X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FInterpreter%2FExecution.cpp;h=84486c21eec225bba37707b7dd68829d5f287bd0;hb=fb0ef2e82cb2e80983c097100ae168af68ee8e7b;hp=1d7ec7aa8ee8788cce3562543fb1588eeafd2e18;hpb=43e3f7c9627d0793a31a9457d3bbbe4d8d56d331;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index 1d7ec7aa8ee..84486c21eec 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -6,20 +6,71 @@ #include "Interpreter.h" #include "ExecutionAnnotations.h" -#include "llvm/iOther.h" -#include "llvm/iTerminators.h" -#include "llvm/iMemory.h" -#include "llvm/Type.h" -#include "llvm/ConstPoolVals.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Constants.h" #include "llvm/Assembly/Writer.h" -#include "llvm/Support/DataTypes.h" -#include "llvm/Target/TargetData.h" -#include "llvm/GlobalVariable.h" +#include "Support/CommandLine.h" +#include "Support/Statistic.h" +#include // For fmod +#include +#include + +Interpreter *TheEE = 0; + +namespace { + Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); + + cl::opt + QuietMode("quiet", cl::desc("Do not emit any non-program output"), + cl::init(true)); + + cl::alias + QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); + + cl::opt + ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); + + cl::opt + AbortOnExceptions("abort-on-exception", + cl::desc("Halt execution on a machine exception")); +} // Create a TargetData structure to handle memory addressing and size/alignment // computations // -static TargetData TD("lli Interpreter"); +CachedWriter CW; // Object to accelerate printing of LLVM + +#ifdef PROFILE_STRUCTURE_FIELDS +static cl::opt +ProfileStructureFields("profilestructfields", + cl::desc("Profile Structure Field Accesses")); +#include +static std::map > FieldAccessCounts; +#endif + +sigjmp_buf SignalRecoverBuffer; +static bool InInstruction = false; + +extern "C" { +static void SigHandler(int Signal) { + if (InInstruction) + siglongjmp(SignalRecoverBuffer, Signal); +} +} + +static void initializeSignalHandlers() { + struct sigaction Action; + Action.sa_handler = SigHandler; + Action.sa_flags = SA_SIGINFO; + sigemptyset(&Action.sa_mask); + sigaction(SIGSEGV, &Action, 0); + sigaction(SIGBUS, &Action, 0); + sigaction(SIGINT, &Action, 0); + sigaction(SIGFPE, &Action, 0); +} + //===----------------------------------------------------------------------===// // Value Manipulation code @@ -31,59 +82,62 @@ static unsigned getOperandSlot(Value *V) { return SN->SlotNum; } -#define GET_CONST_VAL(TY, CLASS) \ - case Type::TY##TyID: Result.TY##Val = cast(CPV)->getValue(); break +// Operations used by constant expr implementations... +static GenericValue executeCastOperation(Value *Src, const Type *DestTy, + ExecutionContext &SF); +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); + static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { - if (ConstPoolVal *CPV = dyn_cast(V)) { - GenericValue Result; - switch (CPV->getType()->getPrimitiveID()) { - GET_CONST_VAL(Bool , ConstPoolBool); - GET_CONST_VAL(UByte , ConstPoolUInt); - GET_CONST_VAL(SByte , ConstPoolSInt); - GET_CONST_VAL(UShort , ConstPoolUInt); - GET_CONST_VAL(Short , ConstPoolSInt); - GET_CONST_VAL(UInt , ConstPoolUInt); - GET_CONST_VAL(Int , ConstPoolSInt); - GET_CONST_VAL(ULong , ConstPoolUInt); - GET_CONST_VAL(Long , ConstPoolSInt); - GET_CONST_VAL(Float , ConstPoolFP); - GET_CONST_VAL(Double , ConstPoolFP); - case Type::PointerTyID: - if (isa(CPV)) { - Result.ULongVal = 0; - } else if (ConstPoolPointerRef *CPR =dyn_cast(CPV)) { - assert(0 && "Not implemented!"); - } else { - assert(0 && "Unknown constant pointer type!"); - } - break; + if (ConstantExpr *CE = dyn_cast(V)) { + switch (CE->getOpcode()) { + case Instruction::Cast: + return executeCastOperation(CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1, + CE->op_end(), SF); + case Instruction::Add: + return executeAddInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getType()); default: - cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl; + std::cerr << "Unhandled ConstantExpr: " << CE << "\n"; + abort(); + return GenericValue(); } - return Result; + } else if (Constant *CPV = dyn_cast(V)) { + return TheEE->getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { - GlobalAddress *Address = - (GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID); - GenericValue Result; - Result.ULongVal = (uint64_t)(GenericValue*)Address->Ptr; - return Result; + return PTOGV(TheEE->getPointerToGlobal(GV)); } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value + unsigned OpSlot = getOperandSlot(V); + assert(TyP < SF.Values.size() && + OpSlot < SF.Values[TyP].size() && "Value out of range!"); return SF.Values[TyP][getOperandSlot(V)]; } } static void printOperandInfo(Value *V, ExecutionContext &SF) { - if (isa(V)) { - cout << "Constant Pool Value\n"; + if (isa(V)) { + std::cout << "Constant Pool Value\n"; } else if (isa(V)) { - cout << "Global Value\n"; + std::cout << "Global Value\n"; } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned Slot = getOperandSlot(V); - cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot - << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF << endl; + std::cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot + << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF + << " Contents=0x"; + + const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot]; + for (unsigned i = 0; i < sizeof(GenericValue); ++i) { + unsigned char Cur = Buf[i]; + std::cout << ( Cur >= 160?char((Cur>>4)+'A'-10):char((Cur>>4) + '0')) + << ((Cur&15) >= 10?char((Cur&15)+'A'-10):char((Cur&15) + '0')); + } + std::cout << "\n"; } } @@ -92,7 +146,7 @@ static void printOperandInfo(Value *V, ExecutionContext &SF) { static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - //cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << endl; + //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n"; SF.Values[TyP][getOperandSlot(V)] = Val; } @@ -102,116 +156,12 @@ static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { //===----------------------------------------------------------------------===// void Interpreter::initializeExecutionEngine() { - AnnotationManager::registerAnnotationFactory(MethodInfoAID, - &MethodInfo::Create); - AnnotationManager::registerAnnotationFactory(GlobalAddressAID, - &GlobalAddress::Create); -} - -// InitializeMemory - Recursive function to apply a ConstPool value into the -// specified memory location... -// -static void InitializeMemory(ConstPoolVal *Init, char *Addr) { -#define INITIALIZE_MEMORY(TYID, CLASS, TY) \ - case Type::TYID##TyID: { \ - TY Tmp = cast(Init)->getValue(); \ - memcpy(Addr, &Tmp, sizeof(TY)); \ - } return - - switch (Init->getType()->getPrimitiveID()) { - INITIALIZE_MEMORY(Bool , ConstPoolBool, bool); - INITIALIZE_MEMORY(UByte , ConstPoolUInt, unsigned char); - INITIALIZE_MEMORY(SByte , ConstPoolSInt, signed char); - INITIALIZE_MEMORY(UShort , ConstPoolUInt, unsigned short); - INITIALIZE_MEMORY(Short , ConstPoolSInt, signed short); - INITIALIZE_MEMORY(UInt , ConstPoolUInt, unsigned int); - INITIALIZE_MEMORY(Int , ConstPoolSInt, signed int); - INITIALIZE_MEMORY(ULong , ConstPoolUInt, uint64_t); - INITIALIZE_MEMORY(Long , ConstPoolSInt, int64_t); - INITIALIZE_MEMORY(Float , ConstPoolFP , float); - INITIALIZE_MEMORY(Double , ConstPoolFP , double); -#undef INITIALIZE_MEMORY - - case Type::ArrayTyID: { - ConstPoolArray *CPA = cast(Init); - const vector &Val = CPA->getValues(); - unsigned ElementSize = - TD.getTypeSize(cast(CPA->getType())->getElementType()); - for (unsigned i = 0; i < Val.size(); ++i) - InitializeMemory(cast(Val[i].get()), Addr+i*ElementSize); - return; - } - - case Type::StructTyID: { - ConstPoolStruct *CPS = cast(Init); - const StructLayout *SL=TD.getStructLayout(cast(CPS->getType())); - const vector &Val = CPS->getValues(); - for (unsigned i = 0; i < Val.size(); ++i) - InitializeMemory(cast(Val[i].get()), - Addr+SL->MemberOffsets[i]); - return; - } - - case Type::PointerTyID: - if (isa(Init)) { - *(void**)Addr = 0; - } else if (ConstPoolPointerRef *CPR = dyn_cast(Init)) { - GlobalAddress *Address = - (GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID); - *(void**)Addr = (GenericValue*)Address->Ptr; - } else { - assert(0 && "Unknown Constant pointer type!"); - } - return; - - default: - cout << "Bad Type: " << Init->getType()->getDescription() << endl; - assert(0 && "Unknown constant type to initialize memory with!"); - } + TheEE = this; + AnnotationManager::registerAnnotationFactory(FunctionInfoAID, + &FunctionInfo::Create); + initializeSignalHandlers(); } -Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){ - assert(AID == GlobalAddressAID); - - // This annotation will only be created on GlobalValue objects... - GlobalValue *GVal = cast((Value*)O); - - if (isa(GVal)) { - // The GlobalAddress object for a method is just a pointer to method itself. - // Don't delete it when the annotation is gone though! - return new GlobalAddress(GVal, false); - } - - // Handle the case of a global variable... - assert(isa(GVal) && - "Global value found that isn't a method or global variable!"); - GlobalVariable *GV = cast(GVal); - - // First off, we must allocate space for the global variable to point at... - const Type *Ty = GV->getType()->getValueType(); // Type to be allocated - unsigned NumElements = 1; - - if (isa(Ty) && cast(Ty)->isUnsized()) { - assert(GV->hasInitializer() && "Const val must have an initializer!"); - // Allocating a unsized array type? - Ty = cast(Ty)->getElementType(); // Get the actual type... - - // Get the number of elements being allocated by the array... - NumElements =cast(GV->getInitializer())->getValues().size(); - } - - // Allocate enough memory to hold the type... - void *Addr = malloc(NumElements * TD.getTypeSize(Ty)); - assert(Addr != 0 && "Null pointer returned by malloc!"); - - // Initialize the memory if there is an initializer... - if (GV->hasInitializer()) - InitializeMemory(GV->getInitializer(), (char*)Addr); - - return new GlobalAddress(Addr, true); // Simply invoke the ctor -} - - //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// @@ -220,7 +170,7 @@ Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(+, UByte); @@ -233,15 +183,15 @@ static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_BINARY_OPERATOR(+, Long); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); - IMPLEMENT_BINARY_OPERATOR(+, Pointer); default: - cout << "Unhandled type for Add instruction: " << Ty << endl; + std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(-, UByte); @@ -254,15 +204,15 @@ static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_BINARY_OPERATOR(-, Long); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); - IMPLEMENT_BINARY_OPERATOR(-, Pointer); default: - cout << "Unhandled type for Sub instruction: " << Ty << endl; + std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(*, UByte); @@ -275,15 +225,15 @@ static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_BINARY_OPERATOR(*, Long); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); - IMPLEMENT_BINARY_OPERATOR(*, Pointer); default: - cout << "Unhandled type for Mul instruction: " << Ty << endl; + std::cout << "Unhandled type for Mul instruction: " << Ty << "\n"; + abort(); } return Dest; } static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(/, UByte); @@ -296,18 +246,115 @@ static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_BINARY_OPERATOR(/, Long); IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); - IMPLEMENT_BINARY_OPERATOR(/, Pointer); default: - cout << "Unhandled type for Mul instruction: " << Ty << endl; + std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getPrimitiveID()) { + IMPLEMENT_BINARY_OPERATOR(%, UByte); + IMPLEMENT_BINARY_OPERATOR(%, SByte); + IMPLEMENT_BINARY_OPERATOR(%, UShort); + IMPLEMENT_BINARY_OPERATOR(%, Short); + IMPLEMENT_BINARY_OPERATOR(%, UInt); + IMPLEMENT_BINARY_OPERATOR(%, Int); + IMPLEMENT_BINARY_OPERATOR(%, ULong); + IMPLEMENT_BINARY_OPERATOR(%, Long); + case Type::FloatTyID: + Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); + break; + case Type::DoubleTyID: + Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); + break; + default: + std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; + abort(); } return Dest; } +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getPrimitiveID()) { + IMPLEMENT_BINARY_OPERATOR(&, Bool); + IMPLEMENT_BINARY_OPERATOR(&, UByte); + IMPLEMENT_BINARY_OPERATOR(&, SByte); + IMPLEMENT_BINARY_OPERATOR(&, UShort); + IMPLEMENT_BINARY_OPERATOR(&, Short); + IMPLEMENT_BINARY_OPERATOR(&, UInt); + IMPLEMENT_BINARY_OPERATOR(&, Int); + IMPLEMENT_BINARY_OPERATOR(&, ULong); + IMPLEMENT_BINARY_OPERATOR(&, Long); + default: + std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + + +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getPrimitiveID()) { + IMPLEMENT_BINARY_OPERATOR(|, Bool); + IMPLEMENT_BINARY_OPERATOR(|, UByte); + IMPLEMENT_BINARY_OPERATOR(|, SByte); + IMPLEMENT_BINARY_OPERATOR(|, UShort); + IMPLEMENT_BINARY_OPERATOR(|, Short); + IMPLEMENT_BINARY_OPERATOR(|, UInt); + IMPLEMENT_BINARY_OPERATOR(|, Int); + IMPLEMENT_BINARY_OPERATOR(|, ULong); + IMPLEMENT_BINARY_OPERATOR(|, Long); + default: + std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + + +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getPrimitiveID()) { + IMPLEMENT_BINARY_OPERATOR(^, Bool); + IMPLEMENT_BINARY_OPERATOR(^, UByte); + IMPLEMENT_BINARY_OPERATOR(^, SByte); + IMPLEMENT_BINARY_OPERATOR(^, UShort); + IMPLEMENT_BINARY_OPERATOR(^, Short); + IMPLEMENT_BINARY_OPERATOR(^, UInt); + IMPLEMENT_BINARY_OPERATOR(^, Int); + IMPLEMENT_BINARY_OPERATOR(^, ULong); + IMPLEMENT_BINARY_OPERATOR(^, Long); + default: + std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + + #define IMPLEMENT_SETCC(OP, TY) \ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break +// Handle pointers specially because they must be compared with only as much +// width as the host has. We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTERSETCC(OP) \ + case Type::PointerTyID: \ + Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ + (void*)(intptr_t)Src2.PointerVal; break + static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(==, UByte); @@ -320,15 +367,16 @@ static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(==, Long); IMPLEMENT_SETCC(==, Float); IMPLEMENT_SETCC(==, Double); - IMPLEMENT_SETCC(==, Pointer); + IMPLEMENT_POINTERSETCC(==); default: - cout << "Unhandled type for SetEQ instruction: " << Ty << endl; + std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(!=, UByte); @@ -341,15 +389,17 @@ static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(!=, Long); IMPLEMENT_SETCC(!=, Float); IMPLEMENT_SETCC(!=, Double); - IMPLEMENT_SETCC(!=, Pointer); + IMPLEMENT_POINTERSETCC(!=); + default: - cout << "Unhandled type for SetNE instruction: " << Ty << endl; + std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<=, UByte); @@ -362,15 +412,16 @@ static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(<=, Long); IMPLEMENT_SETCC(<=, Float); IMPLEMENT_SETCC(<=, Double); - IMPLEMENT_SETCC(<=, Pointer); + IMPLEMENT_POINTERSETCC(<=); default: - cout << "Unhandled type for SetLE instruction: " << Ty << endl; + std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>=, UByte); @@ -383,15 +434,16 @@ static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(>=, Long); IMPLEMENT_SETCC(>=, Float); IMPLEMENT_SETCC(>=, Double); - IMPLEMENT_SETCC(>=, Pointer); + IMPLEMENT_POINTERSETCC(>=); default: - cout << "Unhandled type for SetGE instruction: " << Ty << endl; + std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<, UByte); @@ -404,15 +456,16 @@ static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(<, Long); IMPLEMENT_SETCC(<, Float); IMPLEMENT_SETCC(<, Double); - IMPLEMENT_SETCC(<, Pointer); + IMPLEMENT_POINTERSETCC(<); default: - cout << "Unhandled type for SetLT instruction: " << Ty << endl; + std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; + abort(); } return Dest; } static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty, ExecutionContext &SF) { + const Type *Ty) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>, UByte); @@ -425,75 +478,135 @@ static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, IMPLEMENT_SETCC(>, Long); IMPLEMENT_SETCC(>, Float); IMPLEMENT_SETCC(>, Double); - IMPLEMENT_SETCC(>, Pointer); + IMPLEMENT_POINTERSETCC(>); default: - cout << "Unhandled type for SetGT instruction: " << Ty << endl; + std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; + abort(); } return Dest; } -static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) { - const Type *Ty = I->getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I->getOperand(0), SF); - GenericValue Src2 = getOperandValue(I->getOperand(1), SF); +void Interpreter::visitBinaryOperator(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result - switch (I->getOpcode()) { - case Instruction::Add: R = executeAddInst(Src1, Src2, Ty, SF); break; - case Instruction::Sub: R = executeSubInst(Src1, Src2, Ty, SF); break; - case Instruction::Mul: R = executeMulInst(Src1, Src2, Ty, SF); break; - case Instruction::Div: R = executeDivInst(Src1, Src2, Ty, SF); break; - case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break; - case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break; - case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break; - case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break; - case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break; - case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break; + switch (I.getOpcode()) { + case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; + case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; + case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; + case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; + case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; + case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; + case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; + case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; + case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; + case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; + case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; + case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; + case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; + case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; default: - cout << "Don't know how to handle this binary operator!\n-->" << I; + std::cout << "Don't know how to handle this binary operator!\n-->" << I; + abort(); } - SetValue(I, R, SF); + SetValue(&I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// +// PerformExitStuff - Print out counters and profiling information if +// applicable... +void Interpreter::PerformExitStuff() { +#ifdef PROFILE_STRUCTURE_FIELDS + // Print out structure field accounting information... + if (!FieldAccessCounts.empty()) { + CW << "Profile Field Access Counts:\n"; + std::map >::iterator + I = FieldAccessCounts.begin(), E = FieldAccessCounts.end(); + for (; I != E; ++I) { + std::vector &OfC = I->second; + CW << " '" << (Value*)I->first << "'\t- Sum="; + + unsigned Sum = 0; + for (unsigned i = 0; i < OfC.size(); ++i) + Sum += OfC[i]; + CW << Sum << " - "; + + for (unsigned i = 0; i < OfC.size(); ++i) { + if (i) CW << ", "; + CW << OfC[i]; + } + CW << "\n"; + } + CW << "\n"; + + CW << "Profile Field Access Percentages:\n"; + std::cout.precision(3); + for (I = FieldAccessCounts.begin(); I != E; ++I) { + std::vector &OfC = I->second; + unsigned Sum = 0; + for (unsigned i = 0; i < OfC.size(); ++i) + Sum += OfC[i]; + + CW << " '" << (Value*)I->first << "'\t- "; + for (unsigned i = 0; i < OfC.size(); ++i) { + if (i) CW << ", "; + CW << double(OfC[i])/Sum; + } + CW << "\n"; + } + CW << "\n"; + + FieldAccessCounts.clear(); + } +#endif +} + void Interpreter::exitCalled(GenericValue GV) { - cout << "Program returned "; - print(Type::IntTy, GV); - cout << " via 'void exit(int)'\n"; + if (!QuietMode) { + std::cout << "Program returned "; + print(Type::IntTy, GV); + std::cout << " via 'void exit(int)'\n"; + } ExitCode = GV.SByteVal; ECStack.clear(); } -void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) { +void Interpreter::visitReturnInst(ReturnInst &I) { + ExecutionContext &SF = ECStack.back(); const Type *RetTy = 0; GenericValue Result; // Save away the return value... (if we are not 'ret void') - if (I->getNumOperands()) { - RetTy = I->getReturnValue()->getType(); - Result = getOperandValue(I->getReturnValue(), SF); + if (I.getNumOperands()) { + RetTy = I.getReturnValue()->getType(); + Result = getOperandValue(I.getReturnValue(), SF); } // Save previously executing meth - const Method *M = ECStack.back().CurMethod; + const Function *M = ECStack.back().CurFunction; // Pop the current stack frame... this invalidates SF ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy) { // Nonvoid return type? - cout << "Method " << M->getType() << " \"" << M->getName() - << "\" returned "; - print(RetTy, Result); - cout << endl; + if (!QuietMode) { + CW << "Function " << M->getType() << " \"" << M->getName() + << "\" returned "; + print(RetTy, Result); + std::cout << "\n"; + } if (RetTy->isIntegral()) - ExitCode = Result.SByteVal; // Capture the exit code of the program + ExitCode = Result.IntVal; // Capture the exit code of the program } else { ExitCode = 0; } @@ -509,154 +622,246 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) { SetValue(NewSF.Caller, Result, NewSF); NewSF.Caller = 0; // We returned from the call... - } else { + } else if (!QuietMode) { // This must be a function that is executing because of a user 'call' // instruction. - cout << "Method " << M->getType() << " \"" << M->getName() - << "\" returned "; + CW << "Function " << M->getType() << " \"" << M->getName() + << "\" returned "; print(RetTy, Result); - cout << endl; + std::cout << "\n"; } } -void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) { - SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... +void Interpreter::visitBranchInst(BranchInst &I) { + ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; - Dest = I->getSuccessor(0); // Uncond branches have a fixed dest... - if (!I->isUnconditional()) { - if (getOperandValue(I->getCondition(), SF).BoolVal == 0) // If false cond... - Dest = I->getSuccessor(1); + Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... + if (!I.isUnconditional()) { + Value *Cond = I.getCondition(); + if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... + Dest = I.getSuccessor(1); } + SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitSwitchInst(SwitchInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue CondVal = getOperandValue(I.getOperand(0), SF); + const Type *ElTy = I.getOperand(0)->getType(); + + // Check to see if any of the cases match... + BasicBlock *Dest = 0; + for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) + if (executeSetEQInst(CondVal, + getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { + Dest = cast(I.getOperand(i+1)); + break; + } + + if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default + SwitchToNewBasicBlock(Dest, SF); +} + +// SwitchToNewBasicBlock - This method is used to jump to a new basic block. +// This function handles the actual updating of block and instruction iterators +// as well as execution of all of the PHI nodes in the destination block. +// +// This method does this because all of the PHI nodes must be executed +// atomically, reading their inputs before any of the results are updated. Not +// doing this can cause problems if the PHI nodes depend on other PHI nodes for +// their inputs. If the input PHI node is updated before it is read, incorrect +// results can happen. Thus we use a two phase approach. +// +void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ + BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + + if (!isa(SF.CurInst)) return; // Nothing fancy to do + + // Loop over all of the PHI nodes in the current block, reading their inputs. + std::vector ResultValues; + + for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { + if (Trace) CW << "Run:" << PN; + + // Search for the value corresponding to this previous bb... + int i = PN->getBasicBlockIndex(PrevBB); + assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); + Value *IncomingValue = PN->getIncomingValue(i); + + // Save the incoming value for this PHI node... + ResultValues.push_back(getOperandValue(IncomingValue, SF)); + } + + // Now loop over all of the PHI nodes setting their values... + SF.CurInst = SF.CurBB->begin(); + for (unsigned i = 0; PHINode *PN = dyn_cast(SF.CurInst); + ++SF.CurInst, ++i) + SetValue(PN, ResultValues[i], SF); } + //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) { - const Type *Ty = I->getType()->getValueType(); // Type to be allocated - unsigned NumElements = 1; +void Interpreter::visitAllocationInst(AllocationInst &I) { + ExecutionContext &SF = ECStack.back(); - if (I->getNumOperands()) { // Allocating a unsized array type? - assert(isa(Ty) && cast(Ty)->isUnsized() && - "Allocation inst with size operand for !unsized array type???"); - Ty = cast(Ty)->getElementType(); // Get the actual type... + const Type *Ty = I.getType()->getElementType(); // Type to be allocated - // Get the number of elements being allocated by the array... - GenericValue NumEl = getOperandValue(I->getOperand(0), SF); - NumElements = NumEl.UIntVal; - } + // Get the number of elements being allocated by the array... + unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; // Allocate enough memory to hold the type... - GenericValue Result; - Result.ULongVal = (uint64_t)malloc(NumElements * TD.getTypeSize(Ty)); - assert(Result.ULongVal != 0 && "Null pointer returned by malloc!"); - SetValue(I, Result, SF); + // FIXME: Don't use CALLOC, use a tainted malloc. + void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); - if (I->getOpcode() == Instruction::Alloca) { - // TODO: FIXME: alloca should keep track of memory to free it later... - } + GenericValue Result = PTOGV(Memory); + assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); + SetValue(&I, Result, SF); + + if (I.getOpcode() == Instruction::Alloca) + ECStack.back().Allocas.add(Memory); } -static void executeFreeInst(FreeInst *I, ExecutionContext &SF) { - assert(I->getOperand(0)->getType()->isPointerType() && "Freeing nonptr?"); - GenericValue Value = getOperandValue(I->getOperand(0), SF); +void Interpreter::visitFreeInst(FreeInst &I) { + ExecutionContext &SF = ECStack.back(); + assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); + GenericValue Value = getOperandValue(I.getOperand(0), SF); // TODO: Check to make sure memory is allocated - free((void*)Value.ULongVal); // Free memory + free(GVTOP(Value)); // Free memory } -static void executeLoadInst(LoadInst *I, ExecutionContext &SF) { - assert(I->getNumOperands() == 1 && "NI!"); - GenericValue *Ptr = - (GenericValue*)getOperandValue(I->getPtrOperand(), SF).ULongVal; - GenericValue Result; - switch (I->getType()->getPrimitiveID()) { - case Type::BoolTyID: - case Type::UByteTyID: - case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break; - case Type::UShortTyID: - case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break; - case Type::UIntTyID: - case Type::IntTyID: Result.IntVal = Ptr->IntVal; break; - case Type::ULongTyID: - case Type::LongTyID: - case Type::PointerTyID: Result.ULongVal = Ptr->ULongVal; break; - case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break; - case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break; - default: - cout << "Cannot load value of type " << I->getType() << "!\n"; +// getElementOffset - The workhorse for getelementptr. +// +GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, + User::op_iterator E, + ExecutionContext &SF) { + assert(isa(Ptr->getType()) && + "Cannot getElementOffset of a nonpointer type!"); + + PointerTy Total = 0; + const Type *Ty = Ptr->getType(); + + for (; I != E; ++I) { + if (const StructType *STy = dyn_cast(Ty)) { + const StructLayout *SLO = TD.getStructLayout(STy); + + // Indicies must be ubyte constants... + const ConstantUInt *CPU = cast(*I); + assert(CPU->getType() == Type::UByteTy); + unsigned Index = CPU->getValue(); + +#ifdef PROFILE_STRUCTURE_FIELDS + if (ProfileStructureFields) { + // Do accounting for this field... + std::vector &OfC = FieldAccessCounts[STy]; + if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size()); + OfC[Index]++; + } +#endif + + Total += SLO->MemberOffsets[Index]; + Ty = STy->getElementTypes()[Index]; + } else if (const SequentialType *ST = cast(Ty)) { + + // Get the index number for the array... which must be long type... + assert((*I)->getType() == Type::LongTy); + unsigned Idx = getOperandValue(*I, SF).LongVal; + if (const ArrayType *AT = dyn_cast(ST)) + if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { + std::cerr << "Out of range memory access to element #" << Idx + << " of a " << AT->getNumElements() << " element array." + << " Subscript #" << *I << "\n"; + // Get outta here!!! + siglongjmp(SignalRecoverBuffer, SIGTRAP); + } + + Ty = ST->getElementType(); + unsigned Size = TD.getTypeSize(Ty); + Total += Size*Idx; + } } - SetValue(I, Result, SF); + GenericValue Result; + Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; + return Result; } -static void executeStoreInst(StoreInst *I, ExecutionContext &SF) { - GenericValue *Ptr = - (GenericValue *)getOperandValue(I->getPtrOperand(), SF).ULongVal; - GenericValue Val = getOperandValue(I->getOperand(0), SF); - assert(I->getNumOperands() == 2 && "NI!"); +void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), + I.idx_begin(), I.idx_end(), SF), SF); +} - switch (I->getOperand(0)->getType()->getPrimitiveID()) { - case Type::BoolTyID: - case Type::UByteTyID: - case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break; - case Type::UShortTyID: - case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break; - case Type::UIntTyID: - case Type::IntTyID: Ptr->IntVal = Val.IntVal; break; - case Type::ULongTyID: - case Type::LongTyID: - case Type::PointerTyID: Ptr->LongVal = Val.LongVal; break; - case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break; - case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break; - default: - cout << "Cannot store value of type " << I->getType() << "!\n"; - } +void Interpreter::visitLoadInst(LoadInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + GenericValue *Ptr = (GenericValue*)GVTOP(SRC); + GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); + SetValue(&I, Result, SF); +} + +void Interpreter::visitStoreInst(StoreInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Val = getOperandValue(I.getOperand(0), SF); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), + I.getOperand(0)->getType()); } + //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) { - ECStack.back().Caller = I; - vector ArgVals; - ArgVals.reserve(I->getNumOperands()-1); - for (unsigned i = 1; i < I->getNumOperands(); ++i) - ArgVals.push_back(getOperandValue(I->getOperand(i), SF)); - - callMethod(I->getCalledMethod(), ArgVals); -} - -static void executePHINode(PHINode *I, ExecutionContext &SF) { - BasicBlock *PrevBB = SF.PrevBB; - Value *IncomingValue = 0; - - // Search for the value corresponding to this previous bb... - for (unsigned i = I->getNumIncomingValues(); i > 0;) { - if (I->getIncomingBlock(--i) == PrevBB) { - IncomingValue = I->getIncomingValue(i); - break; +void Interpreter::visitCallInst(CallInst &I) { + ExecutionContext &SF = ECStack.back(); + SF.Caller = &I; + std::vector ArgVals; + ArgVals.reserve(I.getNumOperands()-1); + for (unsigned i = 1; i < I.getNumOperands(); ++i) { + ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); + // Promote all integral types whose size is < sizeof(int) into ints. We do + // this by zero or sign extending the value as appropriate according to the + // source type. + if (I.getOperand(i)->getType()->isIntegral() && + I.getOperand(i)->getType()->getPrimitiveSize() < 4) { + const Type *Ty = I.getOperand(i)->getType(); + if (Ty == Type::ShortTy) + ArgVals.back().IntVal = ArgVals.back().ShortVal; + else if (Ty == Type::UShortTy) + ArgVals.back().UIntVal = ArgVals.back().UShortVal; + else if (Ty == Type::SByteTy) + ArgVals.back().IntVal = ArgVals.back().SByteVal; + else if (Ty == Type::UByteTy) + ArgVals.back().UIntVal = ArgVals.back().UByteVal; + else if (Ty == Type::BoolTy) + ArgVals.back().UIntVal = ArgVals.back().BoolVal; + else + assert(0 && "Unknown type!"); } } - assert(IncomingValue && "No PHI node predecessor for current PrevBB!"); - // Found the value, set as the result... - SetValue(I, getOperandValue(IncomingValue, SF), SF); + // To handle indirect calls, we must get the pointer value from the argument + // and treat it as a function pointer. + GenericValue SRC = getOperandValue(I.getCalledValue(), SF); + callFunction((Function*)GVTOP(SRC), ArgVals); } #define IMPLEMENT_SHIFT(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break -static void executeShlInst(ShiftInst *I, ExecutionContext &SF) { - const Type *Ty = I->getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I->getOperand(0), SF); - GenericValue Src2 = getOperandValue(I->getOperand(1), SF); +void Interpreter::visitShl(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { @@ -669,15 +874,16 @@ static void executeShlInst(ShiftInst *I, ExecutionContext &SF) { IMPLEMENT_SHIFT(<<, ULong); IMPLEMENT_SHIFT(<<, Long); default: - cout << "Unhandled type for Shl instruction: " << Ty << endl; + std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; } - SetValue(I, Dest, SF); + SetValue(&I, Dest, SF); } -static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { - const Type *Ty = I->getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I->getOperand(0), SF); - GenericValue Src2 = getOperandValue(I->getOperand(1), SF); +void Interpreter::visitShr(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { @@ -690,17 +896,19 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { IMPLEMENT_SHIFT(>>, ULong); IMPLEMENT_SHIFT(>>, Long); default: - cout << "Unhandled type for Shr instruction: " << Ty << endl; + std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; + abort(); } - SetValue(I, Dest, SF); + SetValue(&I, Dest, SF); } #define IMPLEMENT_CAST(DTY, DCTY, STY) \ - case Type::STY##TyID: Dest.DTY##Val = (DCTY)Src.STY##Val; break; + case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ case Type::DESTTY##TyID: \ switch (SrcTy->getPrimitiveID()) { \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ @@ -716,8 +924,8 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { IMPLEMENT_CAST(DESTTY, DESTCTY, Double) #define IMPLEMENT_CAST_CASE_END() \ - default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << endl; \ - break; \ + default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ + abort(); \ } \ break @@ -726,56 +934,79 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() -static void executeCastInst(CastInst *I, ExecutionContext &SF) { - const Type *Ty = I->getType(); - const Type *SrcTy = I->getOperand(0)->getType(); - GenericValue Src = getOperandValue(I->getOperand(0), SF); - GenericValue Dest; +static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); switch (Ty->getPrimitiveID()) { - IMPLEMENT_CAST_CASE(UByte , unsigned char); - IMPLEMENT_CAST_CASE(SByte , signed char); - IMPLEMENT_CAST_CASE(UShort, unsigned short); - IMPLEMENT_CAST_CASE(Short , signed char); - IMPLEMENT_CAST_CASE(UInt , unsigned int ); - IMPLEMENT_CAST_CASE(Int , signed int ); - IMPLEMENT_CAST_CASE(ULong , uint64_t ); - IMPLEMENT_CAST_CASE(Long , int64_t ); - IMPLEMENT_CAST_CASE(Pointer, uint64_t); - IMPLEMENT_CAST_CASE(Float , float); - IMPLEMENT_CAST_CASE(Double, double); + IMPLEMENT_CAST_CASE(UByte , (unsigned char)); + IMPLEMENT_CAST_CASE(SByte , ( signed char)); + IMPLEMENT_CAST_CASE(UShort , (unsigned short)); + IMPLEMENT_CAST_CASE(Short , ( signed short)); + IMPLEMENT_CAST_CASE(UInt , (unsigned int )); + IMPLEMENT_CAST_CASE(Int , ( signed int )); + IMPLEMENT_CAST_CASE(ULong , (uint64_t)); + IMPLEMENT_CAST_CASE(Long , ( int64_t)); + IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); + IMPLEMENT_CAST_CASE(Float , (float)); + IMPLEMENT_CAST_CASE(Double , (double)); + IMPLEMENT_CAST_CASE(Bool , (bool)); default: - cout << "Unhandled dest type for cast instruction: " << Ty << endl; + std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; + abort(); } - SetValue(I, Dest, SF); + + return Dest; } +void Interpreter::visitCastInst(CastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitVarArgInst(VarArgInst &I) { + ExecutionContext &SF = ECStack.back(); + + // Get the pointer to the valist element. LLI treats the valist in memory as + // an integer. + GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF); + + // Load the pointer + GenericValue VAList = + TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy); + + unsigned Argument = VAList.IntVal++; + + // Update the valist to point to the next argument... + TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr), + Type::UIntTy); + // Set the value... + assert(Argument < SF.VarArgs.size() && + "Accessing past the last vararg argument!"); + SetValue(&I, SF.VarArgs[Argument], SF); +} //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// -MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) { - // Assign slot numbers to the method arguments... - const Method::ArgumentListType &ArgList = M->getArgumentList(); - for (Method::ArgumentListType::const_iterator AI = ArgList.begin(), - AE = ArgList.end(); AI != AE; ++AI) { - MethodArgument *MA = *AI; - MA->addAnnotation(new SlotNumber(getValueSlot(MA))); - } +FunctionInfo::FunctionInfo(Function *F) : Annotation(FunctionInfoAID) { + // Assign slot numbers to the function arguments... + for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) + AI->addAnnotation(new SlotNumber(getValueSlot(AI))); // Iterate over all of the instructions... unsigned InstNum = 0; - for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end(); - MI != ME; ++MI) { - Instruction *I = *MI; // For each instruction... - I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote - } + for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) + for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) + // For each instruction... Add Annote + II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); } -unsigned MethodInfo::getValueSlot(const Value *V) { +unsigned FunctionInfo::getValueSlot(const Value *V) { unsigned Plane = V->getType()->getUniqueID(); if (Plane >= NumPlaneElements.size()) NumPlaneElements.resize(Plane+1, 0); @@ -784,45 +1015,77 @@ unsigned MethodInfo::getValueSlot(const Value *V) { //===----------------------------------------------------------------------===// -// callMethod - Execute the specified method... +// callFunction - Execute the specified function... // -void Interpreter::callMethod(Method *M, const vector &ArgVals) { +void Interpreter::callFunction(Function *F, + const std::vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller == 0 || ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); - if (M->isExternal()) { - callExternalMethod(M, ArgVals); + if (F->isExternal()) { + GenericValue Result = callExternalFunction(F, ArgVals); + const Type *RetTy = F->getReturnType(); + + // Copy the result back into the result variable if we are not returning + // void. + if (RetTy != Type::VoidTy) { + if (!ECStack.empty() && ECStack.back().Caller) { + ExecutionContext &SF = ECStack.back(); + SetValue(SF.Caller, Result, SF); + + SF.Caller = 0; // We returned from the call... + } else if (!QuietMode) { + // print it. + CW << "Function " << F->getType() << " \"" << F->getName() + << "\" returned "; + print(RetTy, Result); + std::cout << "\n"; + + if (RetTy->isIntegral()) + ExitCode = Result.IntVal; // Capture the exit code of the program + } + } + return; } - // Process the method, assigning instruction numbers to the instructions in - // the method. Also calculate the number of values for each type slot active. + // Process the function, assigning instruction numbers to the instructions in + // the function. Also calculate the number of values for each type slot + // active. // - MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID); + FunctionInfo *FuncInfo = + (FunctionInfo*)F->getOrCreateAnnotation(FunctionInfoAID); ECStack.push_back(ExecutionContext()); // Make a new stack frame... ExecutionContext &StackFrame = ECStack.back(); // Fill it in... - StackFrame.CurMethod = M; - StackFrame.CurBB = M->front(); + StackFrame.CurFunction = F; + StackFrame.CurBB = F->begin(); StackFrame.CurInst = StackFrame.CurBB->begin(); - StackFrame.MethInfo = MethInfo; + StackFrame.FuncInfo = FuncInfo; // Initialize the values to nothing... - StackFrame.Values.resize(MethInfo->NumPlaneElements.size()); - for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) - StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]); + StackFrame.Values.resize(FuncInfo->NumPlaneElements.size()); + for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) { + StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]); + + // Taint the initial values of stuff + memset(&StackFrame.Values[i][0], 42, + FuncInfo->NumPlaneElements[i]*sizeof(GenericValue)); + } - StackFrame.PrevBB = 0; // No previous BB for PHI nodes... + // Run through the function arguments and initialize their values... + assert((ArgVals.size() == F->asize() || + (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) && + "Invalid number of values passed to function invocation!"); - // Run through the method arguments and initialize their values... - assert(ArgVals.size() == M->getArgumentList().size() && - "Invalid number of values passed to method invocation!"); + // Handle non-varargs arguments... unsigned i = 0; - for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(), - ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) { - SetValue(*MI, ArgVals[i], StackFrame); - } + for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i) + SetValue(AI, ArgVals[i], StackFrame); + + // Handle varargs arguments... + StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } // executeInstruction - Interpret a single instruction, increment the "PC", and @@ -832,35 +1095,35 @@ bool Interpreter::executeInstruction() { assert(!ECStack.empty() && "No program running, cannot execute inst!"); ExecutionContext &SF = ECStack.back(); // Current stack frame - Instruction *I = *SF.CurInst++; // Increment before execute + Instruction &I = *SF.CurInst++; // Increment before execute - if (Trace) - cout << "Run:" << I; + if (Trace) CW << "Run:" << I; - if (I->isBinaryOp()) { - executeBinaryInst((BinaryOperator*)I, SF); - } else { - switch (I->getOpcode()) { - // Terminators - case Instruction::Ret: executeRetInst ((ReturnInst*)I, SF); break; - case Instruction::Br: executeBrInst ((BranchInst*)I, SF); break; - // Memory Instructions - case Instruction::Alloca: - case Instruction::Malloc: executeAllocInst ((AllocationInst*)I, SF); break; - case Instruction::Free: executeFreeInst (cast (I), SF); break; - case Instruction::Load: executeLoadInst (cast (I), SF); break; - case Instruction::Store: executeStoreInst (cast(I), SF); break; - - // Miscellaneous Instructions - case Instruction::Call: executeCallInst (cast (I), SF); break; - case Instruction::PHINode: executePHINode (cast (I), SF); break; - case Instruction::Shl: executeShlInst (cast(I), SF); break; - case Instruction::Shr: executeShrInst (cast(I), SF); break; - case Instruction::Cast: executeCastInst (cast (I), SF); break; - default: - cout << "Don't know how to execute this instruction!\n-->" << I; + // Track the number of dynamic instructions executed. + ++NumDynamicInsts; + + // Set a sigsetjmp buffer so that we can recover if an error happens during + // instruction execution... + // + if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) { + --SF.CurInst; // Back up to erroring instruction + if (SigNo != SIGINT) { + std::cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n"; + printStackTrace(); + // If -abort-on-exception was specified, terminate LLI instead of trying + // to debug it. + // + if (AbortOnExceptions) exit(1); + } else if (SigNo == SIGINT) { + std::cout << "CTRL-C Detected, execution halted.\n"; } + InInstruction = false; + return true; } + + InInstruction = true; + visit(I); // Dispatch to one of the visit* methods... + InInstruction = false; // Reset the current frame location to the top of stack CurFrame = ECStack.size()-1; @@ -868,12 +1131,12 @@ bool Interpreter::executeInstruction() { if (CurFrame == -1) return false; // No breakpoint if no code // Return true if there is a breakpoint annotation on the instruction... - return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0; + return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0; } void Interpreter::stepInstruction() { // Do the 'step' command if (ECStack.empty()) { - cout << "Error: no program running, cannot step!\n"; + std::cout << "Error: no program running, cannot step!\n"; return; } @@ -887,23 +1150,29 @@ void Interpreter::stepInstruction() { // Do the 'step' command // --- UI Stuff... void Interpreter::nextInstruction() { // Do the 'next' command if (ECStack.empty()) { - cout << "Error: no program running, cannot 'next'!\n"; + std::cout << "Error: no program running, cannot 'next'!\n"; return; } // If this is a call instruction, step over the call instruction... // TODO: ICALL, CALL WITH, ... - if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) { + if (ECStack.back().CurInst->getOpcode() == Instruction::Call) { + unsigned StackSize = ECStack.size(); // Step into the function... if (executeInstruction()) { // Hit a breakpoint, print current instruction, then return to user... - cout << "Breakpoint hit!\n"; + std::cout << "Breakpoint hit!\n"; printCurrentInstruction(); return; } - // Finish executing the function... - finish(); + // If we we able to step into the function, finish it now. We might not be + // able the step into a function, if it's external for example. + if (ECStack.size() != StackSize) + finish(); // Finish executing the function... + else + printCurrentInstruction(); + } else { // Normal instruction, just step... stepInstruction(); @@ -912,7 +1181,7 @@ void Interpreter::nextInstruction() { // Do the 'next' command void Interpreter::run() { if (ECStack.empty()) { - cout << "Error: no program running, cannot run!\n"; + std::cout << "Error: no program running, cannot run!\n"; return; } @@ -922,16 +1191,16 @@ void Interpreter::run() { HitBreakpoint = executeInstruction(); } - if (HitBreakpoint) { - cout << "Breakpoint hit!\n"; - } + if (HitBreakpoint) + std::cout << "Breakpoint hit!\n"; + // Print the next instruction to execute... printCurrentInstruction(); } void Interpreter::finish() { if (ECStack.empty()) { - cout << "Error: no program running, cannot run!\n"; + std::cout << "Error: no program running, cannot run!\n"; return; } @@ -942,9 +1211,8 @@ void Interpreter::finish() { HitBreakpoint = executeInstruction(); } - if (HitBreakpoint) { - cout << "Breakpoint hit!\n"; - } + if (HitBreakpoint) + std::cout << "Breakpoint hit!\n"; // Print the next instruction to execute... printCurrentInstruction(); @@ -957,79 +1225,97 @@ void Interpreter::finish() { // void Interpreter::printCurrentInstruction() { if (!ECStack.empty()) { - Instruction *I = *ECStack.back().CurInst; - InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID); + if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label + WriteAsOperand(std::cout, ECStack.back().CurBB) << ":\n"; + + Instruction &I = *ECStack.back().CurInst; + InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID); assert(IN && "Instruction has no numbering annotation!"); - cout << "#" << IN->InstNum << I; + std::cout << "#" << IN->InstNum << I; } } void Interpreter::printValue(const Type *Ty, GenericValue V) { switch (Ty->getPrimitiveID()) { - case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break; - case Type::SByteTyID: cout << V.SByteVal; break; - case Type::UByteTyID: cout << V.UByteVal; break; - case Type::ShortTyID: cout << V.ShortVal; break; - case Type::UShortTyID: cout << V.UShortVal; break; - case Type::IntTyID: cout << V.IntVal; break; - case Type::UIntTyID: cout << V.UIntVal; break; - case Type::LongTyID: cout << V.LongVal; break; - case Type::ULongTyID: cout << V.ULongVal; break; - case Type::FloatTyID: cout << V.FloatVal; break; - case Type::DoubleTyID: cout << V.DoubleVal; break; - case Type::PointerTyID:cout << (void*)V.ULongVal; break; + case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break; + case Type::SByteTyID: + std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; + case Type::UByteTyID: + std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; + case Type::ShortTyID: std::cout << V.ShortVal; break; + case Type::UShortTyID: std::cout << V.UShortVal; break; + case Type::IntTyID: std::cout << V.IntVal; break; + case Type::UIntTyID: std::cout << V.UIntVal; break; + case Type::LongTyID: std::cout << (long)V.LongVal; break; + case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break; + case Type::FloatTyID: std::cout << V.FloatVal; break; + case Type::DoubleTyID: std::cout << V.DoubleVal; break; + case Type::PointerTyID:std::cout << (void*)GVTOP(V); break; default: - cout << "- Don't know how to print value of this type!"; + std::cout << "- Don't know how to print value of this type!"; break; } } void Interpreter::print(const Type *Ty, GenericValue V) { - cout << Ty << " "; + CW << Ty << " "; printValue(Ty, V); } -void Interpreter::print(const string &Name) { +void Interpreter::print(const std::string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; - if (const Method *M = dyn_cast(PickedVal)) { - cout << M; // Print the method + if (const Function *F = dyn_cast(PickedVal)) { + CW << F; // Print the function + } else if (const Type *Ty = dyn_cast(PickedVal)) { + CW << "type %" << Name << " = " << Ty->getDescription() << "\n"; + } else if (const BasicBlock *BB = dyn_cast(PickedVal)) { + CW << BB; // Print the basic block } else { // Otherwise there should be an annotation for the slot# print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); - cout << endl; + std::cout << "\n"; } - } -void Interpreter::infoValue(const string &Name) { +void Interpreter::infoValue(const std::string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; - cout << "Value: "; + std::cout << "Value: "; print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); - cout << endl; + std::cout << "\n"; printOperandInfo(PickedVal, ECStack[CurFrame]); } -void Interpreter::list() { - if (ECStack.empty()) - cout << "Error: No program executing!\n"; - else - cout << ECStack[CurFrame].CurMethod; // Just print the method out... -} +// printStackFrame - Print information about the specified stack frame, or -1 +// for the default one. +// +void Interpreter::printStackFrame(int FrameNo) { + if (FrameNo == -1) FrameNo = CurFrame; + Function *F = ECStack[FrameNo].CurFunction; + const Type *RetTy = F->getReturnType(); + + CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". " + << (Value*)RetTy << " \"" << F->getName() << "\"("; + + unsigned i = 0; + for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) { + if (i != 0) std::cout << ", "; + CW << *I << "="; + + printValue(I->getType(), getOperandValue(I, ECStack[FrameNo])); + } -void Interpreter::printStackTrace() { - if (ECStack.empty()) cout << "No program executing!\n"; + std::cout << ")\n"; - for (unsigned i = 0; i < ECStack.size(); ++i) { - cout << (((int)i == CurFrame) ? '>' : '-'); - cout << "#" << i << ". " << ECStack[i].CurMethod->getType() << " \"" - << ECStack[i].CurMethod->getName() << "\"("; - // TODO: Print Args - cout << ")" << endl; - cout << *ECStack[i].CurInst; + if (FrameNo != int(ECStack.size()-1)) { + BasicBlock::iterator I = ECStack[FrameNo].CurInst; + CW << --I; + } else { + CW << *ECStack[FrameNo].CurInst; } } +