X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FExecutionEngine.cpp;h=053d96020d37374df235044b739c16efb9fbf9e0;hb=1e8613212286a8066001c8a3f516da89d250e05d;hp=3c388d32f3668d31c406517e60c744940e3d8143;hpb=4fe16d607d11e29d742208894909733f5ad01f8f;p=oota-llvm.git diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp index 3c388d32f36..053d96020d3 100644 --- a/lib/ExecutionEngine/ExecutionEngine.cpp +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -13,54 +13,124 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" +#include "llvm/ExecutionEngine/ExecutionEngine.h" + #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MutexGuard.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/System/DynamicLibrary.h" +#include "llvm/System/Host.h" #include "llvm/Target/TargetData.h" +#include +#include using namespace llvm; STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); -ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; -ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; +ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode) = 0; +ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, + std::string *ErrorStr) = 0; +ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; + -ExecutionEngine::ExecutionEngine(ModuleProvider *P) { +ExecutionEngine::ExecutionEngine(ModuleProvider *P) + : EEState(*this), + LazyFunctionCreator(0) { LazyCompilationDisabled = false; + GVCompilationDisabled = false; + SymbolSearchingDisabled = false; + DlsymStubsEnabled = false; Modules.push_back(P); assert(P && "ModuleProvider is null?"); } -ExecutionEngine::ExecutionEngine(Module *M) { - LazyCompilationDisabled = false; - assert(M && "Module is null?"); - Modules.push_back(new ExistingModuleProvider(M)); -} - ExecutionEngine::~ExecutionEngine() { + clearAllGlobalMappings(); for (unsigned i = 0, e = Modules.size(); i != e; ++i) delete Modules[i]; } +char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); + return new char[GVSize]; +} + +/// removeModuleProvider - Remove a ModuleProvider from the list of modules. +/// Relases the Module from the ModuleProvider, materializing it in the +/// process, and returns the materialized Module. +Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, + std::string *ErrInfo) { + for(SmallVector::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + ModuleProvider *MP = *I; + if (MP == P) { + Modules.erase(I); + clearGlobalMappingsFromModule(MP->getModule()); + return MP->releaseModule(ErrInfo); + } + } + return NULL; +} + +/// deleteModuleProvider - Remove a ModuleProvider from the list of modules, +/// and deletes the ModuleProvider and owned Module. Avoids materializing +/// the underlying module. +void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, + std::string *ErrInfo) { + for(SmallVector::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + ModuleProvider *MP = *I; + if (MP == P) { + Modules.erase(I); + clearGlobalMappingsFromModule(MP->getModule()); + delete MP; + return; + } + } +} + /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { - if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) + if (Function *F = Modules[i]->getModule()->getFunction(FnName)) return F; } return 0; } +void *ExecutionEngineState::RemoveMapping( + const MutexGuard &, const GlobalValue *ToUnmap) { + std::map::iterator I = + GlobalAddressMap.find(getVH(ToUnmap)); + void *OldVal; + if (I == GlobalAddressMap.end()) + OldVal = 0; + else { + OldVal = I->second; + GlobalAddressMap.erase(I); + } + + GlobalAddressReverseMap.erase(OldVal); + return OldVal; +} + /// addGlobalMapping - Tell the execution engine that the specified global is /// at the specified location. This is used internally as functions are JIT'd /// and as global variables are laid out in memory. It can and should also be @@ -68,14 +138,17 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { /// existing data in memory. void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - - void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + + DEBUG(errs() << "JIT: Map \'" << GV->getName() + << "\' to [" << Addr << "]\n";); + void *&CurVal = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } @@ -86,35 +159,53 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); - state.getGlobalAddressMap(locked).clear(); - state.getGlobalAddressReverseMap(locked).clear(); + EEState.getGlobalAddressMap(locked).clear(); + EEState.getGlobalAddressReverseMap(locked).clear(); +} + +/// clearGlobalMappingsFromModule - Clear all global mappings that came from a +/// particular module, because it has been removed from the JIT. +void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { + MutexGuard locked(lock); + + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { + EEState.RemoveMapping(locked, FI); + } + for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); + GI != GE; ++GI) { + EEState.RemoveMapping(locked, GI); + } } /// updateGlobalMapping - Replace an existing mapping for GV with a new /// address. This updates both maps as required. If "Addr" is null, the /// entry for the global is removed from the mappings. -void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { +void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - + + std::map &Map = + EEState.getGlobalAddressMap(locked); + // Deleting from the mapping? if (Addr == 0) { - state.getGlobalAddressMap(locked).erase(GV); - if (!state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(Addr); - return; + return EEState.RemoveMapping(locked, GV); } - void *&CurVal = state.getGlobalAddressMap(locked)[GV]; - if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(CurVal); + void *&CurVal = Map[EEState.getVH(GV)]; + void *OldVal = CurVal; + + if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) + EEState.getGlobalAddressReverseMap(locked).erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } + return OldVal; } /// getPointerToGlobalIfAvailable - This returns the address of the specified @@ -123,9 +214,9 @@ void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); - std::map::iterator I = - state.getGlobalAddressMap(locked).find(GV); - return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; + std::map::iterator I = + EEState.getGlobalAddressMap(locked).find(EEState.getVH(GV)); + return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; } /// getGlobalValueAtAddress - Return the LLVM global value object that starts @@ -135,34 +226,34 @@ const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. - if (state.getGlobalAddressReverseMap(locked).empty()) { - for (std::map::iterator - I = state.getGlobalAddressMap(locked).begin(), - E = state.getGlobalAddressMap(locked).end(); I != E; ++I) - state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, + if (EEState.getGlobalAddressReverseMap(locked).empty()) { + for (std::map::iterator + I = EEState.getGlobalAddressMap(locked).begin(), + E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) + EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); } - std::map::iterator I = - state.getGlobalAddressReverseMap(locked).find(Addr); - return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; + std::map >::iterator I = + EEState.getGlobalAddressReverseMap(locked).find(Addr); + return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; } // CreateArgv - Turn a vector of strings into a nice argv style array of // pointers to null terminated strings. // -static void *CreateArgv(ExecutionEngine *EE, +static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, const std::vector &InputArgv) { unsigned PtrSize = EE->getTargetData()->getPointerSize(); char *Result = new char[(InputArgv.size()+1)*PtrSize]; - DOUT << "ARGV = " << (void*)Result << "\n"; - const Type *SBytePtr = PointerType::get(Type::Int8Ty); + DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); + const Type *SBytePtr = Type::getInt8PtrTy(C); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; - DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; + DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; @@ -181,45 +272,65 @@ static void *CreateArgv(ExecutionEngine *EE, /// runStaticConstructorsDestructors - This method is used to execute all of -/// the static constructors or destructors for a program, depending on the +/// the static constructors or destructors for a module, depending on the /// value of isDtors. -void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { +void ExecutionEngine::runStaticConstructorsDestructors(Module *module, + bool isDtors) { const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; // Execute global ctors/dtors for each module in the program. - for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); - - // If this global has internal linkage, or if it has a use, then it must be - // an old-style (llvmgcc3) static ctor with __main linked in and in use. If - // this is the case, don't execute any of the global ctors, __main will do - // it. - if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; - // Should be an array of '{ int, void ()* }' structs. The first value is - // the init priority, which we ignore. - ConstantArray *InitList = dyn_cast(GV->getInitializer()); - if (!InitList) continue; - for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) - if (ConstantStruct *CS = - dyn_cast(InitList->getOperand(i))) { - if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. - - Constant *FP = CS->getOperand(1); - if (FP->isNullValue()) - break; // Found a null terminator, exit. - - if (ConstantExpr *CE = dyn_cast(FP)) - if (CE->isCast()) - FP = CE->getOperand(0); - if (Function *F = dyn_cast(FP)) { - // Execute the ctor/dtor function! - runFunction(F, std::vector()); - } - } - } + GlobalVariable *GV = module->getNamedGlobal(Name); + + // If this global has internal linkage, or if it has a use, then it must be + // an old-style (llvmgcc3) static ctor with __main linked in and in use. If + // this is the case, don't execute any of the global ctors, __main will do + // it. + if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; + + // Should be an array of '{ int, void ()* }' structs. The first value is + // the init priority, which we ignore. + ConstantArray *InitList = dyn_cast(GV->getInitializer()); + if (!InitList) return; + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) + if (ConstantStruct *CS = + dyn_cast(InitList->getOperand(i))) { + if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. + + Constant *FP = CS->getOperand(1); + if (FP->isNullValue()) + break; // Found a null terminator, exit. + + if (ConstantExpr *CE = dyn_cast(FP)) + if (CE->isCast()) + FP = CE->getOperand(0); + if (Function *F = dyn_cast(FP)) { + // Execute the ctor/dtor function! + runFunction(F, std::vector()); + } + } } +/// runStaticConstructorsDestructors - This method is used to execute all of +/// the static constructors or destructors for a program, depending on the +/// value of isDtors. +void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { + // Execute global ctors/dtors for each module in the program. + for (unsigned m = 0, e = Modules.size(); m != e; ++m) + runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); +} + +#ifndef NDEBUG +/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. +static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { + unsigned PtrSize = EE->getTargetData()->getPointerSize(); + for (unsigned i = 0; i < PtrSize; ++i) + if (*(i + (uint8_t*)Loc)) + return false; + return true; +} +#endif + /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. @@ -228,23 +339,57 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn, const char * const * envp) { std::vector GVArgs; GenericValue GVArgc; - GVArgc.Int32Val = argv.size(); + GVArgc.IntVal = APInt(32, argv.size()); + + // Check main() type unsigned NumArgs = Fn->getFunctionType()->getNumParams(); + const FunctionType *FTy = Fn->getFunctionType(); + const Type* PPInt8Ty = + PointerType::getUnqual(PointerType::getUnqual( + Type::getInt8Ty(Fn->getContext()))); + switch (NumArgs) { + case 3: + if (FTy->getParamType(2) != PPInt8Ty) { + llvm_report_error("Invalid type for third argument of main() supplied"); + } + // FALLS THROUGH + case 2: + if (FTy->getParamType(1) != PPInt8Ty) { + llvm_report_error("Invalid type for second argument of main() supplied"); + } + // FALLS THROUGH + case 1: + if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { + llvm_report_error("Invalid type for first argument of main() supplied"); + } + // FALLS THROUGH + case 0: + if (!isa(FTy->getReturnType()) && + FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { + llvm_report_error("Invalid return type of main() supplied"); + } + break; + default: + llvm_report_error("Invalid number of arguments of main() supplied"); + } + if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { - GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. - assert(((char **)GVTOP(GVArgs[1]))[0] && + // Arg #1 = argv. + GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); + assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); - GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. + // Arg #2 = envp. + GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); } } } - return runFunction(Fn, GVArgs).Int32Val; + return runFunction(Fn, GVArgs).IntVal.getZExtValue(); } /// If possible, create a JIT, unless the caller specifically requests an @@ -252,27 +397,75 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn, /// NULL is returned. /// ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, - bool ForceInterpreter) { - ExecutionEngine *EE = 0; - - // Unless the interpreter was explicitly selected, try making a JIT. - if (!ForceInterpreter && JITCtor) - EE = JITCtor(MP); - - // If we can't make a JIT, make an interpreter instead. - if (EE == 0 && InterpCtor) - EE = InterpCtor(MP); - - if (EE) { - // Make sure we can resolve symbols in the program as well. The zero arg - // to the function tells DynamicLibrary to load the program, not a library. - try { - sys::DynamicLibrary::LoadLibraryPermanently(0); - } catch (...) { + bool ForceInterpreter, + std::string *ErrorStr, + CodeGenOpt::Level OptLevel, + bool GVsWithCode) { + return EngineBuilder(MP) + .setEngineKind(ForceInterpreter + ? EngineKind::Interpreter + : EngineKind::JIT) + .setErrorStr(ErrorStr) + .setOptLevel(OptLevel) + .setAllocateGVsWithCode(GVsWithCode) + .create(); +} + +ExecutionEngine *ExecutionEngine::create(Module *M) { + return EngineBuilder(M).create(); +} + +/// EngineBuilder - Overloaded constructor that automatically creates an +/// ExistingModuleProvider for an existing module. +EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { + InitEngine(); +} + +ExecutionEngine *EngineBuilder::create() { + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) + return 0; + + // If the user specified a memory manager but didn't specify which engine to + // create, we assume they only want the JIT, and we fail if they only want + // the interpreter. + if (JMM) { + if (WhichEngine & EngineKind::JIT) + WhichEngine = EngineKind::JIT; + else { + if (ErrorStr) + *ErrorStr = "Cannot create an interpreter with a memory manager."; + return 0; + } + } + + // Unless the interpreter was explicitly selected or the JIT is not linked, + // try making a JIT. + if (WhichEngine & EngineKind::JIT) { + if (ExecutionEngine::JITCtor) { + ExecutionEngine *EE = + ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, + AllocateGVsWithCode); + if (EE) return EE; } } - return EE; + // If we can't make a JIT and we didn't request one specifically, try making + // an interpreter instead. + if (WhichEngine & EngineKind::Interpreter) { + if (ExecutionEngine::InterpCtor) + return ExecutionEngine::InterpCtor(MP, ErrorStr); + if (ErrorStr) + *ErrorStr = "Interpreter has not been linked in."; + return 0; + } + + if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { + if (ErrorStr) + *ErrorStr = "JIT has not been linked in."; + } + return 0; } /// getPointerToGlobal - This returns the address of the specified global @@ -283,7 +476,7 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { return getPointerToFunction(F); MutexGuard locked(lock); - void *p = state.getGlobalAddressMap(locked)[GV]; + void *p = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; if (p) return p; @@ -292,121 +485,277 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else - assert("Global hasn't had an address allocated yet!"); - return state.getGlobalAddressMap(locked)[GV]; + llvm_unreachable("Global hasn't had an address allocated yet!"); + return EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; } /// This function converts a Constant* into a GenericValue. The interesting /// part is if C is a ConstantExpr. -/// @brief Get a GenericValue for a Constnat* +/// @brief Get a GenericValue for a Constant* GenericValue ExecutionEngine::getConstantValue(const Constant *C) { - // Declare the result as garbage. - GenericValue Result; - // If its undefined, return the garbage. - if (isa(C)) return Result; + if (isa(C)) + return GenericValue(); // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { + Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: { // Compute the index - Result = getConstantValue(CE->getOperand(0)); - std::vector Indexes(CE->op_begin()+1, CE->op_end()); + GenericValue Result = getConstantValue(Op0); + SmallVector Indices(CE->op_begin()+1, CE->op_end()); uint64_t Offset = - TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); + TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); - if (getTargetData()->getPointerSize() == 4) - Result.Int32Val += Offset; - else - Result.Int64Val += Offset; + char* tmp = (char*) Result.PointerVal; + Result = PTOGV(tmp + Offset); return Result; } - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - break; - case Instruction::PtrToInt: { - Constant *Op = CE->getOperand(0); - GenericValue GV = getConstantValue(Op); + case Instruction::Trunc: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.trunc(BitWidth); return GV; } - case Instruction::BitCast: { - // Bit casts are no-ops but we can only return the GV of the operand if - // they are the same basic type (pointer->pointer, packed->packed, etc.) - Constant *Op = CE->getOperand(0); - GenericValue GV = getConstantValue(Op); - if (Op->getType()->getTypeID() == C->getType()->getTypeID()) - return GV; - break; + case Instruction::ZExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.zext(BitWidth); + return GV; + } + case Instruction::SExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.sext(BitWidth); + return GV; + } + case Instruction::FPTrunc: { + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.FloatVal = float(GV.DoubleVal); + return GV; + } + case Instruction::FPExt:{ + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.DoubleVal = double(GV.FloatVal); + return GV; + } + case Instruction::UIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType()->isFloatTy()) + GV.FloatVal = float(GV.IntVal.roundToDouble()); + else if (CE->getType()->isDoubleTy()) + GV.DoubleVal = GV.IntVal.roundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + false, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::SIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType()->isFloatTy()) + GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); + else if (CE->getType()->isDoubleTy()) + GV.DoubleVal = GV.IntVal.signedRoundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + const uint64_t zero[] = { 0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + true, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::FPToUI: // double->APInt conversion handles sign + case Instruction::FPToSI: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast(CE->getType())->getBitWidth(); + if (Op0->getType()->isFloatTy()) + GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); + else if (Op0->getType()->isDoubleTy()) + GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); + else if (Op0->getType()->isX86_FP80Ty()) { + APFloat apf = APFloat(GV.IntVal); + uint64_t v; + bool ignored; + (void)apf.convertToInteger(&v, BitWidth, + CE->getOpcode()==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + GV.IntVal = v; // endian? + } + return GV; + } + case Instruction::PtrToInt: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); + return GV; } case Instruction::IntToPtr: { - // IntToPtr casts are just so special. Cast to intptr_t first. - Constant *Op = CE->getOperand(0); - GenericValue GV = getConstantValue(Op); - switch (Op->getType()->getTypeID()) { - case Type::Int1TyID: return PTOGV((void*)(uintptr_t)GV.Int1Val); - case Type::Int8TyID: return PTOGV((void*)(uintptr_t)GV.Int8Val); - case Type::Int16TyID: return PTOGV((void*)(uintptr_t)GV.Int16Val); - case Type::Int32TyID: return PTOGV((void*)(uintptr_t)GV.Int32Val); - case Type::Int64TyID: return PTOGV((void*)(uintptr_t)GV.Int64Val); - default: assert(0 && "Unknown integral type!"); + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + if (PtrWidth != GV.IntVal.getBitWidth()) + GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); + assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); + GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); + return GV; + } + case Instruction::BitCast: { + GenericValue GV = getConstantValue(Op0); + const Type* DestTy = CE->getType(); + switch (Op0->getType()->getTypeID()) { + default: llvm_unreachable("Invalid bitcast operand"); + case Type::IntegerTyID: + assert(DestTy->isFloatingPoint() && "invalid bitcast"); + if (DestTy->isFloatTy()) + GV.FloatVal = GV.IntVal.bitsToFloat(); + else if (DestTy->isDoubleTy()) + GV.DoubleVal = GV.IntVal.bitsToDouble(); + break; + case Type::FloatTyID: + assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && + "Invalid bitcast"); + GV.IntVal.floatToBits(GV.FloatVal); + break; + case Type::DoubleTyID: + assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && + "Invalid bitcast"); + GV.IntVal.doubleToBits(GV.DoubleVal); + break; + case Type::PointerTyID: + assert(isa(DestTy) && "Invalid bitcast"); + break; // getConstantValue(Op0) above already converted it } - break; + return GV; } case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + GenericValue LHS = getConstantValue(Op0); + GenericValue RHS = getConstantValue(CE->getOperand(1)); + GenericValue GV; switch (CE->getOperand(0)->getType()->getTypeID()) { - default: assert(0 && "Bad add type!"); abort(); - case Type::Int64TyID: - Result.Int64Val = getConstantValue(CE->getOperand(0)).Int64Val + - getConstantValue(CE->getOperand(1)).Int64Val; - break; - case Type::Int32TyID: - Result.Int32Val = getConstantValue(CE->getOperand(0)).Int32Val + - getConstantValue(CE->getOperand(1)).Int32Val; - break; - case Type::Int16TyID: - Result.Int16Val = getConstantValue(CE->getOperand(0)).Int16Val + - getConstantValue(CE->getOperand(1)).Int16Val; - break; - case Type::Int8TyID: - Result.Int8Val = getConstantValue(CE->getOperand(0)).Int8Val + - getConstantValue(CE->getOperand(1)).Int8Val; + default: llvm_unreachable("Bad add type!"); + case Type::IntegerTyID: + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid integer opcode"); + case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; + case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; + case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; + case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; + case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; + case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; + case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; + case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; + case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; + case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; + } break; case Type::FloatTyID: - Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + - getConstantValue(CE->getOperand(1)).FloatVal; + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid float opcode"); + case Instruction::FAdd: + GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; + case Instruction::FSub: + GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; + case Instruction::FMul: + GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; + case Instruction::FDiv: + GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; + case Instruction::FRem: + GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; + } break; case Type::DoubleTyID: - Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + - getConstantValue(CE->getOperand(1)).DoubleVal; + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid double opcode"); + case Instruction::FAdd: + GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; + case Instruction::FSub: + GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; + case Instruction::FMul: + GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; + case Instruction::FDiv: + GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; + case Instruction::FRem: + GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + } + break; + case Type::X86_FP80TyID: + case Type::PPC_FP128TyID: + case Type::FP128TyID: { + APFloat apfLHS = APFloat(LHS.IntVal); + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); + case Instruction::FAdd: + apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FSub: + apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FMul: + apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FDiv: + apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FRem: + apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + } + } break; } - return Result; + return GV; + } default: break; } - cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; - abort(); + std::string msg; + raw_string_ostream Msg(msg); + Msg << "ConstantExpr not handled: " << *CE; + llvm_report_error(Msg.str()); } + GenericValue Result; switch (C->getType()->getTypeID()) { -#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ - case Type::TY##TyID: Result.TY##Val = (CTY)cast(C)->GETMETH(); break - GET_CONST_VAL(Int1 , bool , ConstantInt, getBoolValue); - GET_CONST_VAL(Int8 , unsigned char , ConstantInt, getZExtValue); - GET_CONST_VAL(Int16 , unsigned short, ConstantInt, getZExtValue); - GET_CONST_VAL(Int32 , unsigned int , ConstantInt, getZExtValue); - GET_CONST_VAL(Int64 , uint64_t , ConstantInt, getZExtValue); - GET_CONST_VAL(Float , float , ConstantFP, getValue); - GET_CONST_VAL(Double, double , ConstantFP, getValue); -#undef GET_CONST_VAL + case Type::FloatTyID: + Result.FloatVal = cast(C)->getValueAPF().convertToFloat(); + break; + case Type::DoubleTyID: + Result.DoubleVal = cast(C)->getValueAPF().convertToDouble(); + break; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + Result.IntVal = cast (C)->getValueAPF().bitcastToAPInt(); + break; + case Type::IntegerTyID: + Result.IntVal = cast(C)->getValue(); + break; case Type::PointerTyID: if (isa(C)) Result.PointerVal = 0; @@ -415,198 +764,181 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { else if (const GlobalVariable* GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); else - assert(0 && "Unknown constant pointer type!"); + llvm_unreachable("Unknown constant pointer type!"); break; default: - cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; - abort(); + std::string msg; + raw_string_ostream Msg(msg); + Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); + llvm_report_error(Msg.str()); } return Result; } +/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst +/// with the integer held in IntVal. +static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, + unsigned StoreBytes) { + assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); + uint8_t *Src = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) + // Little-endian host - the source is ordered from LSB to MSB. Order the + // destination from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, StoreBytes); + else { + // Big-endian host - the source is an array of 64 bit words ordered from + // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination + // from MSB to LSB: Reverse the word order, but not the bytes in a word. + while (StoreBytes > sizeof(uint64_t)) { + StoreBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); + Src += sizeof(uint64_t); + } + + memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); + } +} + /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr /// is the address of the memory at which to store Val, cast to GenericValue *. /// It is not a pointer to a GenericValue containing the address at which to /// store Val. -/// -void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, - const Type *Ty) { - if (getTargetData()->isLittleEndian()) { - switch (Ty->getTypeID()) { - case Type::Int1TyID: - case Type::Int8TyID: Ptr->Untyped[0] = Val.Int8Val; break; - case Type::Int16TyID: Ptr->Untyped[0] = Val.Int16Val & 255; - Ptr->Untyped[1] = (Val.Int16Val >> 8) & 255; - break; - Store4BytesLittleEndian: - case Type::FloatTyID: - case Type::Int32TyID: Ptr->Untyped[0] = Val.Int32Val & 255; - Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255; - Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255; - Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255; - break; - case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) - goto Store4BytesLittleEndian; - case Type::DoubleTyID: - case Type::Int64TyID: - Ptr->Untyped[0] = (unsigned char)(Val.Int64Val ); - Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8); - Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16); - Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24); - Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32); - Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40); - Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48); - Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56); - break; - default: - cerr << "Cannot store value of type " << *Ty << "!\n"; - } - } else { - switch (Ty->getTypeID()) { - case Type::Int1TyID: - case Type::Int8TyID: Ptr->Untyped[0] = Val.Int8Val; break; - case Type::Int16TyID: Ptr->Untyped[1] = Val.Int16Val & 255; - Ptr->Untyped[0] = (Val.Int16Val >> 8) & 255; - break; - Store4BytesBigEndian: - case Type::FloatTyID: - case Type::Int32TyID: Ptr->Untyped[3] = Val.Int32Val & 255; - Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255; - Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255; - Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255; - break; - case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) - goto Store4BytesBigEndian; - case Type::DoubleTyID: - case Type::Int64TyID: - Ptr->Untyped[7] = (unsigned char)(Val.Int64Val ); - Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8); - Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16); - Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24); - Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32); - Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40); - Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48); - Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56); - break; - default: - cerr << "Cannot store value of type " << *Ty << "!\n"; +void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, + GenericValue *Ptr, const Type *Ty) { + const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); + break; + case Type::FloatTyID: + *((float*)Ptr) = Val.FloatVal; + break; + case Type::DoubleTyID: + *((double*)Ptr) = Val.DoubleVal; + break; + case Type::X86_FP80TyID: + memcpy(Ptr, Val.IntVal.getRawData(), 10); + break; + case Type::PointerTyID: + // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. + if (StoreBytes != sizeof(PointerTy)) + memset(Ptr, 0, StoreBytes); + + *((PointerTy*)Ptr) = Val.PointerVal; + break; + default: + errs() << "Cannot store value of type " << *Ty << "!\n"; + } + + if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) + // Host and target are different endian - reverse the stored bytes. + std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); +} + +/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting +/// from Src into IntVal, which is assumed to be wide enough and to hold zero. +static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { + assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); + uint8_t *Dst = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) + // Little-endian host - the destination must be ordered from LSB to MSB. + // The source is ordered from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, LoadBytes); + else { + // Big-endian - the destination is an array of 64 bit words ordered from + // LSW to MSW. Each word must be ordered from MSB to LSB. The source is + // ordered from MSB to LSB: Reverse the word order, but not the bytes in + // a word. + while (LoadBytes > sizeof(uint64_t)) { + LoadBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); + Dst += sizeof(uint64_t); } + + memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); } } /// FIXME: document /// -GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, - const Type *Ty) { - GenericValue Result; - if (getTargetData()->isLittleEndian()) { - switch (Ty->getTypeID()) { - case Type::Int1TyID: - case Type::Int8TyID: Result.Int8Val = Ptr->Untyped[0]; break; - case Type::Int16TyID: Result.Int16Val = (unsigned)Ptr->Untyped[0] | - ((unsigned)Ptr->Untyped[1] << 8); - break; - Load4BytesLittleEndian: - case Type::FloatTyID: - case Type::Int32TyID: Result.Int32Val = (unsigned)Ptr->Untyped[0] | - ((unsigned)Ptr->Untyped[1] << 8) | - ((unsigned)Ptr->Untyped[2] << 16) | - ((unsigned)Ptr->Untyped[3] << 24); - break; - case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) - goto Load4BytesLittleEndian; - case Type::DoubleTyID: - case Type::Int64TyID: Result.Int64Val = (uint64_t)Ptr->Untyped[0] | - ((uint64_t)Ptr->Untyped[1] << 8) | - ((uint64_t)Ptr->Untyped[2] << 16) | - ((uint64_t)Ptr->Untyped[3] << 24) | - ((uint64_t)Ptr->Untyped[4] << 32) | - ((uint64_t)Ptr->Untyped[5] << 40) | - ((uint64_t)Ptr->Untyped[6] << 48) | - ((uint64_t)Ptr->Untyped[7] << 56); - break; - default: - cerr << "Cannot load value of type " << *Ty << "!\n"; - abort(); - } - } else { - switch (Ty->getTypeID()) { - case Type::Int1TyID: - case Type::Int8TyID: Result.Int8Val = Ptr->Untyped[0]; break; - case Type::Int16TyID: Result.Int16Val = (unsigned)Ptr->Untyped[1] | - ((unsigned)Ptr->Untyped[0] << 8); - break; - Load4BytesBigEndian: - case Type::FloatTyID: - case Type::Int32TyID: Result.Int32Val =(unsigned)Ptr->Untyped[3] | - ((unsigned)Ptr->Untyped[2] << 8) | - ((unsigned)Ptr->Untyped[1] << 16) | - ((unsigned)Ptr->Untyped[0] << 24); - break; - case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) - goto Load4BytesBigEndian; - case Type::DoubleTyID: - case Type::Int64TyID: Result.Int64Val = (uint64_t)Ptr->Untyped[7] | - ((uint64_t)Ptr->Untyped[6] << 8) | - ((uint64_t)Ptr->Untyped[5] << 16) | - ((uint64_t)Ptr->Untyped[4] << 24) | - ((uint64_t)Ptr->Untyped[3] << 32) | - ((uint64_t)Ptr->Untyped[2] << 40) | - ((uint64_t)Ptr->Untyped[1] << 48) | - ((uint64_t)Ptr->Untyped[0] << 56); - break; - default: - cerr << "Cannot load value of type " << *Ty << "!\n"; - abort(); - } +void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, + GenericValue *Ptr, + const Type *Ty) { + const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + // An APInt with all words initially zero. + Result.IntVal = APInt(cast(Ty)->getBitWidth(), 0); + LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); + break; + case Type::FloatTyID: + Result.FloatVal = *((float*)Ptr); + break; + case Type::DoubleTyID: + Result.DoubleVal = *((double*)Ptr); + break; + case Type::PointerTyID: + Result.PointerVal = *((PointerTy*)Ptr); + break; + case Type::X86_FP80TyID: { + // This is endian dependent, but it will only work on x86 anyway. + // FIXME: Will not trap if loading a signaling NaN. + uint64_t y[2]; + memcpy(y, Ptr, 10); + Result.IntVal = APInt(80, 2, y); + break; + } + default: + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Cannot load value of type " << *Ty << "!"; + llvm_report_error(Msg.str()); } - return Result; } // InitializeMemory - Recursive function to apply a Constant value into the // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { + DEBUG(errs() << "JIT: Initializing " << Addr << " "); + DEBUG(Init->dump()); if (isa(Init)) { return; - } else if (const ConstantPacked *CP = dyn_cast(Init)) { + } else if (const ConstantVector *CP = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getTypeSize(CP->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; - } else if (Init->getType()->isFirstClassType()) { - GenericValue Val = getConstantValue(Init); - StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); - return; } else if (isa(Init)) { - memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); + memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); return; - } - - switch (Init->getType()->getTypeID()) { - case Type::ArrayTyID: { - const ConstantArray *CPA = cast(Init); + } else if (const ConstantArray *CPA = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getTypeSize(CPA->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; - } - - case Type::StructTyID: { - const ConstantStruct *CPS = cast(Init); + } else if (const ConstantStruct *CPS = dyn_cast(Init)) { const StructLayout *SL = getTargetData()->getStructLayout(cast(CPS->getType())); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) - InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); + InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); + return; + } else if (Init->getType()->isFirstClassType()) { + GenericValue Val = getConstantValue(Init); + StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } - default: - cerr << "Bad Type: " << *Init->getType() << "\n"; - assert(0 && "Unknown constant type to initialize memory with!"); - } + errs() << "Bad Type: " << *Init->getType() << "\n"; + llvm_unreachable("Unknown constant type to initialize memory with!"); } /// EmitGlobals - Emit all of the global variables to memory, storing their @@ -614,7 +946,6 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { /// their initializers into the memory. /// void ExecutionEngine::emitGlobals() { - const TargetData *TD = getTargetData(); // Loop over all of the global variables in the program, allocating the memory // to hold them. If there is more than one module, do a prepass over globals @@ -629,7 +960,7 @@ void ExecutionEngine::emitGlobals() { for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { const GlobalValue *GV = I; - if (GV->hasInternalLinkage() || GV->isExternal() || + if (GV->hasLocalLinkage() || GV->isDeclaration() || GV->hasAppendingLinkage() || !GV->hasName()) continue;// Ignore external globals and globals with internal linkage. @@ -650,7 +981,7 @@ void ExecutionEngine::emitGlobals() { continue; // Otherwise, we know it's linkonce/weak, replace it if this is a strong - // symbol. + // symbol. FIXME is this right for common? if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) GVEntry = GV; } @@ -674,23 +1005,17 @@ void ExecutionEngine::emitGlobals() { } } - if (!I->isExternal()) { - // Get the type of the global. - const Type *Ty = I->getType()->getElementType(); - - // Allocate some memory for it! - unsigned Size = TD->getTypeSize(Ty); - addGlobalMapping(I, new char[Size]); + if (!I->isDeclaration()) { + addGlobalMapping(I, getMemoryForGV(I)); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = - sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) addGlobalMapping(I, SymAddr); else { - cerr << "Could not resolve external global address: " - << I->getName() << "\n"; - abort(); + llvm_report_error("Could not resolve external global address: " + +I->getName()); } } } @@ -704,15 +1029,15 @@ void ExecutionEngine::emitGlobals() { LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; void *Ptr = getPointerToGlobalIfAvailable(CGV); assert(Ptr && "Canonical global wasn't codegen'd!"); - addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); + addGlobalMapping(GV, Ptr); } } - // Now that all of the globals are set up in memory, loop through them all and - // initialize their contents. + // Now that all of the globals are set up in memory, loop through them all + // and initialize their contents. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { - if (!I->isExternal()) { + if (!I->isDeclaration()) { if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) @@ -730,17 +1055,34 @@ void ExecutionEngine::emitGlobals() { // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); - DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; - const Type *ElTy = GV->getType()->getElementType(); - size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); if (GA == 0) { // If it's not already specified, allocate memory for the global. - GA = new char[GVSize]; + GA = getMemoryForGV(GV); addGlobalMapping(GV, GA); } - - InitializeMemory(GV->getInitializer(), GA); + + // Don't initialize if it's thread local, let the client do it. + if (!GV->isThreadLocal()) + InitializeMemory(GV->getInitializer(), GA); + + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); NumInitBytes += (unsigned)GVSize; ++NumGlobals; } + +ExecutionEngineState::MapUpdatingCVH::MapUpdatingCVH( + ExecutionEngineState &EES, const GlobalValue *GV) + : CallbackVH(const_cast(GV)), EES(EES) {} + +void ExecutionEngineState::MapUpdatingCVH::deleted() { + MutexGuard locked(EES.EE.lock); + EES.RemoveMapping(locked, *this); // Destroys *this. +} + +void ExecutionEngineState::MapUpdatingCVH::allUsesReplacedWith( + Value *new_value) { + assert(false && "The ExecutionEngine doesn't know how to handle a" + " RAUW on a value it has a global mapping for."); +}