X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FExecutionEngine.cpp;h=7f21e650ef9864cc3a5b40e2e51f16cb74cbd279;hb=1f6efa3996dd1929fbc129203ce5009b620e6969;hp=fb9ff371d50126fd82abe5f690e248a113498cae;hpb=43421b3dd70af5b70e71816521f37502c397cc65;p=oota-llvm.git diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp index fb9ff371d50..7f21e650ef9 100644 --- a/lib/ExecutionEngine/ExecutionEngine.cpp +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -13,36 +13,62 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" +#include "llvm/ExecutionEngine/ExecutionEngine.h" + #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" -#include "llvm/ModuleProvider.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MutexGuard.h" -#include "llvm/System/DynamicLibrary.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/DynamicLibrary.h" +#include "llvm/Support/Host.h" #include "llvm/Target/TargetData.h" -#include +#include +#include using namespace llvm; STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); -ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; -ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; +ExecutionEngine *(*ExecutionEngine::JITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode, + CodeModel::Model CMM, + StringRef MArch, + StringRef MCPU, + const SmallVectorImpl& MAttrs) = 0; +ExecutionEngine *(*ExecutionEngine::MCJITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode, + CodeModel::Model CMM, + StringRef MArch, + StringRef MCPU, + const SmallVectorImpl& MAttrs) = 0; +ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, + std::string *ErrorStr) = 0; -ExecutionEngine::ExecutionEngine(ModuleProvider *P) { - LazyCompilationDisabled = false; - Modules.push_back(P); - assert(P && "ModuleProvider is null?"); -} - -ExecutionEngine::ExecutionEngine(Module *M) { - LazyCompilationDisabled = false; +ExecutionEngine::ExecutionEngine(Module *M) + : EEState(*this), + LazyFunctionCreator(0), + ExceptionTableRegister(0), + ExceptionTableDeregister(0) { + CompilingLazily = false; + GVCompilationDisabled = false; + SymbolSearchingDisabled = false; + Modules.push_back(M); assert(M && "Module is null?"); - Modules.push_back(new ExistingModuleProvider(M)); } ExecutionEngine::~ExecutionEngine() { @@ -51,180 +77,285 @@ ExecutionEngine::~ExecutionEngine() { delete Modules[i]; } -/// FindFunctionNamed - Search all of the active modules to find the one that -/// defines FnName. This is very slow operation and shouldn't be used for -/// general code. +void ExecutionEngine::DeregisterAllTables() { + if (ExceptionTableDeregister) { + for (std::vector::iterator it = AllExceptionTables.begin(), + ie = AllExceptionTables.end(); it != ie; ++it) + ExceptionTableDeregister(*it); + AllExceptionTables.clear(); + } +} + +namespace { +/// \brief Helper class which uses a value handler to automatically deletes the +/// memory block when the GlobalVariable is destroyed. +class GVMemoryBlock : public CallbackVH { + GVMemoryBlock(const GlobalVariable *GV) + : CallbackVH(const_cast(GV)) {} + +public: + /// \brief Returns the address the GlobalVariable should be written into. The + /// GVMemoryBlock object prefixes that. + static char *Create(const GlobalVariable *GV, const TargetData& TD) { + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); + void *RawMemory = ::operator new( + TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), + TD.getPreferredAlignment(GV)) + + GVSize); + new(RawMemory) GVMemoryBlock(GV); + return static_cast(RawMemory) + sizeof(GVMemoryBlock); + } + + virtual void deleted() { + // We allocated with operator new and with some extra memory hanging off the + // end, so don't just delete this. I'm not sure if this is actually + // required. + this->~GVMemoryBlock(); + ::operator delete(this); + } +}; +} // anonymous namespace + +char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { + return GVMemoryBlock::Create(GV, *getTargetData()); +} + +bool ExecutionEngine::removeModule(Module *M) { + for(SmallVector::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + Module *Found = *I; + if (Found == M) { + Modules.erase(I); + clearGlobalMappingsFromModule(M); + return true; + } + } + return false; +} + Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { - if (Function *F = Modules[i]->getModule()->getFunction(FnName)) + if (Function *F = Modules[i]->getFunction(FnName)) return F; } return 0; } -/// addGlobalMapping - Tell the execution engine that the specified global is -/// at the specified location. This is used internally as functions are JIT'd -/// and as global variables are laid out in memory. It can and should also be -/// used by clients of the EE that want to have an LLVM global overlay -/// existing data in memory. +void *ExecutionEngineState::RemoveMapping(const MutexGuard &, + const GlobalValue *ToUnmap) { + GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); + void *OldVal; + + // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the + // GlobalAddressMap. + if (I == GlobalAddressMap.end()) + OldVal = 0; + else { + OldVal = I->second; + GlobalAddressMap.erase(I); + } + + GlobalAddressReverseMap.erase(OldVal); + return OldVal; +} + void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - - void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + + DEBUG(dbgs() << "JIT: Map \'" << GV->getName() + << "\' to [" << Addr << "]\n";); + void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); CurVal = Addr; - - // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + + // If we are using the reverse mapping, add it too. + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } } -/// clearAllGlobalMappings - Clear all global mappings and start over again -/// use in dynamic compilation scenarios when you want to move globals void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); - - state.getGlobalAddressMap(locked).clear(); - state.getGlobalAddressReverseMap(locked).clear(); + + EEState.getGlobalAddressMap(locked).clear(); + EEState.getGlobalAddressReverseMap(locked).clear(); +} + +void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { + MutexGuard locked(lock); + + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) + EEState.RemoveMapping(locked, FI); + for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); + GI != GE; ++GI) + EEState.RemoveMapping(locked, GI); } -/// updateGlobalMapping - Replace an existing mapping for GV with a new -/// address. This updates both maps as required. If "Addr" is null, the -/// entry for the global is removed from the mappings. -void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { +void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - + + ExecutionEngineState::GlobalAddressMapTy &Map = + EEState.getGlobalAddressMap(locked); + // Deleting from the mapping? - if (Addr == 0) { - state.getGlobalAddressMap(locked).erase(GV); - if (!state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(Addr); - return; - } - - void *&CurVal = state.getGlobalAddressMap(locked)[GV]; - if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(CurVal); + if (Addr == 0) + return EEState.RemoveMapping(locked, GV); + + void *&CurVal = Map[GV]; + void *OldVal = CurVal; + + if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) + EEState.getGlobalAddressReverseMap(locked).erase(CurVal); CurVal = Addr; - - // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + + // If we are using the reverse mapping, add it too. + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } + return OldVal; } -/// getPointerToGlobalIfAvailable - This returns the address of the specified -/// global value if it is has already been codegen'd, otherwise it returns null. -/// void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); - - std::map::iterator I = - state.getGlobalAddressMap(locked).find(GV); - return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; + + ExecutionEngineState::GlobalAddressMapTy::iterator I = + EEState.getGlobalAddressMap(locked).find(GV); + return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; } -/// getGlobalValueAtAddress - Return the LLVM global value object that starts -/// at the specified address. -/// const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. - if (state.getGlobalAddressReverseMap(locked).empty()) { - for (std::map::iterator - I = state.getGlobalAddressMap(locked).begin(), - E = state.getGlobalAddressMap(locked).end(); I != E; ++I) - state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, - I->first)); + if (EEState.getGlobalAddressReverseMap(locked).empty()) { + for (ExecutionEngineState::GlobalAddressMapTy::iterator + I = EEState.getGlobalAddressMap(locked).begin(), + E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) + EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( + I->second, I->first)); } - std::map::iterator I = - state.getGlobalAddressReverseMap(locked).find(Addr); - return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; + std::map >::iterator I = + EEState.getGlobalAddressReverseMap(locked).find(Addr); + return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; } -// CreateArgv - Turn a vector of strings into a nice argv style array of -// pointers to null terminated strings. -// -static void *CreateArgv(ExecutionEngine *EE, - const std::vector &InputArgv) { +namespace { +class ArgvArray { + char *Array; + std::vector Values; +public: + ArgvArray() : Array(NULL) {} + ~ArgvArray() { clear(); } + void clear() { + delete[] Array; + Array = NULL; + for (size_t I = 0, E = Values.size(); I != E; ++I) { + delete[] Values[I]; + } + Values.clear(); + } + /// Turn a vector of strings into a nice argv style array of pointers to null + /// terminated strings. + void *reset(LLVMContext &C, ExecutionEngine *EE, + const std::vector &InputArgv); +}; +} // anonymous namespace +void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, + const std::vector &InputArgv) { + clear(); // Free the old contents. unsigned PtrSize = EE->getTargetData()->getPointerSize(); - char *Result = new char[(InputArgv.size()+1)*PtrSize]; + Array = new char[(InputArgv.size()+1)*PtrSize]; - DOUT << "ARGV = " << (void*)Result << "\n"; - const Type *SBytePtr = PointerType::get(Type::Int8Ty); + DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); + const Type *SBytePtr = Type::getInt8PtrTy(C); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; - DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; + Values.push_back(Dest); + DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; - // Endian safe: Result[i] = (PointerTy)Dest; - EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), + // Endian safe: Array[i] = (PointerTy)Dest; + EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), SBytePtr); } // Null terminate it EE->StoreValueToMemory(PTOGV(0), - (GenericValue*)(Result+InputArgv.size()*PtrSize), + (GenericValue*)(Array+InputArgv.size()*PtrSize), SBytePtr); - return Result; + return Array; } +void ExecutionEngine::runStaticConstructorsDestructors(Module *module, + bool isDtors) { + const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; + GlobalVariable *GV = module->getNamedGlobal(Name); + + // If this global has internal linkage, or if it has a use, then it must be + // an old-style (llvmgcc3) static ctor with __main linked in and in use. If + // this is the case, don't execute any of the global ctors, __main will do + // it. + if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; + + // Should be an array of '{ int, void ()* }' structs. The first value is + // the init priority, which we ignore. + ConstantArray *InitList = dyn_cast(GV->getInitializer()); + if (!InitList) return; + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { + ConstantStruct *CS = + dyn_cast(InitList->getOperand(i)); + if (!CS) continue; + if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. + + Constant *FP = CS->getOperand(1); + if (FP->isNullValue()) + break; // Found a null terminator, exit. + + // Strip off constant expression casts. + if (ConstantExpr *CE = dyn_cast(FP)) + if (CE->isCast()) + FP = CE->getOperand(0); + + // Execute the ctor/dtor function! + if (Function *F = dyn_cast(FP)) + runFunction(F, std::vector()); + + // FIXME: It is marginally lame that we just do nothing here if we see an + // entry we don't recognize. It might not be unreasonable for the verifier + // to not even allow this and just assert here. + } +} -/// runStaticConstructorsDestructors - This method is used to execute all of -/// the static constructors or destructors for a program, depending on the -/// value of isDtors. void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { - const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; - // Execute global ctors/dtors for each module in the program. - for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); - - // If this global has internal linkage, or if it has a use, then it must be - // an old-style (llvmgcc3) static ctor with __main linked in and in use. If - // this is the case, don't execute any of the global ctors, __main will do - // it. - if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; - - // Should be an array of '{ int, void ()* }' structs. The first value is - // the init priority, which we ignore. - ConstantArray *InitList = dyn_cast(GV->getInitializer()); - if (!InitList) continue; - for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) - if (ConstantStruct *CS = - dyn_cast(InitList->getOperand(i))) { - if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. - - Constant *FP = CS->getOperand(1); - if (FP->isNullValue()) - break; // Found a null terminator, exit. - - if (ConstantExpr *CE = dyn_cast(FP)) - if (CE->isCast()) - FP = CE->getOperand(0); - if (Function *F = dyn_cast(FP)) { - // Execute the ctor/dtor function! - runFunction(F, std::vector()); - } - } - } + for (unsigned i = 0, e = Modules.size(); i != e; ++i) + runStaticConstructorsDestructors(Modules[i], isDtors); } -/// runFunctionAsMain - This is a helper function which wraps runFunction to -/// handle the common task of starting up main with the specified argc, argv, -/// and envp parameters. +#ifndef NDEBUG +/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. +static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { + unsigned PtrSize = EE->getTargetData()->getPointerSize(); + for (unsigned i = 0; i < PtrSize; ++i) + if (*(i + (uint8_t*)Loc)) + return false; + return true; +} +#endif + int ExecutionEngine::runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp) { @@ -235,119 +366,158 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn, // Check main() type unsigned NumArgs = Fn->getFunctionType()->getNumParams(); const FunctionType *FTy = Fn->getFunctionType(); - const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); - switch (NumArgs) { - case 3: - if (FTy->getParamType(2) != PPInt8Ty) { - cerr << "Invalid type for third argument of main() supplied\n"; - abort(); - } - // FALLS THROUGH - case 2: - if (FTy->getParamType(1) != PPInt8Ty) { - cerr << "Invalid type for second argument of main() supplied\n"; - abort(); - } - // FALLS THROUGH - case 1: - if (FTy->getParamType(0) != Type::Int32Ty) { - cerr << "Invalid type for first argument of main() supplied\n"; - abort(); - } - // FALLS THROUGH - case 0: - if (FTy->getReturnType() != Type::Int32Ty && - FTy->getReturnType() != Type::VoidTy) { - cerr << "Invalid return type of main() supplied\n"; - abort(); - } - break; - default: - cerr << "Invalid number of arguments of main() supplied\n"; - abort(); - } - + const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); + + // Check the argument types. + if (NumArgs > 3) + report_fatal_error("Invalid number of arguments of main() supplied"); + if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) + report_fatal_error("Invalid type for third argument of main() supplied"); + if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) + report_fatal_error("Invalid type for second argument of main() supplied"); + if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) + report_fatal_error("Invalid type for first argument of main() supplied"); + if (!FTy->getReturnType()->isIntegerTy() && + !FTy->getReturnType()->isVoidTy()) + report_fatal_error("Invalid return type of main() supplied"); + + ArgvArray CArgv; + ArgvArray CEnv; if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { - GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. - assert(((char **)GVTOP(GVArgs[1]))[0] && + // Arg #1 = argv. + GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); + assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); - GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. + // Arg #2 = envp. + GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); } } } + return runFunction(Fn, GVArgs).IntVal.getZExtValue(); } -/// If possible, create a JIT, unless the caller specifically requests an -/// Interpreter or there's an error. If even an Interpreter cannot be created, -/// NULL is returned. -/// -ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, +ExecutionEngine *ExecutionEngine::create(Module *M, bool ForceInterpreter, - std::string *ErrorStr) { - ExecutionEngine *EE = 0; - - // Unless the interpreter was explicitly selected, try making a JIT. - if (!ForceInterpreter && JITCtor) - EE = JITCtor(MP, ErrorStr); - - // If we can't make a JIT, make an interpreter instead. - if (EE == 0 && InterpCtor) - EE = InterpCtor(MP, ErrorStr); - - if (EE) { - // Make sure we can resolve symbols in the program as well. The zero arg - // to the function tells DynamicLibrary to load the program, not a library. - try { - sys::DynamicLibrary::LoadLibraryPermanently(0); - } catch (...) { + std::string *ErrorStr, + CodeGenOpt::Level OptLevel, + bool GVsWithCode) { + return EngineBuilder(M) + .setEngineKind(ForceInterpreter + ? EngineKind::Interpreter + : EngineKind::JIT) + .setErrorStr(ErrorStr) + .setOptLevel(OptLevel) + .setAllocateGVsWithCode(GVsWithCode) + .create(); +} + +ExecutionEngine *EngineBuilder::create() { + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) + return 0; + + // If the user specified a memory manager but didn't specify which engine to + // create, we assume they only want the JIT, and we fail if they only want + // the interpreter. + if (JMM) { + if (WhichEngine & EngineKind::JIT) + WhichEngine = EngineKind::JIT; + else { + if (ErrorStr) + *ErrorStr = "Cannot create an interpreter with a memory manager."; + return 0; + } + } + + // Unless the interpreter was explicitly selected or the JIT is not linked, + // try making a JIT. + if (WhichEngine & EngineKind::JIT) { + if (UseMCJIT && ExecutionEngine::MCJITCtor) { + ExecutionEngine *EE = + ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, + AllocateGVsWithCode, CMModel, + MArch, MCPU, MAttrs); + if (EE) return EE; + } else if (ExecutionEngine::JITCtor) { + ExecutionEngine *EE = + ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, + AllocateGVsWithCode, CMModel, + MArch, MCPU, MAttrs); + if (EE) return EE; } } - return EE; + // If we can't make a JIT and we didn't request one specifically, try making + // an interpreter instead. + if (WhichEngine & EngineKind::Interpreter) { + if (ExecutionEngine::InterpCtor) + return ExecutionEngine::InterpCtor(M, ErrorStr); + if (ErrorStr) + *ErrorStr = "Interpreter has not been linked in."; + return 0; + } + + if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { + if (ErrorStr) + *ErrorStr = "JIT has not been linked in."; + } + + return 0; } -/// getPointerToGlobal - This returns the address of the specified global -/// value. This may involve code generation if it's a function. -/// void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); MutexGuard locked(lock); - void *p = state.getGlobalAddressMap(locked)[GV]; - if (p) - return p; + if (void *P = EEState.getGlobalAddressMap(locked)[GV]) + return P; // Global variable might have been added since interpreter started. if (GlobalVariable *GVar = const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else - assert(0 && "Global hasn't had an address allocated yet!"); - return state.getGlobalAddressMap(locked)[GV]; + llvm_unreachable("Global hasn't had an address allocated yet!"); + + return EEState.getGlobalAddressMap(locked)[GV]; } -/// This function converts a Constant* into a GenericValue. The interesting -/// part is if C is a ConstantExpr. -/// @brief Get a GenericValue for a Constant* +/// \brief Converts a Constant* into a GenericValue, including handling of +/// ConstantExpr values. GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // If its undefined, return the garbage. - if (isa(C)) - return GenericValue(); + if (isa(C)) { + GenericValue Result; + switch (C->getType()->getTypeID()) { + case Type::IntegerTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + // Although the value is undefined, we still have to construct an APInt + // with the correct bit width. + Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); + break; + default: + break; + } + return Result; + } - // If the value is a ConstantExpr + // Otherwise, if the value is a ConstantExpr... if (const ConstantExpr *CE = dyn_cast(C)) { Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: { - // Compute the index + // Compute the index GenericValue Result = getConstantValue(Op0); SmallVector Indices(CE->op_begin()+1, CE->op_end()); uint64_t Offset = @@ -376,39 +546,66 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { return GV; } case Instruction::FPTrunc: { + // FIXME long double GenericValue GV = getConstantValue(Op0); GV.FloatVal = float(GV.DoubleVal); return GV; } case Instruction::FPExt:{ + // FIXME long double GenericValue GV = getConstantValue(Op0); GV.DoubleVal = double(GV.FloatVal); return GV; } case Instruction::UIToFP: { GenericValue GV = getConstantValue(Op0); - if (CE->getType() == Type::FloatTy) + if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.roundToDouble()); - else + else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.roundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + false, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } return GV; } case Instruction::SIToFP: { GenericValue GV = getConstantValue(Op0); - if (CE->getType() == Type::FloatTy) + if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); - else + else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.signedRoundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + const uint64_t zero[] = { 0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + true, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } return GV; } case Instruction::FPToUI: // double->APInt conversion handles sign case Instruction::FPToSI: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); - if (Op0->getType() == Type::FloatTy) + if (Op0->getType()->isFloatTy()) GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); - else + else if (Op0->getType()->isDoubleTy()) GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); + else if (Op0->getType()->isX86_FP80Ty()) { + APFloat apf = APFloat(GV.IntVal); + uint64_t v; + bool ignored; + (void)apf.convertToInteger(&v, BitWidth, + CE->getOpcode()==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + GV.IntVal = v; // endian? + } return GV; } case Instruction::PtrToInt: { @@ -430,31 +627,34 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue GV = getConstantValue(Op0); const Type* DestTy = CE->getType(); switch (Op0->getType()->getTypeID()) { - default: assert(0 && "Invalid bitcast operand"); + default: llvm_unreachable("Invalid bitcast operand"); case Type::IntegerTyID: - assert(DestTy->isFloatingPoint() && "invalid bitcast"); - if (DestTy == Type::FloatTy) + assert(DestTy->isFloatingPointTy() && "invalid bitcast"); + if (DestTy->isFloatTy()) GV.FloatVal = GV.IntVal.bitsToFloat(); - else if (DestTy == Type::DoubleTy) + else if (DestTy->isDoubleTy()) GV.DoubleVal = GV.IntVal.bitsToDouble(); break; - case Type::FloatTyID: - assert(DestTy == Type::Int32Ty && "Invalid bitcast"); - GV.IntVal.floatToBits(GV.FloatVal); + case Type::FloatTyID: + assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); + GV.IntVal = APInt::floatToBits(GV.FloatVal); break; case Type::DoubleTyID: - assert(DestTy == Type::Int64Ty && "Invalid bitcast"); - GV.IntVal.doubleToBits(GV.DoubleVal); + assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); + GV.IntVal = APInt::doubleToBits(GV.DoubleVal); break; case Type::PointerTyID: - assert(isa(DestTy) && "Invalid bitcast"); + assert(DestTy->isPointerTy() && "Invalid bitcast"); break; // getConstantValue(Op0) above already converted it } return GV; } case Instruction::Add: + case Instruction::FAdd: case Instruction::Sub: + case Instruction::FSub: case Instruction::Mul: + case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: @@ -466,10 +666,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue RHS = getConstantValue(CE->getOperand(1)); GenericValue GV; switch (CE->getOperand(0)->getType()->getTypeID()) { - default: assert(0 && "Bad add type!"); abort(); + default: llvm_unreachable("Bad add type!"); case Type::IntegerTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid integer opcode"); + default: llvm_unreachable("Invalid integer opcode"); case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; @@ -484,32 +684,61 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { break; case Type::FloatTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid float opcode"); abort(); - case Instruction::Add: + default: llvm_unreachable("Invalid float opcode"); + case Instruction::FAdd: GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; - case Instruction::Sub: + case Instruction::FSub: GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; - case Instruction::Mul: + case Instruction::FMul: GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; - case Instruction::FDiv: + case Instruction::FDiv: GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; - case Instruction::FRem: - GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; + case Instruction::FRem: + GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; } break; case Type::DoubleTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid double opcode"); abort(); - case Instruction::Add: + default: llvm_unreachable("Invalid double opcode"); + case Instruction::FAdd: GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; - case Instruction::Sub: + case Instruction::FSub: GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; - case Instruction::Mul: + case Instruction::FMul: GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; - case Instruction::FDiv: + case Instruction::FDiv: GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; - case Instruction::FRem: - GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + case Instruction::FRem: + GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + } + break; + case Type::X86_FP80TyID: + case Type::PPC_FP128TyID: + case Type::FP128TyID: { + APFloat apfLHS = APFloat(LHS.IntVal); + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid long double opcode"); + case Instruction::FAdd: + apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FSub: + apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FMul: + apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FDiv: + apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FRem: + apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + } } break; } @@ -518,18 +747,27 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { default: break; } - cerr << "ConstantExpr not handled: " << *CE << "\n"; - abort(); + + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "ConstantExpr not handled: " << *CE; + report_fatal_error(OS.str()); } + // Otherwise, we have a simple constant. GenericValue Result; switch (C->getType()->getTypeID()) { - case Type::FloatTyID: - Result.FloatVal = cast(C)->getValueAPF().convertToFloat(); + case Type::FloatTyID: + Result.FloatVal = cast(C)->getValueAPF().convertToFloat(); break; case Type::DoubleTyID: Result.DoubleVal = cast(C)->getValueAPF().convertToDouble(); break; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + Result.IntVal = cast (C)->getValueAPF().bitcastToAPInt(); + break; case Type::IntegerTyID: Result.IntVal = cast(C)->getValue(); break; @@ -538,165 +776,204 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { Result.PointerVal = 0; else if (const Function *F = dyn_cast(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast(F))); - else if (const GlobalVariable* GV = dyn_cast(C)) + else if (const GlobalVariable *GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); + else if (const BlockAddress *BA = dyn_cast(C)) + Result = PTOGV(getPointerToBasicBlock(const_cast( + BA->getBasicBlock()))); else - assert(0 && "Unknown constant pointer type!"); + llvm_unreachable("Unknown constant pointer type!"); break; default: - cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; - abort(); + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "ERROR: Constant unimplemented for type: " << *C->getType(); + report_fatal_error(OS.str()); } + return Result; } -/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr -/// is the address of the memory at which to store Val, cast to GenericValue *. -/// It is not a pointer to a GenericValue containing the address at which to -/// store Val. -/// -void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, - const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - GenericValue TmpVal = Val; - if (BitWidth <= 8) - *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); - else if (BitWidth <= 16) { - *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); - } else if (BitWidth <= 32) { - *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); - } else if (BitWidth <= 64) { - *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); - } else { - uint64_t *Dest = (uint64_t*)Ptr; - const uint64_t *Src = Val.IntVal.getRawData(); - for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) - Dest[i] = Src[i]; +/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst +/// with the integer held in IntVal. +static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, + unsigned StoreBytes) { + assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); + uint8_t *Src = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) { + // Little-endian host - the source is ordered from LSB to MSB. Order the + // destination from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, StoreBytes); + } else { + // Big-endian host - the source is an array of 64 bit words ordered from + // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination + // from MSB to LSB: Reverse the word order, but not the bytes in a word. + while (StoreBytes > sizeof(uint64_t)) { + StoreBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); + Src += sizeof(uint64_t); } - break; + + memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); } +} + +void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, + GenericValue *Ptr, const Type *Ty) { + const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); + break; case Type::FloatTyID: *((float*)Ptr) = Val.FloatVal; break; case Type::DoubleTyID: *((double*)Ptr) = Val.DoubleVal; break; - case Type::PointerTyID: + case Type::X86_FP80TyID: + memcpy(Ptr, Val.IntVal.getRawData(), 10); + break; + case Type::PointerTyID: + // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. + if (StoreBytes != sizeof(PointerTy)) + memset(Ptr, 0, StoreBytes); + *((PointerTy*)Ptr) = Val.PointerVal; break; default: - cerr << "Cannot store value of type " << *Ty << "!\n"; + dbgs() << "Cannot store value of type " << *Ty << "!\n"; + } + + if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) + // Host and target are different endian - reverse the stored bytes. + std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); +} + +/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting +/// from Src into IntVal, which is assumed to be wide enough and to hold zero. +static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { + assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); + uint8_t *Dst = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) + // Little-endian host - the destination must be ordered from LSB to MSB. + // The source is ordered from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, LoadBytes); + else { + // Big-endian - the destination is an array of 64 bit words ordered from + // LSW to MSW. Each word must be ordered from MSB to LSB. The source is + // ordered from MSB to LSB: Reverse the word order, but not the bytes in + // a word. + while (LoadBytes > sizeof(uint64_t)) { + LoadBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); + Dst += sizeof(uint64_t); + } + + memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); } } /// FIXME: document /// -void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, - GenericValue *Ptr, - const Type *Ty) { +void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, + GenericValue *Ptr, + const Type *Ty) { + const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); + switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) - Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); - else if (BitWidth <= 16) { - Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); - } else if (BitWidth <= 32) { - Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); - } else if (BitWidth <= 64) { - Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); - } else - Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); + case Type::IntegerTyID: + // An APInt with all words initially zero. + Result.IntVal = APInt(cast(Ty)->getBitWidth(), 0); + LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); break; - } case Type::FloatTyID: Result.FloatVal = *((float*)Ptr); break; case Type::DoubleTyID: - Result.DoubleVal = *((double*)Ptr); + Result.DoubleVal = *((double*)Ptr); break; - case Type::PointerTyID: + case Type::PointerTyID: Result.PointerVal = *((PointerTy*)Ptr); break; + case Type::X86_FP80TyID: { + // This is endian dependent, but it will only work on x86 anyway. + // FIXME: Will not trap if loading a signaling NaN. + uint64_t y[2]; + memcpy(y, Ptr, 10); + Result.IntVal = APInt(80, 2, y); + break; + } default: - cerr << "Cannot load value of type " << *Ty << "!\n"; - abort(); + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "Cannot load value of type " << *Ty << "!"; + report_fatal_error(OS.str()); } } -// InitializeMemory - Recursive function to apply a Constant value into the -// specified memory location... -// void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { + DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); + DEBUG(Init->dump()); if (isa(Init)) { return; } else if (const ConstantVector *CP = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getTypeSize(CP->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; - } else if (Init->getType()->isFirstClassType()) { - GenericValue Val = getConstantValue(Init); - StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); - return; } else if (isa(Init)) { - memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); + memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); return; - } - - switch (Init->getType()->getTypeID()) { - case Type::ArrayTyID: { - const ConstantArray *CPA = cast(Init); + } else if (const ConstantArray *CPA = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getTypeSize(CPA->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; - } - - case Type::StructTyID: { - const ConstantStruct *CPS = cast(Init); + } else if (const ConstantStruct *CPS = dyn_cast(Init)) { const StructLayout *SL = getTargetData()->getStructLayout(cast(CPS->getType())); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); return; + } else if (Init->getType()->isFirstClassType()) { + GenericValue Val = getConstantValue(Init); + StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); + return; } - default: - cerr << "Bad Type: " << *Init->getType() << "\n"; - assert(0 && "Unknown constant type to initialize memory with!"); - } + DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); + llvm_unreachable("Unknown constant type to initialize memory with!"); } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. -/// void ExecutionEngine::emitGlobals() { - const TargetData *TD = getTargetData(); - // Loop over all of the global variables in the program, allocating the memory // to hold them. If there is more than one module, do a prepass over globals // to figure out how the different modules should link together. - // std::map, const GlobalValue*> LinkedGlobalsMap; if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - Module &M = *Modules[m]->getModule(); + Module &M = *Modules[m]; for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { const GlobalValue *GV = I; - if (GV->hasInternalLinkage() || GV->isDeclaration() || + if (GV->hasLocalLinkage() || GV->isDeclaration() || GV->hasAppendingLinkage() || !GV->hasName()) continue;// Ignore external globals and globals with internal linkage. - - const GlobalValue *&GVEntry = + + const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; // If this is the first time we've seen this global, it is the canonical @@ -705,29 +982,29 @@ void ExecutionEngine::emitGlobals() { GVEntry = GV; continue; } - + // If the existing global is strong, never replace it. if (GVEntry->hasExternalLinkage() || GVEntry->hasDLLImportLinkage() || GVEntry->hasDLLExportLinkage()) continue; - + // Otherwise, we know it's linkonce/weak, replace it if this is a strong - // symbol. + // symbol. FIXME is this right for common? if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) GVEntry = GV; } } } - + std::vector NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - Module &M = *Modules[m]->getModule(); + Module &M = *Modules[m]; for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // In the multi-module case, see what this global maps to. if (!LinkedGlobalsMap.empty()) { - if (const GlobalValue *GVEntry = + if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { // If something else is the canonical global, ignore this one. if (GVEntry != &*I) { @@ -736,28 +1013,22 @@ void ExecutionEngine::emitGlobals() { } } } - - if (!I->isDeclaration()) { - // Get the type of the global. - const Type *Ty = I->getType()->getElementType(); - // Allocate some memory for it! - unsigned Size = TD->getTypeSize(Ty); - addGlobalMapping(I, new char[Size]); + if (!I->isDeclaration()) { + addGlobalMapping(I, getMemoryForGV(I)); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = - sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) addGlobalMapping(I, SymAddr); else { - cerr << "Could not resolve external global address: " - << I->getName() << "\n"; - abort(); + report_fatal_error("Could not resolve external global address: " + +I->getName()); } } } - + // If there are multiple modules, map the non-canonical globals to their // canonical location. if (!NonCanonicalGlobals.empty()) { @@ -767,17 +1038,17 @@ void ExecutionEngine::emitGlobals() { LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; void *Ptr = getPointerToGlobalIfAvailable(CGV); assert(Ptr && "Canonical global wasn't codegen'd!"); - addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); + addGlobalMapping(GV, Ptr); } } - - // Now that all of the globals are set up in memory, loop through them all + + // Now that all of the globals are set up in memory, loop through them all // and initialize their contents. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->isDeclaration()) { if (!LinkedGlobalsMap.empty()) { - if (const GlobalValue *GVEntry = + if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) if (GVEntry != &*I) // Not the canonical variable. continue; @@ -793,17 +1064,41 @@ void ExecutionEngine::emitGlobals() { // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); - DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; - const Type *ElTy = GV->getType()->getElementType(); - size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); if (GA == 0) { // If it's not already specified, allocate memory for the global. - GA = new char[GVSize]; + GA = getMemoryForGV(GV); addGlobalMapping(GV, GA); } - InitializeMemory(GV->getInitializer(), GA); + // Don't initialize if it's thread local, let the client do it. + if (!GV->isThreadLocal()) + InitializeMemory(GV->getInitializer(), GA); + + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); NumInitBytes += (unsigned)GVSize; ++NumGlobals; } + +ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) + : EE(EE), GlobalAddressMap(this) { +} + +sys::Mutex * +ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { + return &EES->EE.lock; +} + +void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, + const GlobalValue *Old) { + void *OldVal = EES->GlobalAddressMap.lookup(Old); + EES->GlobalAddressReverseMap.erase(OldVal); +} + +void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, + const GlobalValue *, + const GlobalValue *) { + assert(false && "The ExecutionEngine doesn't know how to handle a" + " RAUW on a value it has a global mapping for."); +}