLandingPadValues(LPad); + LandingPadActions Actions; mapLandingPadBlocks(LPad, Actions); + HandlersOutlined |= !Actions.actions().empty(); for (ActionHandler *Action : Actions) { - if (Action->hasBeenOutlined()) + if (Action->hasBeenProcessed()) continue; BasicBlock *StartBB = Action->getStartBlock(); - if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) { - HandlersOutlined = true; + + // SEH doesn't do any outlining for catches. Instead, pass the handler + // basic block addr to llvm.eh.actions and list the block as a return + // target. + if (isAsynchronousEHPersonality(Personality)) { + if (auto *CatchAction = dyn_cast(Action)) { + processSEHCatchHandler(CatchAction, StartBB); + continue; + } } - } // End for each Action - // FIXME: We need a guard against partially outlined functions. - if (!HandlersOutlined) - continue; + outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); + } - // Replace the landing pad with a new llvm.eh.action based landing pad. - BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB); - assert(!isa(LPadBB->begin())); - Instruction *NewLPad = LPad->clone(); - NewLPadBB->getInstList().push_back(NewLPad); - while (!pred_empty(LPadBB)) { - auto *pred = *pred_begin(LPadBB); - InvokeInst *Invoke = cast(pred->getTerminator()); - Invoke->setUnwindDest(NewLPadBB); + // Split the block after the landingpad instruction so that it is just a + // call to llvm.eh.actions followed by indirectbr. + assert(!isa(LPadBB->begin()) && "lpad phi not removed"); + SplitBlock(LPadBB, LPad->getNextNode(), DT); + // Erase the branch inserted by the split so we can insert indirectbr. + LPadBB->getTerminator()->eraseFromParent(); + + // Replace all extracted values with undef and ultimately replace the + // landingpad with undef. + SmallVector SEHCodeUses; + SmallVector EHUndefs; + for (User *U : LPad->users()) { + auto *E = dyn_cast(U); + if (!E) + continue; + assert(E->getNumIndices() == 1 && + "Unexpected operation: extracting both landing pad values"); + unsigned Idx = *E->idx_begin(); + assert((Idx == 0 || Idx == 1) && "unexpected index"); + if (Idx == 0 && isAsynchronousEHPersonality(Personality)) + SEHCodeUses.push_back(E); + else + EHUndefs.push_back(E); + } + for (Instruction *E : EHUndefs) { + E->replaceAllUsesWith(UndefValue::get(E->getType())); + E->eraseFromParent(); + } + LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); + + // Rewrite uses of the exception pointer to loads of an alloca. + while (!SEHCodeUses.empty()) { + Instruction *E = SEHCodeUses.pop_back_val(); + SmallVector Uses; + for (Use &U : E->uses()) + Uses.push_back(&U); + for (Use *U : Uses) { + auto *I = cast(U->getUser()); + if (isa(I)) + continue; + if (auto *Phi = dyn_cast(I)) + SEHCodeUses.push_back(Phi); + else + U->set(new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I)); + } + E->replaceAllUsesWith(UndefValue::get(E->getType())); + E->eraseFromParent(); } // Add a call to describe the actions for this landing pad. std::vector ActionArgs; - ActionArgs.push_back(NewLPad); for (ActionHandler *Action : Actions) { + // Action codes from docs are: 0 cleanup, 1 catch. if (auto *CatchAction = dyn_cast(Action)) { - ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); + ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); ActionArgs.push_back(CatchAction->getSelector()); + // Find the frame escape index of the exception object alloca in the + // parent. + int FrameEscapeIdx = -1; Value *EHObj = const_cast(CatchAction->getExceptionVar()); - if (EHObj) - ActionArgs.push_back(EHObj); - else - ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType)); + if (EHObj && !isa(EHObj)) { + auto I = FrameVarInfo.find(EHObj); + assert(I != FrameVarInfo.end() && + "failed to map llvm.eh.begincatch var"); + FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); + } + ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); } else { - ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); + ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); } - Constant *HandlerPtr = - ConstantExpr::getBitCast(Action->getOutlinedFunction(), Int8PtrType); - ActionArgs.push_back(HandlerPtr); + ActionArgs.push_back(Action->getHandlerBlockOrFunc()); } CallInst *Recover = - CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB); + CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB); - // Add an indirect branch listing possible successors of the catch handlers. - IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB); + SetVector ReturnTargets; for (ActionHandler *Action : Actions) { if (auto *CatchAction = dyn_cast(Action)) { - for (auto *Target : CatchAction->getReturnTargets()) { - Branch->addDestination(Target); - } + const auto &CatchTargets = CatchAction->getReturnTargets(); + ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end()); } } + IndirectBrInst *Branch = + IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB); + for (BasicBlock *Target : ReturnTargets) + Branch->addDestination(Target); + + if (!isAsynchronousEHPersonality(Personality)) { + // C++ EH must repopulate the targets later to handle the case of + // targets that are reached indirectly through nested landing pads. + LPadImpls.push_back(std::make_pair(Recover, Branch)); + } + } // End for each landingpad // If nothing got outlined, there is no more processing to be done. if (!HandlersOutlined) return false; + // Replace any nested landing pad stubs with the correct action handler. + // This must be done before we remove unreachable blocks because it + // cleans up references to outlined blocks that will be deleted. + for (auto &LPadPair : NestedLPtoOriginalLP) + completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); + NestedLPtoOriginalLP.clear(); + + // Update the indirectbr instructions' target lists if necessary. + SetVector CheckedTargets; + SmallVector, 4> ActionList; + for (auto &LPadImplPair : LPadImpls) { + IntrinsicInst *Recover = cast(LPadImplPair.first); + IndirectBrInst *Branch = LPadImplPair.second; + + // Get a list of handlers called by + parseEHActions(Recover, ActionList); + + // Add an indirect branch listing possible successors of the catch handlers. + SetVector ReturnTargets; + for (const auto &Action : ActionList) { + if (auto *CA = dyn_cast(Action.get())) { + Function *Handler = cast(CA->getHandlerBlockOrFunc()); + getPossibleReturnTargets(&F, Handler, ReturnTargets); + } + } + ActionList.clear(); + // Clear any targets we already knew about. + for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) { + BasicBlock *KnownTarget = Branch->getDestination(I); + if (ReturnTargets.count(KnownTarget)) + ReturnTargets.remove(KnownTarget); + } + for (BasicBlock *Target : ReturnTargets) { + Branch->addDestination(Target); + // The target may be a block that we excepted to get pruned. + // If it is, it may contain a call to llvm.eh.endcatch. + if (CheckedTargets.insert(Target)) { + // Earlier preparations guarantee that all calls to llvm.eh.endcatch + // will be followed by an unconditional branch. + auto *Br = dyn_cast(Target->getTerminator()); + if (Br && Br->isUnconditional() && + Br != Target->getFirstNonPHIOrDbgOrLifetime()) { + Instruction *Prev = Br->getPrevNode(); + if (match(cast(Prev), m_Intrinsic())) + Prev->eraseFromParent(); + } + } + } + } + LPadImpls.clear(); + + F.addFnAttr("wineh-parent", F.getName()); + // Delete any blocks that were only used by handlers that were outlined above. removeUnreachableBlocks(F); @@ -518,84 +975,59 @@ bool WinEHPrepare::prepareCPPEHHandlers( Builder.SetInsertPoint(Entry->getFirstInsertionPt()); Function *FrameEscapeFn = - Intrinsic::getDeclaration(M, Intrinsic::frameescape); + Intrinsic::getDeclaration(M, Intrinsic::localescape); Function *RecoverFrameFn = - Intrinsic::getDeclaration(M, Intrinsic::framerecover); + Intrinsic::getDeclaration(M, Intrinsic::localrecover); + SmallVector AllocasToEscape; + + // Scan the entry block for an existing call to llvm.localescape. We need to + // keep escaping those objects. + for (Instruction &I : F.front()) { + auto *II = dyn_cast(&I); + if (II && II->getIntrinsicID() == Intrinsic::localescape) { + auto Args = II->arg_operands(); + AllocasToEscape.append(Args.begin(), Args.end()); + II->eraseFromParent(); + break; + } + } // Finally, replace all of the temporary allocas for frame variables used in - // the outlined handlers with calls to llvm.framerecover. - BasicBlock::iterator II = Entry->getFirstInsertionPt(); - Instruction *AllocaInsertPt = II; - SmallVector AllocasToEscape; + // the outlined handlers with calls to llvm.localrecover. for (auto &VarInfoEntry : FrameVarInfo) { Value *ParentVal = VarInfoEntry.first; TinyPtrVector &Allocas = VarInfoEntry.second; + AllocaInst *ParentAlloca = cast(ParentVal); - // If the mapped value isn't already an alloca, we need to spill it if it - // is a computed value or copy it if it is an argument. - AllocaInst *ParentAlloca = dyn_cast(ParentVal); - if (!ParentAlloca) { - if (auto *Arg = dyn_cast(ParentVal)) { - // Lower this argument to a copy and then demote that to the stack. - // We can't just use the argument location because the handler needs - // it to be in the frame allocation block. - // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction. - Value *TrueValue = ConstantInt::getTrue(Context); - Value *UndefValue = UndefValue::get(Arg->getType()); - Instruction *SI = - SelectInst::Create(TrueValue, Arg, UndefValue, - Arg->getName() + ".tmp", AllocaInsertPt); - Arg->replaceAllUsesWith(SI); - // Reset the select operand, because it was clobbered by the RAUW above. - SI->setOperand(1, Arg); - ParentAlloca = DemoteRegToStack(*SI, true, SI); - } else if (auto *PN = dyn_cast(ParentVal)) { - ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt); - } else { - Instruction *ParentInst = cast(ParentVal); - // FIXME: This is a work-around to temporarily handle the case where an - // instruction that is only used in handlers is not sunk. - // Without uses, DemoteRegToStack would just eliminate the value. - // This will fail if ParentInst is an invoke. - if (ParentInst->getNumUses() == 0) { - BasicBlock::iterator InsertPt = ParentInst; - ++InsertPt; - ParentAlloca = - new AllocaInst(ParentInst->getType(), nullptr, - ParentInst->getName() + ".reg2mem", InsertPt); - new StoreInst(ParentInst, ParentAlloca, InsertPt); - } else { - ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst); - } - } - } - - // If the parent alloca is no longer used and only one of the handlers used - // it, erase the parent and leave the copy in the outlined handler. - if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) { - ParentAlloca->eraseFromParent(); - continue; - } + // FIXME: We should try to sink unescaped allocas from the parent frame into + // the child frame. If the alloca is escaped, we have to use the lifetime + // markers to ensure that the alloca is only live within the child frame. // Add this alloca to the list of things to escape. AllocasToEscape.push_back(ParentAlloca); // Next replace all outlined allocas that are mapped to it. for (AllocaInst *TempAlloca : Allocas) { + if (TempAlloca == getCatchObjectSentinel()) + continue; // Skip catch parameter sentinels. Function *HandlerFn = TempAlloca->getParent()->getParent(); - // FIXME: Sink this GEP into the blocks where it is used. + llvm::Value *FP = HandlerToParentFP[HandlerFn]; + assert(FP); + + // FIXME: Sink this localrecover into the blocks where it is used. Builder.SetInsertPoint(TempAlloca); Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); Value *RecoverArgs[] = { - Builder.CreateBitCast(&F, Int8PtrType, ""), - &(HandlerFn->getArgumentList().back()), + Builder.CreateBitCast(&F, Int8PtrType, ""), FP, llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; - Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs); + Instruction *RecoveredAlloca = + Builder.CreateCall(RecoverFrameFn, RecoverArgs); + // Add a pointer bitcast if the alloca wasn't an i8. if (RecoveredAlloca->getType() != TempAlloca->getType()) { RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); - RecoveredAlloca = - Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()); + RecoveredAlloca = cast( + Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType())); } TempAlloca->replaceAllUsesWith(RecoveredAlloca); TempAlloca->removeFromParent(); @@ -604,20 +1036,214 @@ bool WinEHPrepare::prepareCPPEHHandlers( } } // End for each FrameVarInfo entry. - // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry + // Insert 'call void (...)* @llvm.localescape(...)' at the end of the entry // block. Builder.SetInsertPoint(&F.getEntryBlock().back()); Builder.CreateCall(FrameEscapeFn, AllocasToEscape); + if (SEHExceptionCodeSlot) { + if (isAllocaPromotable(SEHExceptionCodeSlot)) { + SmallPtrSet UserBlocks; + for (User *U : SEHExceptionCodeSlot->users()) { + if (auto *Inst = dyn_cast(U)) + UserBlocks.insert(Inst->getParent()); + } + PromoteMemToReg(SEHExceptionCodeSlot, *DT); + // After the promotion, kill off dead instructions. + for (BasicBlock *BB : UserBlocks) + SimplifyInstructionsInBlock(BB, LibInfo); + } + } + // Clean up the handler action maps we created for this function DeleteContainerSeconds(CatchHandlerMap); CatchHandlerMap.clear(); DeleteContainerSeconds(CleanupHandlerMap); CleanupHandlerMap.clear(); + HandlerToParentFP.clear(); + DT = nullptr; + LibInfo = nullptr; + SEHExceptionCodeSlot = nullptr; + EHBlocks.clear(); + NormalBlocks.clear(); + EHReturnBlocks.clear(); return HandlersOutlined; } +void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { + // If the return values of the landing pad instruction are extracted and + // stored to memory, we want to promote the store locations to reg values. + SmallVector EHAllocas; + + // The landingpad instruction returns an aggregate value. Typically, its + // value will be passed to a pair of extract value instructions and the + // results of those extracts are often passed to store instructions. + // In unoptimized code the stored value will often be loaded and then stored + // again. + for (auto *U : LPad->users()) { + ExtractValueInst *Extract = dyn_cast(U); + if (!Extract) + continue; + + for (auto *EU : Extract->users()) { + if (auto *Store = dyn_cast(EU)) { + auto *AV = cast(Store->getPointerOperand()); + EHAllocas.push_back(AV); + } + } + } + + // We can't do this without a dominator tree. + assert(DT); + + if (!EHAllocas.empty()) { + PromoteMemToReg(EHAllocas, *DT); + EHAllocas.clear(); + } + + // After promotion, some extracts may be trivially dead. Remove them. + SmallVector Users(LPad->user_begin(), LPad->user_end()); + for (auto *U : Users) + RecursivelyDeleteTriviallyDeadInstructions(U); +} + +void WinEHPrepare::getPossibleReturnTargets(Function *ParentF, + Function *HandlerF, + SetVector &Targets) { + for (BasicBlock &BB : *HandlerF) { + // If the handler contains landing pads, check for any + // handlers that may return directly to a block in the + // parent function. + if (auto *LPI = BB.getLandingPadInst()) { + IntrinsicInst *Recover = cast(LPI->getNextNode()); + SmallVector, 4> ActionList; + parseEHActions(Recover, ActionList); + for (const auto &Action : ActionList) { + if (auto *CH = dyn_cast(Action.get())) { + Function *NestedF = cast(CH->getHandlerBlockOrFunc()); + getPossibleReturnTargets(ParentF, NestedF, Targets); + } + } + } + + auto *Ret = dyn_cast(BB.getTerminator()); + if (!Ret) + continue; + + // Handler functions must always return a block address. + BlockAddress *BA = cast(Ret->getReturnValue()); + + // If this is the handler for a nested landing pad, the + // return address may have been remapped to a block in the + // parent handler. We're not interested in those. + if (BA->getFunction() != ParentF) + continue; + + Targets.insert(BA->getBasicBlock()); + } +} + +void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, + LandingPadInst *OutlinedLPad, + const LandingPadInst *OriginalLPad, + FrameVarInfoMap &FrameVarInfo) { + // Get the nested block and erase the unreachable instruction that was + // temporarily inserted as its terminator. + LLVMContext &Context = ParentFn->getContext(); + BasicBlock *OutlinedBB = OutlinedLPad->getParent(); + // If the nested landing pad was outlined before the landing pad that enclosed + // it, it will already be in outlined form. In that case, we just need to see + // if the returns and the enclosing branch instruction need to be updated. + IndirectBrInst *Branch = + dyn_cast(OutlinedBB->getTerminator()); + if (!Branch) { + // If the landing pad wasn't in outlined form, it should be a stub with + // an unreachable terminator. + assert(isa(OutlinedBB->getTerminator())); + OutlinedBB->getTerminator()->eraseFromParent(); + // That should leave OutlinedLPad as the last instruction in its block. + assert(&OutlinedBB->back() == OutlinedLPad); + } + + // The original landing pad will have already had its action intrinsic + // built by the outlining loop. We need to clone that into the outlined + // location. It may also be necessary to add references to the exception + // variables to the outlined handler in which this landing pad is nested + // and remap return instructions in the nested handlers that should return + // to an address in the outlined handler. + Function *OutlinedHandlerFn = OutlinedBB->getParent(); + BasicBlock::const_iterator II = OriginalLPad; + ++II; + // The instruction after the landing pad should now be a call to eh.actions. + const Instruction *Recover = II; + const IntrinsicInst *EHActions = cast(Recover); + + // Remap the return target in the nested handler. + SmallVector ActionTargets; + SmallVector, 4> ActionList; + parseEHActions(EHActions, ActionList); + for (const auto &Action : ActionList) { + auto *Catch = dyn_cast(Action.get()); + if (!Catch) + continue; + // The dyn_cast to function here selects C++ catch handlers and skips + // SEH catch handlers. + auto *Handler = dyn_cast(Catch->getHandlerBlockOrFunc()); + if (!Handler) + continue; + // Visit all the return instructions, looking for places that return + // to a location within OutlinedHandlerFn. + for (BasicBlock &NestedHandlerBB : *Handler) { + auto *Ret = dyn_cast(NestedHandlerBB.getTerminator()); + if (!Ret) + continue; + + // Handler functions must always return a block address. + BlockAddress *BA = cast(Ret->getReturnValue()); + // The original target will have been in the main parent function, + // but if it is the address of a block that has been outlined, it + // should be a block that was outlined into OutlinedHandlerFn. + assert(BA->getFunction() == ParentFn); + + // Ignore targets that aren't part of an outlined handler function. + if (!LPadTargetBlocks.count(BA->getBasicBlock())) + continue; + + // If the return value is the address ofF a block that we + // previously outlined into the parent handler function, replace + // the return instruction and add the mapped target to the list + // of possible return addresses. + BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; + assert(MappedBB->getParent() == OutlinedHandlerFn); + BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); + Ret->eraseFromParent(); + ReturnInst::Create(Context, NewBA, &NestedHandlerBB); + ActionTargets.push_back(NewBA); + } + } + ActionList.clear(); + + if (Branch) { + // If the landing pad was already in outlined form, just update its targets. + for (unsigned int I = Branch->getNumDestinations(); I > 0; --I) + Branch->removeDestination(I); + // Add the previously collected action targets. + for (auto *Target : ActionTargets) + Branch->addDestination(Target->getBasicBlock()); + } else { + // If the landing pad was previously stubbed out, fill in its outlined form. + IntrinsicInst *NewEHActions = cast(EHActions->clone()); + OutlinedBB->getInstList().push_back(NewEHActions); + + // Insert an indirect branch into the outlined landing pad BB. + IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB); + // Add the previously collected action targets. + for (auto *Target : ActionTargets) + IBr->addDestination(Target->getBasicBlock()); + } +} + // This function examines a block to determine whether the block ends with a // conditional branch to a catch handler based on a selector comparison. // This function is used both by the WinEHPrepare::findSelectorComparison() and @@ -649,7 +1275,116 @@ static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, return true; } - return false; + return false; +} + +static bool isCatchBlock(BasicBlock *BB) { + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + if (match(cast(II), m_Intrinsic())) + return true; + } + return false; +} + +static BasicBlock *createStubLandingPad(Function *Handler) { + // FIXME: Finish this! + LLVMContext &Context = Handler->getContext(); + BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); + Handler->getBasicBlockList().push_back(StubBB); + IRBuilder<> Builder(StubBB); + LandingPadInst *LPad = Builder.CreateLandingPad( + llvm::StructType::get(Type::getInt8PtrTy(Context), + Type::getInt32Ty(Context), nullptr), + 0); + // Insert a call to llvm.eh.actions so that we don't try to outline this lpad. + Function *ActionIntrin = + Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions); + Builder.CreateCall(ActionIntrin, {}, "recover"); + LPad->setCleanup(true); + Builder.CreateUnreachable(); + return StubBB; +} + +// Cycles through the blocks in an outlined handler function looking for an +// invoke instruction and inserts an invoke of llvm.donothing with an empty +// landing pad if none is found. The code that generates the .xdata tables for +// the handler needs at least one landing pad to identify the parent function's +// personality. +void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) { + ReturnInst *Ret = nullptr; + UnreachableInst *Unreached = nullptr; + for (BasicBlock &BB : *Handler) { + TerminatorInst *Terminator = BB.getTerminator(); + // If we find an invoke, there is nothing to be done. + auto *II = dyn_cast(Terminator); + if (II) + return; + // If we've already recorded a return instruction, keep looking for invokes. + if (!Ret) + Ret = dyn_cast(Terminator); + // If we haven't recorded an unreachable instruction, try this terminator. + if (!Unreached) + Unreached = dyn_cast(Terminator); + } + + // If we got this far, the handler contains no invokes. We should have seen + // at least one return or unreachable instruction. We'll insert an invoke of + // llvm.donothing ahead of that instruction. + assert(Ret || Unreached); + TerminatorInst *Term; + if (Ret) + Term = Ret; + else + Term = Unreached; + BasicBlock *OldRetBB = Term->getParent(); + BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT); + // SplitBlock adds an unconditional branch instruction at the end of the + // parent block. We want to replace that with an invoke call, so we can + // erase it now. + OldRetBB->getTerminator()->eraseFromParent(); + BasicBlock *StubLandingPad = createStubLandingPad(Handler); + Function *F = + Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); + InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); +} + +// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering +// usually doesn't build LLVM IR, so that's probably the wrong place. +Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy, + const Twine &Name, Module *M, + Value *&ParentFP) { + // x64 uses a two-argument prototype where the parent FP is the second + // argument. x86 uses no arguments, just the incoming EBP value. + LLVMContext &Context = M->getContext(); + Type *Int8PtrType = Type::getInt8PtrTy(Context); + FunctionType *FnType; + if (TheTriple.getArch() == Triple::x86_64) { + Type *ArgTys[2] = {Int8PtrType, Int8PtrType}; + FnType = FunctionType::get(RetTy, ArgTys, false); + } else { + FnType = FunctionType::get(RetTy, None, false); + } + + Function *Handler = + Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M); + BasicBlock *Entry = BasicBlock::Create(Context, "entry"); + Handler->getBasicBlockList().push_front(Entry); + if (TheTriple.getArch() == Triple::x86_64) { + ParentFP = &(Handler->getArgumentList().back()); + } else { + assert(M); + Function *FrameAddressFn = + Intrinsic::getDeclaration(M, Intrinsic::frameaddress); + Function *RecoverFPFn = + Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp); + IRBuilder<> Builder(&Handler->getEntryBlock()); + Value *EBP = + Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp"); + Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType); + ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP}); + } + return Handler; } bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, @@ -657,28 +1392,25 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, FrameVarInfoMap &VarInfo) { Module *M = SrcFn->getParent(); LLVMContext &Context = M->getContext(); + Type *Int8PtrType = Type::getInt8PtrTy(Context); // Create a new function to receive the handler contents. - Type *Int8PtrType = Type::getInt8PtrTy(Context); - std::vector ArgTys; - ArgTys.push_back(Int8PtrType); - ArgTys.push_back(Int8PtrType); + Value *ParentFP; Function *Handler; if (Action->getType() == Catch) { - FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false); - Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, - SrcFn->getName() + ".catch", M); + Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M, + ParentFP); } else { - FunctionType *FnType = - FunctionType::get(Type::getVoidTy(Context), ArgTys, false); - Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, - SrcFn->getName() + ".cleanup", M); + Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context), + SrcFn->getName() + ".cleanup", M, ParentFP); } + Handler->setPersonalityFn(SrcFn->getPersonalityFn()); + HandlerToParentFP[Handler] = ParentFP; + Handler->addFnAttr("wineh-parent", SrcFn->getName()); + BasicBlock *Entry = &Handler->getEntryBlock(); // Generate a standard prolog to setup the frame recovery structure. IRBuilder<> Builder(Context); - BasicBlock *Entry = BasicBlock::Create(Context, "entry"); - Handler->getBasicBlockList().push_front(Entry); Builder.SetInsertPoint(Entry); Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); @@ -689,42 +1421,143 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadMap &LPadMap = LPadMaps[LPad]; if (!LPadMap.isInitialized()) LPadMap.mapLandingPad(LPad); - if (Action->getType() == Catch) { - Constant *SelectorType = cast(Action)->getSelector(); - Director.reset( - new WinEHCatchDirector(Handler, SelectorType, VarInfo, LPadMap)); - LPadMap.remapSelector(VMap, ConstantInt::get( Type::getInt32Ty(Context), 1)); + if (auto *CatchAction = dyn_cast(Action)) { + Constant *Sel = CatchAction->getSelector(); + Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo, + LPadMap, NestedLPtoOriginalLP, DT, + EHBlocks)); + LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), + ConstantInt::get(Type::getInt32Ty(Context), 1)); } else { - Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap)); + Director.reset( + new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap)); + LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), + UndefValue::get(Type::getInt32Ty(Context))); } SmallVector Returns; ClonedCodeInfo OutlinedFunctionInfo; + // If the start block contains PHI nodes, we need to map them. + BasicBlock::iterator II = StartBB->begin(); + while (auto *PN = dyn_cast(II)) { + bool Mapped = false; + // Look for PHI values that we have already mapped (such as the selector). + for (Value *Val : PN->incoming_values()) { + if (VMap.count(Val)) { + VMap[PN] = VMap[Val]; + Mapped = true; + } + } + // If we didn't find a match for this value, map it as an undef. + if (!Mapped) { + VMap[PN] = UndefValue::get(PN->getType()); + } + ++II; + } + + // The landing pad value may be used by PHI nodes. It will ultimately be + // eliminated, but we need it in the map for intermediate handling. + VMap[LPad] = UndefValue::get(LPad->getType()); + // Skip over PHIs and, if applicable, landingpad instructions. - BasicBlock::iterator II = StartBB->getFirstInsertionPt(); + II = StartBB->getFirstInsertionPt(); CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, /*ModuleLevelChanges=*/false, Returns, "", &OutlinedFunctionInfo, Director.get()); - // Move all the instructions in the first cloned block into our entry block. - BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry)); - Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList()); - FirstClonedBB->eraseFromParent(); + // Move all the instructions in the cloned "entry" block into our entry block. + // Depending on how the parent function was laid out, the block that will + // correspond to the outlined entry block may not be the first block in the + // list. We can recognize it, however, as the cloned block which has no + // predecessors. Any other block wouldn't have been cloned if it didn't + // have a predecessor which was also cloned. + Function::iterator ClonedIt = std::next(Function::iterator(Entry)); + while (!pred_empty(ClonedIt)) + ++ClonedIt; + BasicBlock *ClonedEntryBB = ClonedIt; + assert(ClonedEntryBB); + Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList()); + ClonedEntryBB->eraseFromParent(); + + // Make sure we can identify the handler's personality later. + addStubInvokeToHandlerIfNeeded(Handler); if (auto *CatchAction = dyn_cast(Action)) { WinEHCatchDirector *CatchDirector = reinterpret_cast(Director.get()); CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); - } - Action->setOutlinedFunction(Handler); + // Look for blocks that are not part of the landing pad that we just + // outlined but terminate with a call to llvm.eh.endcatch and a + // branch to a block that is in the handler we just outlined. + // These blocks will be part of a nested landing pad that intends to + // return to an address in this handler. This case is best handled + // after both landing pads have been outlined, so for now we'll just + // save the association of the blocks in LPadTargetBlocks. The + // return instructions which are created from these branches will be + // replaced after all landing pads have been outlined. + for (const auto MapEntry : VMap) { + // VMap maps all values and blocks that were just cloned, but dead + // blocks which were pruned will map to nullptr. + if (!isa(MapEntry.first) || MapEntry.second == nullptr) + continue; + const BasicBlock *MappedBB = cast(MapEntry.first); + for (auto *Pred : predecessors(const_cast(MappedBB))) { + auto *Branch = dyn_cast(Pred->getTerminator()); + if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) + continue; + BasicBlock::iterator II = const_cast(Branch); + --II; + if (match(cast(II), m_Intrinsic())) { + // This would indicate that a nested landing pad wants to return + // to a block that is outlined into two different handlers. + assert(!LPadTargetBlocks.count(MappedBB)); + LPadTargetBlocks[MappedBB] = cast(MapEntry.second); + } + } + } + } // End if (CatchAction) + + Action->setHandlerBlockOrFunc(Handler); return true; } +/// This BB must end in a selector dispatch. All we need to do is pass the +/// handler block to llvm.eh.actions and list it as a possible indirectbr +/// target. +void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, + BasicBlock *StartBB) { + BasicBlock *HandlerBB; + BasicBlock *NextBB; + Constant *Selector; + bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); + if (Res) { + // If this was EH dispatch, this must be a conditional branch to the handler + // block. + // FIXME: Handle instructions in the dispatch block. Currently we drop them, + // leading to crashes if some optimization hoists stuff here. + assert(CatchAction->getSelector() && HandlerBB && + "expected catch EH dispatch"); + } else { + // This must be a catch-all. Split the block after the landingpad. + assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); + HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT); + } + IRBuilder<> Builder(HandlerBB->getFirstInsertionPt()); + Function *EHCodeFn = Intrinsic::getDeclaration( + StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode); + Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode"); + Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType()); + Builder.CreateStore(Code, SEHExceptionCodeSlot); + CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); + TinyPtrVector Targets(HandlerBB); + CatchAction->setReturnTargets(Targets); +} + void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { // Each instance of this class should only ever be used to map a single // landing pad. @@ -738,9 +1571,8 @@ void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the - // results of those extracts are often passed to store instructions. - // In unoptimized code the stored value will often be loaded and then stored - // again. + // results of those extracts will have been promoted to reg values before + // this routine is called. for (auto *U : LPad->users()) { const ExtractValueInst *Extract = dyn_cast(U); if (!Extract) @@ -751,36 +1583,17 @@ void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { assert((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"); if (Idx == 0) { - // Element 0 doesn't directly corresponds to anything in the WinEH - // scheme. - // It will be stored to a memory location, then later loaded and finally - // the loaded value will be used as the argument to an - // llvm.eh.begincatch - // call. We're tracking it here so that we can skip the store and load. ExtractedEHPtrs.push_back(Extract); } else if (Idx == 1) { - // Element 1 corresponds to the filter selector. We'll map it to 1 for - // matching purposes, but it will also probably be stored to memory and - // reloaded, so we need to track the instuction so that we can map the - // loaded value too. ExtractedSelectors.push_back(Extract); } - - // Look for stores of the extracted values. - for (auto *EU : Extract->users()) { - if (auto *Store = dyn_cast(EU)) { - if (Idx == 1) { - SelectorStores.push_back(Store); - SelectorStoreAddrs.push_back(Store->getPointerOperand()); - } else { - EHPtrStores.push_back(Store); - EHPtrStoreAddrs.push_back(Store->getPointerOperand()); - } - } - } } } +bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { + return BB->getLandingPadInst() == OriginLPad; +} + bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { if (Inst == OriginLPad) return true; @@ -792,47 +1605,20 @@ bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { if (Inst == Extract) return true; } - for (auto *Store : EHPtrStores) { - if (Inst == Store) - return true; - } - for (auto *Store : SelectorStores) { - if (Inst == Store) - return true; - } - return false; } -void LandingPadMap::remapSelector(ValueToValueMapTy &VMap, - Value *MappedValue) const { - // Remap all selector extract instructions to the specified value. +void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, + Value *SelectorValue) const { + // Remap all landing pad extract instructions to the specified values. + for (auto *Extract : ExtractedEHPtrs) + VMap[Extract] = EHPtrValue; for (auto *Extract : ExtractedSelectors) - VMap[Extract] = MappedValue; + VMap[Extract] = SelectorValue; } -bool LandingPadMap::mapIfEHLoad(const LoadInst *Load, - SmallVectorImpl &Stores, - SmallVectorImpl &StoreAddrs) { - // This makes the assumption that a store we've previously seen dominates - // this load instruction. That might seem like a rather huge assumption, - // but given the way that landingpads are constructed its fairly safe. - // FIXME: Add debug/assert code that verifies this. - const Value *LoadAddr = Load->getPointerOperand(); - for (auto *StoreAddr : StoreAddrs) { - if (LoadAddr == StoreAddr) { - // Handle the common debug scenario where this loaded value is stored - // to a different location. - for (auto *U : Load->users()) { - if (auto *Store = dyn_cast(U)) { - Stores.push_back(Store); - StoreAddrs.push_back(Store->getPointerOperand()); - } - } - return true; - } - } - return false; +static bool isLocalAddressCall(const Value *V) { + return match(const_cast(V), m_Intrinsic()); } CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( @@ -842,40 +1628,20 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( if (LPadMap.isLandingPadSpecificInst(Inst)) return CloningDirector::SkipInstruction; - if (auto *Load = dyn_cast(Inst)) { - // Look for loads of (previously suppressed) landingpad values. - // The EHPtr load can be mapped to an undef value as it should only be used - // as an argument to llvm.eh.begincatch, but the selector value needs to be - // mapped to a constant value of 1. This value will be used to simplify the - // branching to always flow to the current handler. - if (LPadMap.mapIfSelectorLoad(Load)) { - VMap[Inst] = ConstantInt::get(SelectorIDType, 1); - return CloningDirector::SkipInstruction; - } - if (LPadMap.mapIfEHPtrLoad(Load)) { - VMap[Inst] = UndefValue::get(Int8PtrType); - return CloningDirector::SkipInstruction; - } - - // Any other loads just get cloned. - return CloningDirector::CloneInstruction; + // Nested landing pads that have not already been outlined will be cloned as + // stubs, with just the landingpad instruction and an unreachable instruction. + // When all landingpads have been outlined, we'll replace this with the + // llvm.eh.actions call and indirect branch created when the landing pad was + // outlined. + if (auto *LPad = dyn_cast(Inst)) { + return handleLandingPad(VMap, LPad, NewBB); } - // Nested landing pads will be cloned as stubs, with just the - // landingpad instruction and an unreachable instruction. When - // all landingpads have been outlined, we'll replace this with the - // llvm.eh.actions call and indirect branch created when the - // landing pad was outlined. - if (auto *NestedLPad = dyn_cast(Inst)) { - Instruction *NewInst = NestedLPad->clone(); - if (NestedLPad->hasName()) - NewInst->setName(NestedLPad->getName()); - // FIXME: Store this mapping somewhere else also. - VMap[NestedLPad] = NewInst; - BasicBlock::InstListType &InstList = NewBB->getInstList(); - InstList.push_back(NewInst); - InstList.push_back(new UnreachableInst(NewBB->getContext())); - return CloningDirector::StopCloningBB; + // Nested landing pads that have already been outlined will be cloned in their + // outlined form, but we need to intercept the ibr instruction to filter out + // targets that do not return to the handler we are outlining. + if (auto *IBr = dyn_cast(Inst)) { + return handleIndirectBr(VMap, IBr, NewBB); } if (auto *Invoke = dyn_cast(Inst)) @@ -884,6 +1650,9 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( if (auto *Resume = dyn_cast(Inst)) return handleResume(VMap, Resume, NewBB); + if (auto *Cmp = dyn_cast(Inst)) + return handleCompare(VMap, Cmp, NewBB); + if (match(Inst, m_Intrinsic())) return handleBeginCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic())) @@ -891,10 +1660,45 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( if (match(Inst, m_Intrinsic())) return handleTypeIdFor(VMap, Inst, NewBB); + // When outlining llvm.localaddress(), remap that to the second argument, + // which is the FP of the parent. + if (isLocalAddressCall(Inst)) { + VMap[Inst] = ParentFP; + return CloningDirector::SkipInstruction; + } + // Continue with the default cloning behavior. return CloningDirector::CloneInstruction; } +CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( + ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { + // If the instruction after the landing pad is a call to llvm.eh.actions + // the landing pad has already been outlined. In this case, we should + // clone it because it may return to a block in the handler we are + // outlining now that would otherwise be unreachable. The landing pads + // are sorted before outlining begins to enable this case to work + // properly. + const Instruction *NextI = LPad->getNextNode(); + if (match(NextI, m_Intrinsic())) + return CloningDirector::CloneInstruction; + + // If the landing pad hasn't been outlined yet, the landing pad we are + // outlining now does not dominate it and so it cannot return to a block + // in this handler. In that case, we can just insert a stub landing + // pad now and patch it up later. + Instruction *NewInst = LPad->clone(); + if (LPad->hasName()) + NewInst->setName(LPad->getName()); + // Save this correlation for later processing. + NestedLPtoOriginalLP[cast(NewInst)] = LPad; + VMap[LPad] = NewInst; + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(NewInst); + InstList.push_back(new UnreachableInst(NewBB->getContext())); + return CloningDirector::StopCloningBB; +} + CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // The argument to the call is some form of the first element of the @@ -909,6 +1713,11 @@ CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( "llvm.eh.begincatch found while " "outlining catch handler."); ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); + if (isa(ExceptionObjectVar)) + return CloningDirector::SkipInstruction; + assert(cast(ExceptionObjectVar)->isStaticAlloca() && + "catch parameter is not static alloca"); + Materializer.escapeCatchObject(ExceptionObjectVar); return CloningDirector::SkipInstruction; } @@ -922,27 +1731,32 @@ WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, // The end catch call can occur in one of two places: either in a // landingpad block that is part of the catch handlers exception mechanism, - // or at the end of the catch block. If it occurs in a landing pad, we must - // skip it and continue so that the landing pad gets cloned. - // FIXME: This case isn't fully supported yet and shouldn't turn up in any - // of the test cases until it is. - if (IntrinCall->getParent()->isLandingPad()) + // or at the end of the catch block. However, a catch-all handler may call + // end catch from the original landing pad. If the call occurs in a nested + // landing pad block, we must skip it and continue so that the landing pad + // gets cloned. + auto *ParentBB = IntrinCall->getParent(); + if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) return CloningDirector::SkipInstruction; - // If an end catch occurs anywhere else the next instruction should be an - // unconditional branch instruction that we want to replace with a return - // to the the address of the branch target. - const BasicBlock *EndCatchBB = IntrinCall->getParent(); - const TerminatorInst *Terminator = EndCatchBB->getTerminator(); - const BranchInst *Branch = dyn_cast(Terminator); - assert(Branch && Branch->isUnconditional()); - assert(std::next(BasicBlock::const_iterator(IntrinCall)) == - BasicBlock::const_iterator(Branch)); - - BasicBlock *ContinueLabel = Branch->getSuccessor(0); - ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel), - NewBB); - ReturnTargets.push_back(ContinueLabel); + // If an end catch occurs anywhere else we want to terminate the handler + // with a return to the code that follows the endcatch call. If the + // next instruction is not an unconditional branch, we need to split the + // block to provide a clear target for the return instruction. + BasicBlock *ContinueBB; + auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); + const BranchInst *Branch = dyn_cast(Next); + if (!Branch || !Branch->isUnconditional()) { + // We're interrupting the cloning process at this location, so the + // const_cast we're doing here will not cause a problem. + ContinueBB = SplitBlock(const_cast(ParentBB), + const_cast(cast(Next))); + } else { + ContinueBB = Branch->getSuccessor(0); + } + + ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); + ReturnTargets.push_back(ContinueBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that @@ -964,6 +1778,48 @@ CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( return CloningDirector::SkipInstruction; } +CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr( + ValueToValueMapTy &VMap, + const IndirectBrInst *IBr, + BasicBlock *NewBB) { + // If this indirect branch is not part of a landing pad block, just clone it. + const BasicBlock *ParentBB = IBr->getParent(); + if (!ParentBB->isLandingPad()) + return CloningDirector::CloneInstruction; + + // If it is part of a landing pad, we want to filter out target blocks + // that are not part of the handler we are outlining. + const LandingPadInst *LPad = ParentBB->getLandingPadInst(); + + // Save this correlation for later processing. + NestedLPtoOriginalLP[cast(VMap[LPad])] = LPad; + + // We should only get here for landing pads that have already been outlined. + assert(match(LPad->getNextNode(), m_Intrinsic())); + + // Copy the indirectbr, but only include targets that were previously + // identified as EH blocks and are dominated by the nested landing pad. + SetVector ReturnTargets; + for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) { + auto *TargetBB = IBr->getDestination(I); + if (EHBlocks.count(const_cast(TargetBB)) && + DT->dominates(ParentBB, TargetBB)) { + DEBUG(dbgs() << " Adding destination " << TargetBB->getName() << "\n"); + ReturnTargets.insert(TargetBB); + } + } + IndirectBrInst *NewBranch = + IndirectBrInst::Create(const_cast(IBr->getAddress()), + ReturnTargets.size(), NewBB); + for (auto *Target : ReturnTargets) + NewBranch->addDestination(const_cast(Target)); + + // The operands and targets of the branch instruction are remapped later + // because it is a terminator. Tell the cloning code to clone the + // blocks we just added to the target list. + return CloningDirector::CloneSuccessors; +} + CloningDirector::CloningAction WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { @@ -980,24 +1836,59 @@ WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, return CloningDirector::StopCloningBB; } +CloningDirector::CloningAction +WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap, + const CmpInst *Compare, BasicBlock *NewBB) { + const IntrinsicInst *IntrinCall = nullptr; + if (match(Compare->getOperand(0), m_Intrinsic())) { + IntrinCall = dyn_cast(Compare->getOperand(0)); + } else if (match(Compare->getOperand(1), + m_Intrinsic())) { + IntrinCall = dyn_cast(Compare->getOperand(1)); + } + if (IntrinCall) { + Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); + // This causes a replacement that will collapse the landing pad CFG based + // on the filter function we intend to match. + if (Selector == CurrentSelector->stripPointerCasts()) { + VMap[Compare] = ConstantInt::get(SelectorIDType, 1); + } else { + VMap[Compare] = ConstantInt::get(SelectorIDType, 0); + } + return CloningDirector::SkipInstruction; + } + return CloningDirector::CloneInstruction; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( + ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { + // The MS runtime will terminate the process if an exception occurs in a + // cleanup handler, so we shouldn't encounter landing pads in the actual + // cleanup code, but they may appear in catch blocks. Depending on where + // we started cloning we may see one, but it will get dropped during dead + // block pruning. + Instruction *NewInst = new UnreachableInst(NewBB->getContext()); + VMap[LPad] = NewInst; + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(NewInst); + return CloningDirector::StopCloningBB; +} + CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { - // Catch blocks within cleanup handlers will always be unreachable. - // We'll insert an unreachable instruction now, but it will be pruned - // before the cloning process is complete. - BasicBlock::InstListType &InstList = NewBB->getInstList(); - InstList.push_back(new UnreachableInst(NewBB->getContext())); + // Cleanup code may flow into catch blocks or the catch block may be part + // of a branch that will be optimized away. We'll insert a return + // instruction now, but it may be pruned before the cloning process is + // complete. + ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { - // Catch blocks within cleanup handlers will always be unreachable. - // We'll insert an unreachable instruction now, but it will be pruned - // before the cloning process is complete. - BasicBlock::InstListType &InstList = NewBB->getInstList(); - InstList.push_back(new UnreachableInst(NewBB->getContext())); - return CloningDirector::StopCloningBB; + // Cleanup handlers nested within catch handlers may begin with a call to + // eh.endcatch. We can just ignore that instruction. + return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( @@ -1018,6 +1909,14 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( return CloningDirector::SkipInstruction; } +CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr( + ValueToValueMapTy &VMap, + const IndirectBrInst *IBr, + BasicBlock *NewBB) { + // No special handling is required for cleanup cloning. + return CloningDirector::CloneInstruction; +} + CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { // All invokes in cleanup handlers can be replaced with calls. @@ -1031,6 +1930,9 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( NewCall->setDebugLoc(Invoke->getDebugLoc()); VMap[Invoke] = NewCall; + // Remap the operands. + llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); + // Insert an unconditional branch to the normal destination. BranchInst::Create(Invoke->getNormalDest(), NewBB); @@ -1039,7 +1941,7 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block. - return CloningDirector::StopCloningBB; + return CloningDirector::CloneSuccessors; } CloningDirector::CloningAction WinEHCleanupDirector::handleResume( @@ -1052,44 +1954,68 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleResume( return CloningDirector::StopCloningBB; } +CloningDirector::CloningAction +WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap, + const CmpInst *Compare, BasicBlock *NewBB) { + if (match(Compare->getOperand(0), m_Intrinsic()) || + match(Compare->getOperand(1), m_Intrinsic())) { + VMap[Compare] = ConstantInt::get(SelectorIDType, 1); + return CloningDirector::SkipInstruction; + } + return CloningDirector::CloneInstruction; +} + WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( - Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo) + Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo) : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { - Builder.SetInsertPoint(&OutlinedFn->getEntryBlock()); + BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); + + // New allocas should be inserted in the entry block, but after the parent FP + // is established if it is an instruction. + Instruction *InsertPoint = EntryBB->getFirstInsertionPt(); + if (auto *FPInst = dyn_cast(ParentFP)) + InsertPoint = FPInst->getNextNode(); + Builder.SetInsertPoint(EntryBB, InsertPoint); } Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { - // If we're asked to materialize a value that is an instruction, we - // temporarily create an alloca in the outlined function and add this - // to the FrameVarInfo map. When all the outlining is complete, we'll - // collect these into a structure, spilling non-alloca values in the - // parent frame as necessary, and replace these temporary allocas with - // GEPs referencing the frame allocation block. - - // If the value is an alloca, the mapping is direct. + // If we're asked to materialize a static alloca, we temporarily create an + // alloca in the outlined function and add this to the FrameVarInfo map. When + // all the outlining is complete, we'll replace these temporary allocas with + // calls to llvm.localrecover. if (auto *AV = dyn_cast(V)) { + assert(AV->isStaticAlloca() && + "cannot materialize un-demoted dynamic alloca"); AllocaInst *NewAlloca = dyn_cast(AV->clone()); Builder.Insert(NewAlloca, AV->getName()); FrameVarInfo[AV].push_back(NewAlloca); return NewAlloca; } - // For other types of instructions or arguments, we need an alloca based on - // the value's type and a load of the alloca. The alloca will be replaced - // by a GEP, but the load will stay. In the parent function, the value will - // be spilled to a location in the frame allocation block. if (isa(V) || isa(V)) { - AllocaInst *NewAlloca = - Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca"); - FrameVarInfo[V].push_back(NewAlloca); - LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload"); - return NewLoad; + Function *Parent = isa(V) + ? cast(V)->getParent()->getParent() + : cast(V)->getParent(); + errs() + << "Failed to demote instruction used in exception handler of function " + << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n"; + errs() << " " << *V << '\n'; + report_fatal_error("WinEHPrepare failed to demote instruction"); } // Don't materialize other values. return nullptr; } +void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { + // Catch parameter objects have to live in the parent frame. When we see a use + // of a catch parameter, add a sentinel to the multimap to indicate that it's + // used from another handler. This will prevent us from trying to sink the + // alloca into the handler and ensure that the catch parameter is present in + // the call to llvm.localescape. + FrameVarInfo[V].push_back(getCatchObjectSentinel()); +} + // This function maps the catch and cleanup handlers that are reachable from the // specified landing pad. The landing pad sequence will have this basic shape: // @@ -1127,13 +2053,7 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); if (NumClauses == 0) { - // This landing pad contains only cleanup code. - CleanupHandler *Action = new CleanupHandler(BB); - CleanupHandlerMap[BB] = Action; - Actions.insertCleanupHandler(Action); - DEBUG(dbgs() << " Assuming cleanup code in block " << BB->getName() - << "\n"); - assert(LPad->isCleanup()); + findCleanupHandlers(Actions, BB, nullptr); return; } @@ -1142,59 +2062,113 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, while (HandlersFound != NumClauses) { BasicBlock *NextBB = nullptr; + // Skip over filter clauses. + if (LPad->isFilter(HandlersFound)) { + ++HandlersFound; + continue; + } + // See if the clause we're looking for is a catch-all. // If so, the catch begins immediately. - if (isa(LPad->getClause(HandlersFound))) { + Constant *ExpectedSelector = + LPad->getClause(HandlersFound)->stripPointerCasts(); + if (isa(ExpectedSelector)) { // The catch all must occur last. assert(HandlersFound == NumClauses - 1); - // See if there is any interesting code executed before the catch. - if (auto *CleanupAction = findCleanupHandler(BB, BB)) { - // Add a cleanup entry to the list - Actions.insertCleanupHandler(CleanupAction); - DEBUG(dbgs() << " Found cleanup code in block " - << CleanupAction->getStartBlock()->getName() << "\n"); + // There can be additional selector dispatches in the call chain that we + // need to ignore. + BasicBlock *CatchBlock = nullptr; + Constant *Selector; + while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { + DEBUG(dbgs() << " Found extra catch dispatch in block " + << CatchBlock->getName() << "\n"); + BB = NextBB; } // Add the catch handler to the action list. - CatchHandler *Action = - new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr); - CatchHandlerMap[BB] = Action; + CatchHandler *Action = nullptr; + if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { + // If the CatchHandlerMap already has an entry for this BB, re-use it. + Action = CatchHandlerMap[BB]; + assert(Action->getSelector() == ExpectedSelector); + } else { + // We don't expect a selector dispatch, but there may be a call to + // llvm.eh.begincatch, which separates catch handling code from + // cleanup code in the same control flow. This call looks for the + // begincatch intrinsic. + Action = findCatchHandler(BB, NextBB, VisitedBlocks); + if (Action) { + // For C++ EH, check if there is any interesting cleanup code before + // we begin the catch. This is important because cleanups cannot + // rethrow exceptions but code called from catches can. For SEH, it + // isn't important if some finally code before a catch-all is executed + // out of line or after recovering from the exception. + if (Personality == EHPersonality::MSVC_CXX) + findCleanupHandlers(Actions, BB, BB); + } else { + // If an action was not found, it means that the control flows + // directly into the catch-all handler and there is no cleanup code. + // That's an expected situation and we must create a catch action. + // Since this is a catch-all handler, the selector won't actually + // appear in the code anywhere. ExpectedSelector here is the constant + // null ptr that we got from the landing pad instruction. + Action = new CatchHandler(BB, ExpectedSelector, nullptr); + CatchHandlerMap[BB] = Action; + } + } Actions.insertCatchHandler(Action); DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); ++HandlersFound; - continue; + + // Once we reach a catch-all, don't expect to hit a resume instruction. + BB = nullptr; + break; } CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); + assert(CatchAction); + // See if there is any interesting code executed before the dispatch. - if (auto *CleanupAction = - findCleanupHandler(BB, CatchAction->getStartBlock())) { - // Add a cleanup entry to the list - Actions.insertCleanupHandler(CleanupAction); - DEBUG(dbgs() << " Found cleanup code in block " - << CleanupAction->getStartBlock()->getName() << "\n"); - } + findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); - assert(CatchAction); - ++HandlersFound; + // When the source program contains multiple nested try blocks the catch + // handlers can get strung together in such a way that we can encounter + // a dispatch for a selector that we've already had a handler for. + if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) { + ++HandlersFound; + + // Add the catch handler to the action list. + DEBUG(dbgs() << " Found catch dispatch in block " + << CatchAction->getStartBlock()->getName() << "\n"); + Actions.insertCatchHandler(CatchAction); + } else { + // Under some circumstances optimized IR will flow unconditionally into a + // handler block without checking the selector. This can only happen if + // the landing pad has a catch-all handler and the handler for the + // preceeding catch clause is identical to the catch-call handler + // (typically an empty catch). In this case, the handler must be shared + // by all remaining clauses. + if (isa( + CatchAction->getSelector()->stripPointerCasts())) { + DEBUG(dbgs() << " Applying early catch-all handler in block " + << CatchAction->getStartBlock()->getName() + << " to all remaining clauses.\n"); + Actions.insertCatchHandler(CatchAction); + return; + } - // Add the catch handler to the action list. - Actions.insertCatchHandler(CatchAction); - DEBUG(dbgs() << " Found catch dispatch in block " - << CatchAction->getStartBlock()->getName() << "\n"); + DEBUG(dbgs() << " Found extra catch dispatch in block " + << CatchAction->getStartBlock()->getName() << "\n"); + } // Move on to the block after the catch handler. BB = NextBB; } - // See if there is any interesting code executed before the resume. - if (auto *CleanupAction = findCleanupHandler(BB, BB)) { - // Add a cleanup entry to the list - Actions.insertCleanupHandler(CleanupAction); - DEBUG(dbgs() << " Found cleanup code in block " - << CleanupAction->getStartBlock()->getName() << "\n"); - } + // If we didn't wind up in a catch-all, see if there is any interesting code + // executed before the resume. + findCleanupHandlers(Actions, BB, BB); // It's possible that some optimization moved code into a landingpad that // wasn't @@ -1238,6 +2212,18 @@ CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, CatchHandlerMap[BB] = Action; return Action; } + // If we encounter a block containing an llvm.eh.begincatch before we + // find a selector dispatch block, the handler is assumed to be + // reached unconditionally. This happens for catch-all blocks, but + // it can also happen for other catch handlers that have been combined + // with the catch-all handler during optimization. + if (isCatchBlock(BB)) { + PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext()); + Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy); + CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr); + CatchHandlerMap[BB] = Action; + return Action; + } } // Visit each successor, looking for the dispatch. @@ -1254,20 +2240,52 @@ CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, return nullptr; } -// These are helper functions to combine repeated code from findCleanupHandler. -static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap, - BasicBlock *BB) { +// These are helper functions to combine repeated code from findCleanupHandlers. +static void createCleanupHandler(LandingPadActions &Actions, + CleanupHandlerMapTy &CleanupHandlerMap, + BasicBlock *BB) { CleanupHandler *Action = new CleanupHandler(BB); CleanupHandlerMap[BB] = Action; - return Action; + Actions.insertCleanupHandler(Action); + DEBUG(dbgs() << " Found cleanup code in block " + << Action->getStartBlock()->getName() << "\n"); +} + +static CallSite matchOutlinedFinallyCall(BasicBlock *BB, + Instruction *MaybeCall) { + // Look for finally blocks that Clang has already outlined for us. + // %fp = call i8* @llvm.localaddress() + // call void @"fin$parent"(iN 1, i8* %fp) + if (isLocalAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) + MaybeCall = MaybeCall->getNextNode(); + CallSite FinallyCall(MaybeCall); + if (!FinallyCall || FinallyCall.arg_size() != 2) + return CallSite(); + if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) + return CallSite(); + if (!isLocalAddressCall(FinallyCall.getArgument(1))) + return CallSite(); + return FinallyCall; +} + +static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { + // Skip single ubr blocks. + while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { + auto *Br = dyn_cast(BB->getTerminator()); + if (Br && Br->isUnconditional()) + BB = Br->getSuccessor(0); + else + return BB; + } + return BB; } // This function searches starting with the input block for the next block that // contains code that is not part of a catch handler and would not be eliminated // during handler outlining. // -CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, - BasicBlock *EndBB) { +void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, + BasicBlock *StartBB, BasicBlock *EndBB) { // Here we will skip over the following: // // landing pad prolog: @@ -1284,6 +2302,7 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, // Anything other than an unconditional branch will kick us out of this loop // one way or another. while (BB) { + BB = followSingleUnconditionalBranches(BB); // If we've already scanned this block, don't scan it again. If it is // a cleanup block, there will be an action in the CleanupHandlerMap. // If we've scanned it and it is not a cleanup block, there will be a @@ -1292,23 +2311,26 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, // avoid creating a null entry for blocks we haven't scanned. if (CleanupHandlerMap.count(BB)) { if (auto *Action = CleanupHandlerMap[BB]) { - return cast(Action); + Actions.insertCleanupHandler(Action); + DEBUG(dbgs() << " Found cleanup code in block " + << Action->getStartBlock()->getName() << "\n"); + // FIXME: This cleanup might chain into another, and we need to discover + // that. + return; } else { // Here we handle the case where the cleanup handler map contains a // value for this block but the value is a nullptr. This means that // we have previously analyzed the block and determined that it did // not contain any cleanup code. Based on the earlier analysis, we - // know the the block must end in either an unconditional branch, a + // know the block must end in either an unconditional branch, a // resume or a conditional branch that is predicated on a comparison // with a selector. Either the resume or the selector dispatch // would terminate the search for cleanup code, so the unconditional // branch is the only case for which we might need to continue // searching. - if (BB == EndBB) - return nullptr; - BasicBlock *SuccBB; - if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB))) - return nullptr; + BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); + if (SuccBB == BB || SuccBB == EndBB) + return; BB = SuccBB; continue; } @@ -1331,21 +2353,23 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, } // Look for the bare resume pattern: - // %exn2 = load i8** %exn.slot - // %sel2 = load i32* %ehselector.slot - // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0 - // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1 + // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 + // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 // resume { i8*, i32 } %lpad.val2 if (auto *Resume = dyn_cast(Terminator)) { InsertValueInst *Insert1 = nullptr; InsertValueInst *Insert2 = nullptr; - if (!isa(Resume->getOperand(0))) { - Insert2 = dyn_cast(Resume->getOperand(0)); + Value *ResumeVal = Resume->getOperand(0); + // If the resume value isn't a phi or landingpad value, it should be a + // series of insertions. Identify them so we can avoid them when scanning + // for cleanups. + if (!isa(ResumeVal) && !isa(ResumeVal)) { + Insert2 = dyn_cast(ResumeVal); if (!Insert2) - return createCleanupHandler(CleanupHandlerMap, BB); + return createCleanupHandler(Actions, CleanupHandlerMap, BB); Insert1 = dyn_cast(Insert2->getAggregateOperand()); if (!Insert1) - return createCleanupHandler(CleanupHandlerMap, BB); + return createCleanupHandler(Actions, CleanupHandlerMap, BB); } for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { @@ -1356,66 +2380,517 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, continue; if (!Inst->hasOneUse() || (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { - return createCleanupHandler(CleanupHandlerMap, BB); + return createCleanupHandler(Actions, CleanupHandlerMap, BB); } } - return nullptr; + return; } BranchInst *Branch = dyn_cast(Terminator); - if (Branch) { - if (Branch->isConditional()) { - // Look for the selector dispatch. - // %sel = load i32* %ehselector.slot - // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) - // %matches = icmp eq i32 %sel12, %2 - // br i1 %matches, label %catch14, label %eh.resume - CmpInst *Compare = dyn_cast(Branch->getCondition()); - if (!Compare || !Compare->isEquality()) - return createCleanupHandler(CleanupHandlerMap, BB); - for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), - IE = BB->end(); - II != IE; ++II) { - Instruction *Inst = II; - if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) - continue; - if (Inst == Compare || Inst == Branch) - continue; - if (!Inst->hasOneUse() || (Inst->user_back() != Compare)) - return createCleanupHandler(CleanupHandlerMap, BB); - if (match(Inst, m_Intrinsic())) - continue; - if (!isa(Inst)) - return createCleanupHandler(CleanupHandlerMap, BB); - } - // The selector dispatch block should always terminate our search. - assert(BB == EndBB); - return nullptr; - } else { - // Look for empty blocks with unconditional branches. - for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), - IE = BB->end(); - II != IE; ++II) { - Instruction *Inst = II; - if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) - continue; - if (Inst == Branch) - continue; - if (match(Inst, m_Intrinsic())) - continue; - // Anything else makes this interesting cleanup code. - return createCleanupHandler(CleanupHandlerMap, BB); + if (Branch && Branch->isConditional()) { + // Look for the selector dispatch. + // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) + // %matches = icmp eq i32 %sel, %2 + // br i1 %matches, label %catch14, label %eh.resume + CmpInst *Compare = dyn_cast(Branch->getCondition()); + if (!Compare || !Compare->isEquality()) + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + Instruction *Inst = II; + if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) + continue; + if (Inst == Compare || Inst == Branch) + continue; + if (match(Inst, m_Intrinsic())) + continue; + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } + // The selector dispatch block should always terminate our search. + assert(BB == EndBB); + return; + } + + if (isAsynchronousEHPersonality(Personality)) { + // If this is a landingpad block, split the block at the first non-landing + // pad instruction. + Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); + if (LPadMap) { + while (MaybeCall != BB->getTerminator() && + LPadMap->isLandingPadSpecificInst(MaybeCall)) + MaybeCall = MaybeCall->getNextNode(); + } + + // Look for outlined finally calls on x64, since those happen to match the + // prototype provided by the runtime. + if (TheTriple.getArch() == Triple::x86_64) { + if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { + Function *Fin = FinallyCall.getCalledFunction(); + assert(Fin && "outlined finally call should be direct"); + auto *Action = new CleanupHandler(BB); + Action->setHandlerBlockOrFunc(Fin); + Actions.insertCleanupHandler(Action); + CleanupHandlerMap[BB] = Action; + DEBUG(dbgs() << " Found frontend-outlined finally call to " + << Fin->getName() << " in block " + << Action->getStartBlock()->getName() << "\n"); + + // Split the block if there were more interesting instructions and + // look for finally calls in the normal successor block. + BasicBlock *SuccBB = BB; + if (FinallyCall.getInstruction() != BB->getTerminator() && + FinallyCall.getInstruction()->getNextNode() != + BB->getTerminator()) { + SuccBB = + SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT); + } else { + if (FinallyCall.isInvoke()) { + SuccBB = cast(FinallyCall.getInstruction()) + ->getNormalDest(); + } else { + SuccBB = BB->getUniqueSuccessor(); + assert(SuccBB && + "splitOutlinedFinallyCalls didn't insert a branch"); + } + } + BB = SuccBB; + if (BB == EndBB) + return; + continue; } - if (BB == EndBB) - return nullptr; - // The branch was unconditional. - BB = Branch->getSuccessor(0); + } + } + + // Anything else is either a catch block or interesting cleanup code. + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + Instruction *Inst = II; + if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) + continue; + // Unconditional branches fall through to this loop. + if (Inst == Branch) continue; - } // End else of if branch was conditional - } // End if Branch + // If this is a catch block, there is no cleanup code to be found. + if (match(Inst, m_Intrinsic())) + return; + // If this a nested landing pad, it may contain an endcatch call. + if (match(Inst, m_Intrinsic())) + return; + // Anything else makes this interesting cleanup code. + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } - // Anything else makes this interesting cleanup code. - return createCleanupHandler(CleanupHandlerMap, BB); + // Only unconditional branches in empty blocks should get this far. + assert(Branch && Branch->isUnconditional()); + if (BB == EndBB) + return; + BB = Branch->getSuccessor(0); } - return nullptr; +} + +// This is a public function, declared in WinEHFuncInfo.h and is also +// referenced by WinEHNumbering in FunctionLoweringInfo.cpp. +void llvm::parseEHActions( + const IntrinsicInst *II, + SmallVectorImpl> &Actions) { + assert(II->getIntrinsicID() == Intrinsic::eh_actions && + "attempted to parse non eh.actions intrinsic"); + for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { + uint64_t ActionKind = + cast(II->getArgOperand(I))->getZExtValue(); + if (ActionKind == /*catch=*/1) { + auto *Selector = cast(II->getArgOperand(I + 1)); + ConstantInt *EHObjIndex = cast(II->getArgOperand(I + 2)); + int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); + Constant *Handler = cast(II->getArgOperand(I + 3)); + I += 4; + auto CH = make_unique(/*BB=*/nullptr, Selector, + /*NextBB=*/nullptr); + CH->setHandlerBlockOrFunc(Handler); + CH->setExceptionVarIndex(EHObjIndexVal); + Actions.push_back(std::move(CH)); + } else if (ActionKind == 0) { + Constant *Handler = cast(II->getArgOperand(I + 1)); + I += 2; + auto CH = make_unique(/*BB=*/nullptr); + CH->setHandlerBlockOrFunc(Handler); + Actions.push_back(std::move(CH)); + } else { + llvm_unreachable("Expected either a catch or cleanup handler!"); + } + } + std::reverse(Actions.begin(), Actions.end()); +} + +namespace { +struct WinEHNumbering { + WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), + CurrentBaseState(-1), NextState(0) {} + + WinEHFuncInfo &FuncInfo; + int CurrentBaseState; + int NextState; + + SmallVector, 4> HandlerStack; + SmallPtrSet VisitedHandlers; + + int currentEHNumber() const { + return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState(); + } + + void createUnwindMapEntry(int ToState, ActionHandler *AH); + void createTryBlockMapEntry(int TryLow, int TryHigh, + ArrayRef Handlers); + void processCallSite(MutableArrayRef> Actions, + ImmutableCallSite CS); + void popUnmatchedActions(int FirstMismatch); + void calculateStateNumbers(const Function &F); + void findActionRootLPads(const Function &F); +}; +} + +void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { + WinEHUnwindMapEntry UME; + UME.ToState = ToState; + if (auto *CH = dyn_cast_or_null(AH)) + UME.Cleanup = cast(CH->getHandlerBlockOrFunc()); + else + UME.Cleanup = nullptr; + FuncInfo.UnwindMap.push_back(UME); +} + +void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, + ArrayRef Handlers) { + // See if we already have an entry for this set of handlers. + // This is using iterators rather than a range-based for loop because + // if we find the entry we're looking for we'll need the iterator to erase it. + int NumHandlers = Handlers.size(); + auto I = FuncInfo.TryBlockMap.begin(); + auto E = FuncInfo.TryBlockMap.end(); + for ( ; I != E; ++I) { + auto &Entry = *I; + if (Entry.HandlerArray.size() != (size_t)NumHandlers) + continue; + int N; + for (N = 0; N < NumHandlers; ++N) { + if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc()) + break; // breaks out of inner loop + } + // If all the handlers match, this is what we were looking for. + if (N == NumHandlers) { + break; + } + } + + // If we found an existing entry for this set of handlers, extend the range + // but move the entry to the end of the map vector. The order of entries + // in the map is critical to the way that the runtime finds handlers. + // FIXME: Depending on what has happened with block ordering, this may + // incorrectly combine entries that should remain separate. + if (I != E) { + // Copy the existing entry. + WinEHTryBlockMapEntry Entry = *I; + Entry.TryLow = std::min(TryLow, Entry.TryLow); + Entry.TryHigh = std::max(TryHigh, Entry.TryHigh); + assert(Entry.TryLow <= Entry.TryHigh); + // Erase the old entry and add this one to the back. + FuncInfo.TryBlockMap.erase(I); + FuncInfo.TryBlockMap.push_back(Entry); + return; + } + + // If we didn't find an entry, create a new one. + WinEHTryBlockMapEntry TBME; + TBME.TryLow = TryLow; + TBME.TryHigh = TryHigh; + assert(TBME.TryLow <= TBME.TryHigh); + for (CatchHandler *CH : Handlers) { + WinEHHandlerType HT; + if (CH->getSelector()->isNullValue()) { + HT.Adjectives = 0x40; + HT.TypeDescriptor = nullptr; + } else { + auto *GV = cast(CH->getSelector()->stripPointerCasts()); + // Selectors are always pointers to GlobalVariables with 'struct' type. + // The struct has two fields, adjectives and a type descriptor. + auto *CS = cast(GV->getInitializer()); + HT.Adjectives = + cast(CS->getAggregateElement(0U))->getZExtValue(); + HT.TypeDescriptor = + cast(CS->getAggregateElement(1)->stripPointerCasts()); + } + HT.Handler = cast(CH->getHandlerBlockOrFunc()); + HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); + TBME.HandlerArray.push_back(HT); + } + FuncInfo.TryBlockMap.push_back(TBME); +} + +static void print_name(const Value *V) { +#ifndef NDEBUG + if (!V) { + DEBUG(dbgs() << "null"); + return; + } + + if (const auto *F = dyn_cast(V)) + DEBUG(dbgs() << F->getName()); + else + DEBUG(V->dump()); +#endif +} + +void WinEHNumbering::processCallSite( + MutableArrayRef> Actions, + ImmutableCallSite CS) { + DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber() + << ") for: "); + print_name(CS ? CS.getCalledValue() : nullptr); + DEBUG(dbgs() << '\n'); + + DEBUG(dbgs() << "HandlerStack: \n"); + for (int I = 0, E = HandlerStack.size(); I < E; ++I) { + DEBUG(dbgs() << " "); + print_name(HandlerStack[I]->getHandlerBlockOrFunc()); + DEBUG(dbgs() << '\n'); + } + DEBUG(dbgs() << "Actions: \n"); + for (int I = 0, E = Actions.size(); I < E; ++I) { + DEBUG(dbgs() << " "); + print_name(Actions[I]->getHandlerBlockOrFunc()); + DEBUG(dbgs() << '\n'); + } + int FirstMismatch = 0; + for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; + ++FirstMismatch) { + if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != + Actions[FirstMismatch]->getHandlerBlockOrFunc()) + break; + } + + // Remove unmatched actions from the stack and process their EH states. + popUnmatchedActions(FirstMismatch); + + DEBUG(dbgs() << "Pushing actions for CallSite: "); + print_name(CS ? CS.getCalledValue() : nullptr); + DEBUG(dbgs() << '\n'); + + bool LastActionWasCatch = false; + const LandingPadInst *LastRootLPad = nullptr; + for (size_t I = FirstMismatch; I != Actions.size(); ++I) { + // We can reuse eh states when pushing two catches for the same invoke. + bool CurrActionIsCatch = isa(Actions[I].get()); + auto *Handler = cast(Actions[I]->getHandlerBlockOrFunc()); + // Various conditions can lead to a handler being popped from the + // stack and re-pushed later. That shouldn't create a new state. + // FIXME: Can code optimization lead to re-used handlers? + if (FuncInfo.HandlerEnclosedState.count(Handler)) { + // If we already assigned the state enclosed by this handler re-use it. + Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]); + continue; + } + const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler]; + if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) { + DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n"); + Actions[I]->setEHState(currentEHNumber()); + } else { + DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", "); + print_name(Actions[I]->getHandlerBlockOrFunc()); + DEBUG(dbgs() << ") with EH state " << NextState << "\n"); + createUnwindMapEntry(currentEHNumber(), Actions[I].get()); + DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n"); + Actions[I]->setEHState(NextState); + NextState++; + } + HandlerStack.push_back(std::move(Actions[I])); + LastActionWasCatch = CurrActionIsCatch; + LastRootLPad = RootLPad; + } + + // This is used to defer numbering states for a handler until after the + // last time it appears in an invoke action list. + if (CS.isInvoke()) { + for (int I = 0, E = HandlerStack.size(); I < E; ++I) { + auto *Handler = cast(HandlerStack[I]->getHandlerBlockOrFunc()); + if (FuncInfo.LastInvoke[Handler] != cast(CS.getInstruction())) + continue; + FuncInfo.LastInvokeVisited[Handler] = true; + DEBUG(dbgs() << "Last invoke of "); + print_name(Handler); + DEBUG(dbgs() << " has been visited.\n"); + } + } + + DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); + print_name(CS ? CS.getCalledValue() : nullptr); + DEBUG(dbgs() << '\n'); +} + +void WinEHNumbering::popUnmatchedActions(int FirstMismatch) { + // Don't recurse while we are looping over the handler stack. Instead, defer + // the numbering of the catch handlers until we are done popping. + SmallVector PoppedCatches; + for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { + std::unique_ptr Handler = HandlerStack.pop_back_val(); + if (isa(Handler.get())) + PoppedCatches.push_back(cast(Handler.release())); + } + + int TryHigh = NextState - 1; + int LastTryLowIdx = 0; + for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { + CatchHandler *CH = PoppedCatches[I]; + DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n"); + if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { + int TryLow = CH->getEHState(); + auto Handlers = + makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); + DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh); + for (size_t J = 0; J < Handlers.size(); ++J) { + DEBUG(dbgs() << ", "); + print_name(Handlers[J]->getHandlerBlockOrFunc()); + } + DEBUG(dbgs() << ")\n"); + createTryBlockMapEntry(TryLow, TryHigh, Handlers); + LastTryLowIdx = I + 1; + } + } + + for (CatchHandler *CH : PoppedCatches) { + if (auto *F = dyn_cast(CH->getHandlerBlockOrFunc())) { + if (FuncInfo.LastInvokeVisited[F]) { + DEBUG(dbgs() << "Assigning base state " << NextState << " to "); + print_name(F); + DEBUG(dbgs() << '\n'); + FuncInfo.HandlerBaseState[F] = NextState; + DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() + << ", null)\n"); + createUnwindMapEntry(currentEHNumber(), nullptr); + ++NextState; + calculateStateNumbers(*F); + } + else { + DEBUG(dbgs() << "Deferring handling of "); + print_name(F); + DEBUG(dbgs() << " until last invoke visited.\n"); + } + } + delete CH; + } +} + +void WinEHNumbering::calculateStateNumbers(const Function &F) { + auto I = VisitedHandlers.insert(&F); + if (!I.second) + return; // We've already visited this handler, don't renumber it. + + int OldBaseState = CurrentBaseState; + if (FuncInfo.HandlerBaseState.count(&F)) { + CurrentBaseState = FuncInfo.HandlerBaseState[&F]; + } + + size_t SavedHandlerStackSize = HandlerStack.size(); + + DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); + SmallVector, 4> ActionList; + for (const BasicBlock &BB : F) { + for (const Instruction &I : BB) { + const auto *CI = dyn_cast(&I); + if (!CI || CI->doesNotThrow()) + continue; + processCallSite(None, CI); + } + const auto *II = dyn_cast(BB.getTerminator()); + if (!II) + continue; + const LandingPadInst *LPI = II->getLandingPadInst(); + auto *ActionsCall = dyn_cast(LPI->getNextNode()); + if (!ActionsCall) + continue; + parseEHActions(ActionsCall, ActionList); + if (ActionList.empty()) + continue; + processCallSite(ActionList, II); + ActionList.clear(); + FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); + DEBUG(dbgs() << "Assigning state " << currentEHNumber() + << " to landing pad at " << LPI->getParent()->getName() + << '\n'); + } + + // Pop any actions that were pushed on the stack for this function. + popUnmatchedActions(SavedHandlerStackSize); + + DEBUG(dbgs() << "Assigning max state " << NextState - 1 + << " to " << F.getName() << '\n'); + FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; + + CurrentBaseState = OldBaseState; +} + +// This function follows the same basic traversal as calculateStateNumbers +// but it is necessary to identify the root landing pad associated +// with each action before we start assigning state numbers. +void WinEHNumbering::findActionRootLPads(const Function &F) { + auto I = VisitedHandlers.insert(&F); + if (!I.second) + return; // We've already visited this handler, don't revisit it. + + SmallVector, 4> ActionList; + for (const BasicBlock &BB : F) { + const auto *II = dyn_cast(BB.getTerminator()); + if (!II) + continue; + const LandingPadInst *LPI = II->getLandingPadInst(); + auto *ActionsCall = dyn_cast(LPI->getNextNode()); + if (!ActionsCall) + continue; + + assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); + parseEHActions(ActionsCall, ActionList); + if (ActionList.empty()) + continue; + for (int I = 0, E = ActionList.size(); I < E; ++I) { + if (auto *Handler + = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) { + FuncInfo.LastInvoke[Handler] = II; + // Don't replace the root landing pad if we previously saw this + // handler in a different function. + if (FuncInfo.RootLPad.count(Handler) && + FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F) + continue; + DEBUG(dbgs() << "Setting root lpad for "); + print_name(Handler); + DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n'); + FuncInfo.RootLPad[Handler] = LPI; + } + } + // Walk the actions again and look for nested handlers. This has to + // happen after all of the actions have been processed in the current + // function. + for (int I = 0, E = ActionList.size(); I < E; ++I) + if (auto *Handler + = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) + findActionRootLPads(*Handler); + ActionList.clear(); + } +} + +void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn, + WinEHFuncInfo &FuncInfo) { + // Return if it's already been done. + if (!FuncInfo.LandingPadStateMap.empty()) + return; + + WinEHNumbering Num(FuncInfo); + Num.findActionRootLPads(*ParentFn); + // The VisitedHandlers list is used by both findActionRootLPads and + // calculateStateNumbers, but both functions need to visit all handlers. + Num.VisitedHandlers.clear(); + Num.calculateStateNumbers(*ParentFn); + // Pop everything on the handler stack. + // It may be necessary to call this more than once because a handler can + // be pushed on the stack as a result of clearing the stack. + while (!Num.HandlerStack.empty()) + Num.processCallSite(None, ImmutableCallSite()); }