X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FInterpreter%2FExecution.cpp;h=1eb4f7d19342e47fad2ab3afa7c20007f3843e7e;hb=7deb7ebf8850bdf9c48504d3b0525ecab1312525;hp=f47f12853cf58eeabd8b3e88faa8043bd58bb0b5;hpb=4ee451de366474b9c228b4e5fa573795a715216d;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index f47f12853cf..1eb4f7d1934 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -11,46 +11,38 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "interpreter" #include "Interpreter.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/ParameterAttributes.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include +#include "llvm/Support/raw_ostream.h" #include +#include using namespace llvm; +#define DEBUG_TYPE "interpreter" + STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); -static Interpreter *TheEE = 0; + +static cl::opt PrintVolatile("interpreter-print-volatile", cl::Hidden, + cl::desc("make the interpreter print every volatile load and store")); //===----------------------------------------------------------------------===// // Various Helper Functions //===----------------------------------------------------------------------===// -static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) { - // Determine if the value is signed or not - bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0; - // If its signed, extend the sign bits - if (isSigned) - Val |= ~ITy->getBitMask(); - return Val; -} - static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { SF.Values[V] = Val; } -void Interpreter::initializeExecutionEngine() { - TheEE = this; -} - //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// @@ -60,62 +52,52 @@ void Interpreter::initializeExecutionEngine() { Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ break -#define IMPLEMENT_INTEGER_BINOP1(OP, TY) \ - case Type::IntegerTyID: { \ - Dest.IntVal = Src1.IntVal OP Src2.IntVal; \ - break; \ - } - - -static void executeAddInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, const Type *Ty) { +static void executeFAddInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_BINOP1(+, Ty); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: - cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } } -static void executeSubInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, const Type *Ty) { +static void executeFSubInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_BINOP1(-, Ty); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: - cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } } -static void executeMulInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, const Type *Ty) { +static void executeFMulInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_BINOP1(*, Ty); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: - cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } } static void executeFDivInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, const Type *Ty) { + GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: - cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } } static void executeFRemInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, const Type *Ty) { + GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); @@ -124,8 +106,8 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1, Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: - cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } } @@ -134,6 +116,15 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1, Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ break; +#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ + case Type::VectorTyID: { \ + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ + for( uint32_t _i=0;_igetTypeID()) { IMPLEMENT_INTEGER_ICMP(eq,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); IMPLEMENT_POINTER_ICMP(==); default: - cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ne,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); IMPLEMENT_POINTER_ICMP(!=); default: - cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ult,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); IMPLEMENT_POINTER_ICMP(<); default: - cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(slt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); IMPLEMENT_POINTER_ICMP(<); default: - cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ugt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); IMPLEMENT_POINTER_ICMP(>); default: - cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sgt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); IMPLEMENT_POINTER_ICMP(>); default: - cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ule,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); IMPLEMENT_POINTER_ICMP(<=); default: - cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sle,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); IMPLEMENT_POINTER_ICMP(<=); default: - cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(uge,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: - cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sge,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: - cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } void Interpreter::visitICmpInst(ICmpInst &I) { ExecutionContext &SF = ECStack.back(); - const Type *Ty = I.getOperand(0)->getType(); + Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result @@ -293,8 +294,8 @@ void Interpreter::visitICmpInst(ICmpInst &I) { case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; default: - cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; - abort(); + dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; + llvm_unreachable(nullptr); } SetValue(&I, R, SF); @@ -305,173 +306,323 @@ void Interpreter::visitICmpInst(ICmpInst &I) { Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ break +#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ + for( uint32_t _i=0;_i(Ty)->getElementType()->isFloatTy()) { \ + IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ + } else { \ + IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ + } + static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(==, Float); IMPLEMENT_FCMP(==, Double); + IMPLEMENT_VECTOR_FCMP(==); default: - cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } +#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ + if (TY->isFloatTy()) { \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.IntVal = APInt(1,false); \ + return Dest; \ + } \ + } else { \ + if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.IntVal = APInt(1,false); \ + return Dest; \ + } \ + } + +#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ + assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ + Dest.AggregateVal.resize( X.AggregateVal.size() ); \ + for( uint32_t _i=0;_iisVectorTy()) { \ + if (cast(TY)->getElementType()->isFloatTy()) { \ + MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ + } else { \ + MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ + } \ + } \ + + + static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) +{ GenericValue Dest; + // if input is scalar value and Src1 or Src2 is NaN return false + IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) + // if vector input detect NaNs and fill mask + MASK_VECTOR_NANS(Ty, Src1, Src2, false) + GenericValue DestMask = Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(!=, Float); IMPLEMENT_FCMP(!=, Double); - - default: - cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; - abort(); + IMPLEMENT_VECTOR_FCMP(!=); + default: + dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } + // in vector case mask out NaN elements + if (Ty->isVectorTy()) + for( size_t _i=0; _igetTypeID()) { IMPLEMENT_FCMP(<=, Float); IMPLEMENT_FCMP(<=, Double); + IMPLEMENT_VECTOR_FCMP(<=); default: - cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>=, Float); IMPLEMENT_FCMP(>=, Double); + IMPLEMENT_VECTOR_FCMP(>=); default: - cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<, Float); IMPLEMENT_FCMP(<, Double); + IMPLEMENT_VECTOR_FCMP(<); default: - cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>, Float); IMPLEMENT_FCMP(>, Double); + IMPLEMENT_VECTOR_FCMP(>); default: - cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } return Dest; } -#define IMPLEMENT_UNORDERED(TY, X,Y) \ - if (TY == Type::FloatTy) \ - if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ - Dest.IntVal = APInt(1,true); \ - return Dest; \ - } \ - else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ - Dest.IntVal = APInt(1,true); \ - return Dest; \ - } +#define IMPLEMENT_UNORDERED(TY, X,Y) \ + if (TY->isFloatTy()) { \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } \ + } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } +#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ + if (TY->isVectorTy()) { \ + GenericValue DestMask = Dest; \ + Dest = FUNC(Src1, Src2, Ty); \ + for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ + if (DestMask.AggregateVal[_i].IntVal == true) \ + Dest.AggregateVal[_i].IntVal = APInt(1, true); \ + return Dest; \ + } static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) return executeFCMP_OEQ(Src1, Src2, Ty); + } static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) return executeFCMP_ONE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) return executeFCMP_OLE(Src1, Src2, Ty); } static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) return executeFCMP_OGE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) return executeFCMP_OLT(Src1, Src2, Ty); } static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) return executeFCMP_OGT(Src1, Src2, Ty); } static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; - if (Ty == Type::FloatTy) + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + if (cast(Ty)->getElementType()->isFloatTy()) { + for( size_t _i=0;_iisFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && Src2.FloatVal == Src2.FloatVal)); - else + else { Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && Src2.DoubleVal == Src2.DoubleVal)); + } return Dest; } static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, - const Type *Ty) { + Type *Ty) { GenericValue Dest; - if (Ty == Type::FloatTy) + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + if (cast(Ty)->getElementType()->isFloatTy()) { + for( size_t _i=0;_iisFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || Src2.FloatVal != Src2.FloatVal)); - else + else { Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || Src2.DoubleVal != Src2.DoubleVal)); + } return Dest; } +static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, + Type *Ty, const bool val) { + GenericValue Dest; + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + for( size_t _i=0; _igetType(); + Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getPredicate()) { - case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; - case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; + default: + dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; + llvm_unreachable(nullptr); + break; + case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); + break; + case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); + break; case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; @@ -486,16 +637,13 @@ void Interpreter::visitFCmpInst(FCmpInst &I) { case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; - default: - cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; - abort(); } SetValue(&I, R, SF); } static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, - GenericValue Src2, const Type *Ty) { + GenericValue Src2, Type *Ty) { GenericValue Result; switch (predicate) { case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); @@ -522,65 +670,149 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); - case FCmpInst::FCMP_FALSE: { - GenericValue Result; - Result.IntVal = APInt(1, false); - return Result; - } - case FCmpInst::FCMP_TRUE: { - GenericValue Result; - Result.IntVal = APInt(1, true); - return Result; - } + case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); + case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true); default: - cerr << "Unhandled Cmp predicate\n"; - abort(); + dbgs() << "Unhandled Cmp predicate\n"; + llvm_unreachable(nullptr); } } void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); - const Type *Ty = I.getOperand(0)->getType(); + Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result - switch (I.getOpcode()) { - case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break; - case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break; - case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break; - case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break; - case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break; - case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; - case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; - case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; - case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; - case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; - case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; - case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; - default: - cerr << "Don't know how to handle this binary operator!\n-->" << I; - abort(); + // First process vector operation + if (Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + R.AggregateVal.resize(Src1.AggregateVal.size()); + + // Macros to execute binary operation 'OP' over integer vectors +#define INTEGER_VECTOR_OPERATION(OP) \ + for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ + R.AggregateVal[i].IntVal = \ + Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; + + // Additional macros to execute binary operations udiv/sdiv/urem/srem since + // they have different notation. +#define INTEGER_VECTOR_FUNCTION(OP) \ + for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ + R.AggregateVal[i].IntVal = \ + Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); + + // Macros to execute binary operation 'OP' over floating point type TY + // (float or double) vectors +#define FLOAT_VECTOR_FUNCTION(OP, TY) \ + for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ + R.AggregateVal[i].TY = \ + Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; + + // Macros to choose appropriate TY: float or double and run operation + // execution +#define FLOAT_VECTOR_OP(OP) { \ + if (cast(Ty)->getElementType()->isFloatTy()) \ + FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ + else { \ + if (cast(Ty)->getElementType()->isDoubleTy()) \ + FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ + else { \ + dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ + llvm_unreachable(0); \ + } \ + } \ +} + + switch(I.getOpcode()){ + default: + dbgs() << "Don't know how to handle this binary operator!\n-->" << I; + llvm_unreachable(nullptr); + break; + case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; + case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; + case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; + case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; + case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; + case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; + case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; + case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; + case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; + case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; + case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; + case Instruction::FSub: FLOAT_VECTOR_OP(-) break; + case Instruction::FMul: FLOAT_VECTOR_OP(*) break; + case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; + case Instruction::FRem: + if (cast(Ty)->getElementType()->isFloatTy()) + for (unsigned i = 0; i < R.AggregateVal.size(); ++i) + R.AggregateVal[i].FloatVal = + fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); + else { + if (cast(Ty)->getElementType()->isDoubleTy()) + for (unsigned i = 0; i < R.AggregateVal.size(); ++i) + R.AggregateVal[i].DoubleVal = + fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); + else { + dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); + } + } + break; + } + } else { + switch (I.getOpcode()) { + default: + dbgs() << "Don't know how to handle this binary operator!\n-->" << I; + llvm_unreachable(nullptr); + break; + case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; + case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; + case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; + case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; + case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; + case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; + case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; + case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; + case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; + case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; + case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; + case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; + case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; + case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; + case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; + } } - SetValue(&I, R, SF); } static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, - GenericValue Src3) { - return Src1.IntVal == 0 ? Src3 : Src2; + GenericValue Src3, Type *Ty) { + GenericValue Dest; + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) + Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? + Src3.AggregateVal[i] : Src2.AggregateVal[i]; + } else { + Dest = (Src1.IntVal == 0) ? Src3 : Src2; + } + return Dest; } void Interpreter::visitSelectInst(SelectInst &I) { ExecutionContext &SF = ECStack.back(); + Type * Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); - GenericValue R = executeSelectInst(Src1, Src2, Src3); + GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); SetValue(&I, R, SF); } - //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// @@ -589,9 +821,9 @@ void Interpreter::exitCalled(GenericValue GV) { // runAtExitHandlers() assumes there are no stack frames, but // if exit() was called, then it had a stack frame. Blow away // the stack before interpreting atexit handlers. - ECStack.clear (); - runAtExitHandlers (); - exit (GV.IntVal.zextOrTrunc(32).getZExtValue()); + ECStack.clear(); + runAtExitHandlers(); + exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); } /// Pop the last stack frame off of ECStack and then copy the result @@ -602,13 +834,13 @@ void Interpreter::exitCalled(GenericValue GV) { /// care of switching to the normal destination BB, if we are returning /// from an invoke. /// -void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, - GenericValue Result) { +void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, + GenericValue Result) { // Pop the current stack frame. ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... - if (RetTy && RetTy->isInteger()) { // Nonvoid return type? + if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? ExitValue = Result; // Capture the exit value of the program } else { memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); @@ -618,7 +850,8 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, // fill in the return value... ExecutionContext &CallingSF = ECStack.back(); if (Instruction *I = CallingSF.Caller.getInstruction()) { - if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... + // Save result... + if (!CallingSF.Caller.getType()->isVoidTy()) SetValue(I, Result, CallingSF); if (InvokeInst *II = dyn_cast (I)) SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); @@ -629,7 +862,7 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); - const Type *RetTy = Type::VoidTy; + Type *RetTy = Type::getVoidTy(I.getContext()); GenericValue Result; // Save away the return value... (if we are not 'ret void') @@ -641,27 +874,8 @@ void Interpreter::visitReturnInst(ReturnInst &I) { popStackAndReturnValueToCaller(RetTy, Result); } -void Interpreter::visitUnwindInst(UnwindInst &I) { - // Unwind stack - Instruction *Inst; - do { - ECStack.pop_back (); - if (ECStack.empty ()) - abort (); - Inst = ECStack.back ().Caller.getInstruction (); - } while (!(Inst && isa (Inst))); - - // Return from invoke - ExecutionContext &InvokingSF = ECStack.back (); - InvokingSF.Caller = CallSite (); - - // Go to exceptional destination BB of invoke instruction - SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); -} - void Interpreter::visitUnreachableInst(UnreachableInst &I) { - cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; - abort(); + report_fatal_error("Program executed an 'unreachable' instruction!"); } void Interpreter::visitBranchInst(BranchInst &I) { @@ -679,22 +893,30 @@ void Interpreter::visitBranchInst(BranchInst &I) { void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); - GenericValue CondVal = getOperandValue(I.getOperand(0), SF); - const Type *ElTy = I.getOperand(0)->getType(); + Value* Cond = I.getCondition(); + Type *ElTy = Cond->getType(); + GenericValue CondVal = getOperandValue(Cond, SF); // Check to see if any of the cases match... - BasicBlock *Dest = 0; - for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) - if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) - .IntVal != 0) { - Dest = cast(I.getOperand(i+1)); + BasicBlock *Dest = nullptr; + for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) { + GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF); + if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { + Dest = cast(i.getCaseSuccessor()); break; } - + } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } +void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { + ExecutionContext &SF = ECStack.back(); + void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); + SwitchToNewBasicBlock((BasicBlock*)Dest, SF); +} + + // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. @@ -737,16 +959,16 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ // Memory Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::visitAllocationInst(AllocationInst &I) { +void Interpreter::visitAllocaInst(AllocaInst &I) { ExecutionContext &SF = ECStack.back(); - const Type *Ty = I.getType()->getElementType(); // Type to be allocated + Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... unsigned NumElements = getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); - unsigned TypeSize = (size_t)TD.getABITypeSize(Ty); + unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); // Avoid malloc-ing zero bytes, use max()... unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); @@ -754,46 +976,38 @@ void Interpreter::visitAllocationInst(AllocationInst &I) { // Allocate enough memory to hold the type... void *Memory = malloc(MemToAlloc); - DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " - << NumElements << " (Total: " << MemToAlloc << ") at " - << uintptr_t(Memory) << '\n'; + DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " + << NumElements << " (Total: " << MemToAlloc << ") at " + << uintptr_t(Memory) << '\n'); GenericValue Result = PTOGV(Memory); - assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); + assert(Result.PointerVal && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) ECStack.back().Allocas.add(Memory); } -void Interpreter::visitFreeInst(FreeInst &I) { - ExecutionContext &SF = ECStack.back(); - assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); - GenericValue Value = getOperandValue(I.getOperand(0), SF); - // TODO: Check to make sure memory is allocated - free(GVTOP(Value)); // Free memory -} - // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF) { - assert(isa(Ptr->getType()) && + assert(Ptr->getType()->isPointerTy() && "Cannot getElementOffset of a nonpointer type!"); uint64_t Total = 0; for (; I != E; ++I) { - if (const StructType *STy = dyn_cast(*I)) { - const StructLayout *SLO = TD.getStructLayout(STy); + if (StructType *STy = dyn_cast(*I)) { + const StructLayout *SLO = getDataLayout().getStructLayout(STy); const ConstantInt *CPU = cast(I.getOperand()); unsigned Index = unsigned(CPU->getZExtValue()); Total += SLO->getElementOffset(Index); } else { - const SequentialType *ST = cast(*I); + SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... GenericValue IdxGV = getOperandValue(I.getOperand(), SF); @@ -802,23 +1016,23 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, cast(I.getOperand()->getType())->getBitWidth(); if (BitWidth == 32) Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); - else if (BitWidth == 64) + else { + assert(BitWidth == 64 && "Invalid index type for getelementptr"); Idx = (int64_t)IdxGV.IntVal.getZExtValue(); - else - assert(0 && "Invalid index type for getelementptr"); - Total += TD.getABITypeSize(ST->getElementType())*Idx; + } + Total += getDataLayout().getTypeAllocSize(ST->getElementType()) * Idx; } } GenericValue Result; Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; - DOUT << "GEP Index " << Total << " bytes.\n"; + DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); - SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), + SetValue(&I, executeGEPOperation(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), SF), SF); } @@ -829,6 +1043,8 @@ void Interpreter::visitLoadInst(LoadInst &I) { GenericValue Result; LoadValueFromMemory(Result, Ptr, I.getType()); SetValue(&I, Result, SF); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile load " << I; } void Interpreter::visitStoreInst(StoreInst &I) { @@ -837,6 +1053,8 @@ void Interpreter::visitStoreInst(StoreInst &I) { GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile store: " << I; } //===----------------------------------------------------------------------===// @@ -848,7 +1066,7 @@ void Interpreter::visitCallSite(CallSite CS) { // Check to see if this is an intrinsic function call... Function *F = CS.getCalledFunction(); - if (F && F->isDeclaration ()) + if (F && F->isDeclaration()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; @@ -896,15 +1114,6 @@ void Interpreter::visitCallSite(CallSite CS) { e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { Value *V = *i; ArgVals.push_back(getOperandValue(V, SF)); - // Promote all integral types whose size is < sizeof(i32) into i32. - // We do this by zero or sign extending the value as appropriate - // according to the parameter attributes - const Type *Ty = V->getType(); - if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) - if (CS.paramHasAttr(pNum, ParamAttr::ZExt)) - ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32); - else if (CS.paramHasAttr(pNum, ParamAttr::SExt)) - ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32); } // To handle indirect calls, we must get the pointer value from the argument @@ -913,12 +1122,42 @@ void Interpreter::visitCallSite(CallSite CS) { callFunction((Function*)GVTOP(SRC), ArgVals); } +// auxiliary function for shift operations +static unsigned getShiftAmount(uint64_t orgShiftAmount, + llvm::APInt valueToShift) { + unsigned valueWidth = valueToShift.getBitWidth(); + if (orgShiftAmount < (uint64_t)valueWidth) + return orgShiftAmount; + // according to the llvm documentation, if orgShiftAmount > valueWidth, + // the result is undfeined. but we do shift by this rule: + return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; +} + + void Interpreter::visitShl(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); + Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } @@ -927,7 +1166,25 @@ void Interpreter::visitLShr(BinaryOperator &I) { GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); + Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } @@ -935,140 +1192,292 @@ void Interpreter::visitAShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest; - Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); + GenericValue Dest; + Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + size_t src1Size = Src1.AggregateVal.size(); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } -GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - const IntegerType *DITy = cast(DstTy); - const IntegerType *SITy = cast(SrcTy); - unsigned DBitWidth = DITy->getBitWidth(); - unsigned SBitWidth = SITy->getBitWidth(); - assert(SBitWidth > DBitWidth && "Invalid truncate"); - Dest.IntVal = Src.IntVal.trunc(DBitWidth); + Type *SrcTy = SrcVal->getType(); + if (SrcTy->isVectorTy()) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast(DstVecTy)->getBitWidth(); + unsigned NumElts = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(NumElts); + for (unsigned i = 0; i < NumElts; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); + } else { + IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.trunc(DBitWidth); + } return Dest; } -GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); + Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - const IntegerType *DITy = cast(DstTy); - const IntegerType *SITy = cast(SrcTy); - unsigned DBitWidth = DITy->getBitWidth(); - unsigned SBitWidth = SITy->getBitWidth(); - assert(SBitWidth < DBitWidth && "Invalid sign extend"); - Dest.IntVal = Src.IntVal.sext(DBitWidth); + if (SrcTy->isVectorTy()) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); + } else { + auto *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.sext(DBitWidth); + } return Dest; } -GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); + Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - const IntegerType *DITy = cast(DstTy); - const IntegerType *SITy = cast(SrcTy); - unsigned DBitWidth = DITy->getBitWidth(); - unsigned SBitWidth = SITy->getBitWidth(); - assert(SBitWidth < DBitWidth && "Invalid sign extend"); - Dest.IntVal = Src.IntVal.zext(DBitWidth); + if (SrcTy->isVectorTy()) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast(DstVecTy)->getBitWidth(); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); + } else { + auto *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.zext(DBitWidth); + } return Dest; } -GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy && - "Invalid FPTrunc instruction"); - Dest.FloatVal = (float) Src.DoubleVal; + + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + assert(SrcVal->getType()->getScalarType()->isDoubleTy() && + DstTy->getScalarType()->isFloatTy() && + "Invalid FPTrunc instruction"); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; + } else { + assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && + "Invalid FPTrunc instruction"); + Dest.FloatVal = (float)Src.DoubleVal; + } + return Dest; } -GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy && - "Invalid FPTrunc instruction"); - Dest.DoubleVal = (double) Src.FloatVal; + + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + assert(SrcVal->getType()->getScalarType()->isFloatTy() && + DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; + } else { + assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && + "Invalid FPExt instruction"); + Dest.DoubleVal = (double)Src.FloatVal; + } + return Dest; } -GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); - uint32_t DBitWidth = cast(DstTy)->getBitWidth(); + Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + if (SrcTy->getTypeID() == Type::VectorTyID) { + Type *DstVecTy = DstTy->getScalarType(); + Type *SrcVecTy = SrcTy->getScalarType(); + uint32_t DBitWidth = cast(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + + if (SrcVecTy->getTypeID() == Type::FloatTyID) { + assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( + Src.AggregateVal[i].FloatVal, DBitWidth); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( + Src.AggregateVal[i].DoubleVal, DBitWidth); + } + } else { + // scalar + uint32_t DBitWidth = cast(DstTy)->getBitWidth(); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else { + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + } + } + return Dest; } -GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); - uint32_t DBitWidth = cast(DstTy)->getBitWidth(); + Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + if (SrcTy->getTypeID() == Type::VectorTyID) { + Type *DstVecTy = DstTy->getScalarType(); + Type *SrcVecTy = SrcTy->getScalarType(); + uint32_t DBitWidth = cast(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (SrcVecTy->getTypeID() == Type::FloatTyID) { + assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( + Src.AggregateVal[i].FloatVal, DBitWidth); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( + Src.AggregateVal[i].DoubleVal, DBitWidth); + } + } else { + // scalar + unsigned DBitWidth = cast(DstTy)->getBitWidth(); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else { + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + } + } return Dest; } -GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); - else - Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (DstVecTy->getTypeID() == Type::FloatTyID) { + assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = + APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = + APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); + } + } else { + // scalar + assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); + else { + Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + } + } return Dest; } -GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction"); - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); - else - Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); - return Dest; + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (DstVecTy->getTypeID() == Type::FloatTyID) { + assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = + APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = + APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); + } + } else { + // scalar + assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); + else { + Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); + } + } + return Dest; } -GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - const Type *SrcTy = SrcVal->getType(); uint32_t DBitWidth = cast(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(isa(SrcTy) && "Invalid PtrToInt instruction"); + assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); return Dest; } -GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(isa(DstTy) && "Invalid PtrToInt instruction"); + assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); - uint32_t PtrSize = TD.getPointerSizeInBits(); + uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); if (PtrSize != Src.IntVal.getBitWidth()) Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); @@ -1076,37 +1485,169 @@ GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, return Dest; } -GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, +GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - - const Type *SrcTy = SrcVal->getType(); + + // This instruction supports bitwise conversion of vectors to integers and + // to vectors of other types (as long as they have the same size) + Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - if (isa(DstTy)) { - assert(isa(SrcTy) && "Invalid BitCast"); - Dest.PointerVal = Src.PointerVal; - } else if (DstTy->isInteger()) { - if (SrcTy == Type::FloatTy) { - Dest.IntVal.zext(sizeof(Src.FloatVal) * 8); - Dest.IntVal.floatToBits(Src.FloatVal); - } else if (SrcTy == Type::DoubleTy) { - Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8); - Dest.IntVal.doubleToBits(Src.DoubleVal); - } else if (SrcTy->isInteger()) { - Dest.IntVal = Src.IntVal; - } else - assert(0 && "Invalid BitCast"); - } else if (DstTy == Type::FloatTy) { - if (SrcTy->isInteger()) - Dest.FloatVal = Src.IntVal.bitsToFloat(); - else - Dest.FloatVal = Src.FloatVal; - } else if (DstTy == Type::DoubleTy) { - if (SrcTy->isInteger()) - Dest.DoubleVal = Src.IntVal.bitsToDouble(); - else - Dest.DoubleVal = Src.DoubleVal; - } else - assert(0 && "Invalid Bitcast"); + + if ((SrcTy->getTypeID() == Type::VectorTyID) || + (DstTy->getTypeID() == Type::VectorTyID)) { + // vector src bitcast to vector dst or vector src bitcast to scalar dst or + // scalar src bitcast to vector dst + bool isLittleEndian = getDataLayout().isLittleEndian(); + GenericValue TempDst, TempSrc, SrcVec; + Type *SrcElemTy; + Type *DstElemTy; + unsigned SrcBitSize; + unsigned DstBitSize; + unsigned SrcNum; + unsigned DstNum; + + if (SrcTy->getTypeID() == Type::VectorTyID) { + SrcElemTy = SrcTy->getScalarType(); + SrcBitSize = SrcTy->getScalarSizeInBits(); + SrcNum = Src.AggregateVal.size(); + SrcVec = Src; + } else { + // if src is scalar value, make it vector <1 x type> + SrcElemTy = SrcTy; + SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + SrcNum = 1; + SrcVec.AggregateVal.push_back(Src); + } + + if (DstTy->getTypeID() == Type::VectorTyID) { + DstElemTy = DstTy->getScalarType(); + DstBitSize = DstTy->getScalarSizeInBits(); + DstNum = (SrcNum * SrcBitSize) / DstBitSize; + } else { + DstElemTy = DstTy; + DstBitSize = DstTy->getPrimitiveSizeInBits(); + DstNum = 1; + } + + if (SrcNum * SrcBitSize != DstNum * DstBitSize) + llvm_unreachable("Invalid BitCast"); + + // If src is floating point, cast to integer first. + TempSrc.AggregateVal.resize(SrcNum); + if (SrcElemTy->isFloatTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = + APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); + + } else if (SrcElemTy->isDoubleTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = + APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); + } else if (SrcElemTy->isIntegerTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; + } else { + // Pointers are not allowed as the element type of vector. + llvm_unreachable("Invalid Bitcast"); + } + + // now TempSrc is integer type vector + if (DstNum < SrcNum) { + // Example: bitcast <4 x i32> to <2 x i64> + unsigned Ratio = SrcNum / DstNum; + unsigned SrcElt = 0; + for (unsigned i = 0; i < DstNum; i++) { + GenericValue Elt; + Elt.IntVal = 0; + Elt.IntVal = Elt.IntVal.zext(DstBitSize); + unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); + for (unsigned j = 0; j < Ratio; j++) { + APInt Tmp; + Tmp = Tmp.zext(SrcBitSize); + Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; + Tmp = Tmp.zext(DstBitSize); + Tmp = Tmp.shl(ShiftAmt); + ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; + Elt.IntVal |= Tmp; + } + TempDst.AggregateVal.push_back(Elt); + } + } else { + // Example: bitcast <2 x i64> to <4 x i32> + unsigned Ratio = DstNum / SrcNum; + for (unsigned i = 0; i < SrcNum; i++) { + unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); + for (unsigned j = 0; j < Ratio; j++) { + GenericValue Elt; + Elt.IntVal = Elt.IntVal.zext(SrcBitSize); + Elt.IntVal = TempSrc.AggregateVal[i].IntVal; + Elt.IntVal = Elt.IntVal.lshr(ShiftAmt); + // it could be DstBitSize == SrcBitSize, so check it + if (DstBitSize < SrcBitSize) + Elt.IntVal = Elt.IntVal.trunc(DstBitSize); + ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; + TempDst.AggregateVal.push_back(Elt); + } + } + } + + // convert result from integer to specified type + if (DstTy->getTypeID() == Type::VectorTyID) { + if (DstElemTy->isDoubleTy()) { + Dest.AggregateVal.resize(DstNum); + for (unsigned i = 0; i < DstNum; i++) + Dest.AggregateVal[i].DoubleVal = + TempDst.AggregateVal[i].IntVal.bitsToDouble(); + } else if (DstElemTy->isFloatTy()) { + Dest.AggregateVal.resize(DstNum); + for (unsigned i = 0; i < DstNum; i++) + Dest.AggregateVal[i].FloatVal = + TempDst.AggregateVal[i].IntVal.bitsToFloat(); + } else { + Dest = TempDst; + } + } else { + if (DstElemTy->isDoubleTy()) + Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); + else if (DstElemTy->isFloatTy()) { + Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); + } else { + Dest.IntVal = TempDst.AggregateVal[0].IntVal; + } + } + } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) || + // (DstTy->getTypeID() == Type::VectorTyID)) + + // scalar src bitcast to scalar dst + if (DstTy->isPointerTy()) { + assert(SrcTy->isPointerTy() && "Invalid BitCast"); + Dest.PointerVal = Src.PointerVal; + } else if (DstTy->isIntegerTy()) { + if (SrcTy->isFloatTy()) + Dest.IntVal = APInt::floatToBits(Src.FloatVal); + else if (SrcTy->isDoubleTy()) { + Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); + } else if (SrcTy->isIntegerTy()) { + Dest.IntVal = Src.IntVal; + } else { + llvm_unreachable("Invalid BitCast"); + } + } else if (DstTy->isFloatTy()) { + if (SrcTy->isIntegerTy()) + Dest.FloatVal = Src.IntVal.bitsToFloat(); + else { + Dest.FloatVal = Src.FloatVal; + } + } else if (DstTy->isDoubleTy()) { + if (SrcTy->isIntegerTy()) + Dest.DoubleVal = Src.IntVal.bitsToDouble(); + else { + Dest.DoubleVal = Src.DoubleVal; + } + } else { + llvm_unreachable("Invalid Bitcast"); + } + } return Dest; } @@ -1183,15 +1724,17 @@ void Interpreter::visitVAArgInst(VAArgInst &I) { GenericValue Dest; GenericValue Src = ECStack[VAList.UIntPairVal.first] .VarArgs[VAList.UIntPairVal.second]; - const Type *Ty = I.getType(); + Type *Ty = I.getType(); switch (Ty->getTypeID()) { - case Type::IntegerTyID: Dest.IntVal = Src.IntVal; - IMPLEMENT_VAARG(Pointer); - IMPLEMENT_VAARG(Float); - IMPLEMENT_VAARG(Double); + case Type::IntegerTyID: + Dest.IntVal = Src.IntVal; + break; + IMPLEMENT_VAARG(Pointer); + IMPLEMENT_VAARG(Float); + IMPLEMENT_VAARG(Double); default: - cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; - abort(); + dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + llvm_unreachable(nullptr); } // Set the Value of this Instruction. @@ -1201,10 +1744,237 @@ void Interpreter::visitVAArgInst(VAArgInst &I) { ++VAList.UIntPairVal.second; } +void Interpreter::visitExtractElementInst(ExtractElementInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + + Type *Ty = I.getType(); + const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); + + if(Src1.AggregateVal.size() > indx) { + switch (Ty->getTypeID()) { + default: + dbgs() << "Unhandled destination type for extractelement instruction: " + << *Ty << "\n"; + llvm_unreachable(nullptr); + break; + case Type::IntegerTyID: + Dest.IntVal = Src1.AggregateVal[indx].IntVal; + break; + case Type::FloatTyID: + Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; + break; + case Type::DoubleTyID: + Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; + break; + } + } else { + dbgs() << "Invalid index in extractelement instruction\n"; + } + + SetValue(&I, Dest, SF); +} + +void Interpreter::visitInsertElementInst(InsertElementInst &I) { + ExecutionContext &SF = ECStack.back(); + Type *Ty = I.getType(); + + if(!(Ty->isVectorTy()) ) + llvm_unreachable("Unhandled dest type for insertelement instruction"); + + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue Dest; + + Type *TyContained = Ty->getContainedType(0); + + const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); + Dest.AggregateVal = Src1.AggregateVal; + + if(Src1.AggregateVal.size() <= indx) + llvm_unreachable("Invalid index in insertelement instruction"); + switch (TyContained->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + case Type::IntegerTyID: + Dest.AggregateVal[indx].IntVal = Src2.IntVal; + break; + case Type::FloatTyID: + Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; + break; + case Type::DoubleTyID: + Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; + break; + } + SetValue(&I, Dest, SF); +} + +void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ + ExecutionContext &SF = ECStack.back(); + + Type *Ty = I.getType(); + if(!(Ty->isVectorTy())) + llvm_unreachable("Unhandled dest type for shufflevector instruction"); + + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue Dest; + + // There is no need to check types of src1 and src2, because the compiled + // bytecode can't contain different types for src1 and src2 for a + // shufflevector instruction. + + Type *TyContained = Ty->getContainedType(0); + unsigned src1Size = (unsigned)Src1.AggregateVal.size(); + unsigned src2Size = (unsigned)Src2.AggregateVal.size(); + unsigned src3Size = (unsigned)Src3.AggregateVal.size(); + + Dest.AggregateVal.resize(src3Size); + + switch (TyContained->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + break; + case Type::IntegerTyID: + for( unsigned i=0; i , <2 x i32> undef, + // <2 x i32> < i32 0, i32 5 >, + // where i32 5 is invalid, but let it be additional check here: + llvm_unreachable("Invalid mask in shufflevector instruction"); + } + break; + case Type::FloatTyID: + for( unsigned i=0; iAggregateVal[*IdxBegin]; + ++IdxBegin; + } + + Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); + switch (IndexedType->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for extractelement instruction"); + break; + case Type::IntegerTyID: + Dest.IntVal = pSrc->IntVal; + break; + case Type::FloatTyID: + Dest.FloatVal = pSrc->FloatVal; + break; + case Type::DoubleTyID: + Dest.DoubleVal = pSrc->DoubleVal; + break; + case Type::ArrayTyID: + case Type::StructTyID: + case Type::VectorTyID: + Dest.AggregateVal = pSrc->AggregateVal; + break; + case Type::PointerTyID: + Dest.PointerVal = pSrc->PointerVal; + break; + } + + SetValue(&I, Dest, SF); +} + +void Interpreter::visitInsertValueInst(InsertValueInst &I) { + + ExecutionContext &SF = ECStack.back(); + Value *Agg = I.getAggregateOperand(); + + GenericValue Src1 = getOperandValue(Agg, SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest = Src1; // Dest is a slightly changed Src1 + + ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); + unsigned Num = I.getNumIndices(); + + GenericValue *pDest = &Dest; + for (unsigned i = 0 ; i < Num; ++i) { + pDest = &pDest->AggregateVal[*IdxBegin]; + ++IdxBegin; + } + // pDest points to the target value in the Dest now + + Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); + + switch (IndexedType->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + break; + case Type::IntegerTyID: + pDest->IntVal = Src2.IntVal; + break; + case Type::FloatTyID: + pDest->FloatVal = Src2.FloatVal; + break; + case Type::DoubleTyID: + pDest->DoubleVal = Src2.DoubleVal; + break; + case Type::ArrayTyID: + case Type::StructTyID: + case Type::VectorTyID: + pDest->AggregateVal = Src2.AggregateVal; + break; + case Type::PointerTyID: + pDest->PointerVal = Src2.PointerVal; + break; + } + + SetValue(&I, Dest, SF); +} + GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, ExecutionContext &SF) { switch (CE->getOpcode()) { - case Instruction::Trunc: + case Instruction::Trunc: return executeTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::ZExt: return executeZExtInst(CE->getOperand(0), CE->getType(), SF); @@ -1240,7 +2010,8 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, case Instruction::Select: return executeSelectInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), - getOperandValue(CE->getOperand(2), SF)); + getOperandValue(CE->getOperand(2), SF), + CE->getOperand(0)->getType()); default : break; } @@ -1250,20 +2021,23 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); GenericValue Dest; - const Type * Ty = CE->getOperand(0)->getType(); + Type * Ty = CE->getOperand(0)->getType(); switch (CE->getOpcode()) { - case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break; - case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break; - case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break; + case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; + case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; + case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; + case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; + case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; + case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; - case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break; - case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break; - case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break; + case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; + case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; + case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; case Instruction::Shl: Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); break; @@ -1274,9 +2048,8 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); break; default: - cerr << "Unhandled ConstantExpr: " << *CE << "\n"; - abort(); - return GenericValue(); + dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; + llvm_unreachable("Unhandled ConstantExpr"); } return Dest; } @@ -1300,13 +2073,12 @@ GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // -void Interpreter::callFunction(Function *F, - const std::vector &ArgVals) { - assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || +void Interpreter::callFunction(Function *F, ArrayRef ArgVals) { + assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || ECStack.back().Caller.arg_size() == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. - ECStack.push_back(ExecutionContext()); + ECStack.emplace_back(); ExecutionContext &StackFrame = ECStack.back(); StackFrame.CurFunction = F; @@ -1319,7 +2091,7 @@ void Interpreter::callFunction(Function *F, } // Get pointers to first LLVM BB & Instruction in function. - StackFrame.CurBB = F->begin(); + StackFrame.CurBB = &F->front(); StackFrame.CurInst = StackFrame.CurBB->begin(); // Run through the function arguments and initialize their values... @@ -1331,7 +2103,7 @@ void Interpreter::callFunction(Function *F, unsigned i = 0; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) - SetValue(AI, ArgVals[i], StackFrame); + SetValue(&*AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); @@ -1347,30 +2119,7 @@ void Interpreter::run() { // Track the number of dynamic instructions executed. ++NumDynamicInsts; - DOUT << "About to interpret: " << I; + DEBUG(dbgs() << "About to interpret: " << I); visit(I); // Dispatch to one of the visit* methods... -#if 0 - // This is not safe, as visiting the instruction could lower it and free I. -#ifndef NDEBUG - if (!isa(I) && !isa(I) && - I.getType() != Type::VoidTy) { - DOUT << " --> "; - const GenericValue &Val = SF.Values[&I]; - switch (I.getType()->getTypeID()) { - default: assert(0 && "Invalid GenericValue Type"); - case Type::VoidTyID: DOUT << "void"; break; - case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break; - case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break; - case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal); - break; - case Type::IntegerTyID: - DOUT << "i" << Val.IntVal.getBitWidth() << " " - << Val.IntVal.toStringUnsigned(10) - << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; - break; - } - } -#endif -#endif } }