X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FInterpreter%2FExternalFunctions.cpp;h=b1c2ee4b6a84f5e0205a44e33ab7655402bcf131;hb=23e28836edaa6750a48dc318c8e2bbe6dc1529c8;hp=80bfb7c5c6378b7eb71112a38c98252e313bbcbb;hpb=6a6791b326f4a8b37a97957050c95bffdd5a4d6a;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp index 80bfb7c5c63..b1c2ee4b6a8 100644 --- a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp +++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @@ -1,60 +1,59 @@ -//===-- ExternalMethods.cpp - Implement External Methods ------------------===// -// -// This file contains both code to deal with invoking "external" methods, but -// also contains code that implements "exported" external methods. +//===-- ExternalFunctions.cpp - Implement External Functions --------------===// // -// External methods in LLI are implemented by dlopen'ing the lli executable and -// using dlsym to look op the methods that we want to invoke. If a method is -// found, then the arguments are mangled and passed in to the function call. +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains both code to deal with invoking "external" functions, but +// also contains code that implements "exported" external functions. +// +// External functions in the interpreter are implemented by +// using the system's dynamic loader to look up the address of the function +// we want to invoke. If a function is found, then one of the +// many lle_* wrapper functions in this file will translate its arguments from +// GenericValues to the types the function is actually expecting, before the +// function is called. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Support/Streams.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/Target/TargetData.h" +#include #include -#include -#include -#include -#include +#include +using std::vector; -typedef GenericValue (*ExFunc)(MethodType *, const vector &); -static map Functions; -static map FuncNames; +using namespace llvm; -static Interpreter *TheInterpreter; - -// getCurrentExecutablePath() - Return the directory that the lli executable -// lives in. -// -string Interpreter::getCurrentExecutablePath() const { - Dl_info Info; - if (dladdr(&TheInterpreter, &Info) == 0) return ""; - - string LinkAddr(Info.dli_fname); - unsigned SlashPos = LinkAddr.rfind('/'); - if (SlashPos != string::npos) - LinkAddr.resize(SlashPos); // Trim the executable name off... - - return LinkAddr; -} +typedef GenericValue (*ExFunc)(FunctionType *, const vector &); +static std::map Functions; +static std::map FuncNames; +static Interpreter *TheInterpreter; static char getTypeID(const Type *Ty) { - switch (Ty->getPrimitiveID()) { + switch (Ty->getTypeID()) { case Type::VoidTyID: return 'V'; - case Type::BoolTyID: return 'o'; - case Type::UByteTyID: return 'B'; - case Type::SByteTyID: return 'b'; - case Type::UShortTyID: return 'S'; - case Type::ShortTyID: return 's'; - case Type::UIntTyID: return 'I'; - case Type::IntTyID: return 'i'; - case Type::ULongTyID: return 'L'; - case Type::LongTyID: return 'l'; + case Type::IntegerTyID: + switch (cast(Ty)->getBitWidth()) { + case 1: return 'o'; + case 8: return 'B'; + case 16: return 'S'; + case 32: return 'I'; + case 64: return 'L'; + default: return 'N'; + } case Type::FloatTyID: return 'F'; case Type::DoubleTyID: return 'D'; case Type::PointerTyID: return 'P'; - case Type::MethodTyID: return 'M'; + case Type::FunctionTyID:return 'M'; case Type::StructTyID: return 'T'; case Type::ArrayTyID: return 'A'; case Type::OpaqueTyID: return 'O'; @@ -62,167 +61,141 @@ static char getTypeID(const Type *Ty) { } } -static ExFunc lookupMethod(const Method *M) { +static ExFunc lookupFunction(const Function *F) { // Function not found, look it up... start by figuring out what the // composite function name should be. - string ExtName = "lle_"; - const MethodType *MT = M->getMethodType(); - for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i) - ExtName += getTypeID(Ty); - ExtName += "_" + M->getName(); + std::string ExtName = "lle_"; + const FunctionType *FT = F->getFunctionType(); + for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) + ExtName += getTypeID(FT->getContainedType(i)); + ExtName += "_" + F->getName(); - //cout << "Tried: '" << ExtName << "'\n"; ExFunc FnPtr = FuncNames[ExtName]; if (FnPtr == 0) - FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str()); + FnPtr = + (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(ExtName); if (FnPtr == 0) - FnPtr = FuncNames["lle_X_"+M->getName()]; + FnPtr = FuncNames["lle_X_"+F->getName()]; if (FnPtr == 0) // Try calling a generic function... if it exists... - FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str()); + FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( + ("lle_X_"+F->getName()).c_str()); if (FnPtr != 0) - Functions.insert(make_pair(M, FnPtr)); // Cache for later + Functions.insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } -GenericValue Interpreter::callExternalMethod(Method *M, - const vector &ArgVals) { +GenericValue Interpreter::callExternalFunction(Function *F, + const std::vector &ArgVals) { TheInterpreter = this; - // Do a lookup to see if the method is in our cache... this should just be a - // defered annotation! - map::iterator FI = Functions.find(M); - ExFunc Fn = (FI == Functions.end()) ? lookupMethod(M) : FI->second; + // Do a lookup to see if the function is in our cache... this should just be a + // deferred annotation! + std::map::iterator FI = Functions.find(F); + ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second; if (Fn == 0) { - cout << "Tried to execute an unknown external method: " - << M->getType()->getDescription() << " " << M->getName() << endl; - return GenericValue(); + cerr << "Tried to execute an unknown external function: " + << F->getType()->getDescription() << " " << F->getName() << "\n"; + if (F->getName() == "__main") + return GenericValue(); + abort(); } // TODO: FIXME when types are not const! - GenericValue Result = Fn(const_cast(M->getMethodType()),ArgVals); + GenericValue Result = Fn(const_cast(F->getFunctionType()), + ArgVals); return Result; } //===----------------------------------------------------------------------===// -// Methods "exported" to the running application... +// Functions "exported" to the running application... // extern "C" { // Don't add C++ manglings to llvm mangling :) -// Implement void printstr([ubyte {x N}] *) -GenericValue lle_VP_printstr(MethodType *M, const vector &ArgVal){ - assert(ArgVal.size() == 1 && "printstr only takes one argument!"); - cout << (char*)ArgVal[0].PointerVal; - return GenericValue(); -} - -// Implement 'void print(X)' for every type... -GenericValue lle_X_print(MethodType *M, const vector &ArgVals) { - assert(ArgVals.size() == 1 && "generic print only takes one argument!"); - - Interpreter::print(M->getParamTypes()[0], ArgVals[0]); +// void putchar(sbyte) +GenericValue lle_VB_putchar(FunctionType *M, const vector &Args) { + cout << Args[0].Int8Val; return GenericValue(); } -// Implement 'void printVal(X)' for every type... -GenericValue lle_X_printVal(MethodType *M, const vector &ArgVal) { - assert(ArgVal.size() == 1 && "generic print only takes one argument!"); - - // Specialize print([ubyte {x N} ] *) and print(sbyte *) - if (PointerType *PTy = dyn_cast(M->getParamTypes()[0].get())) - if (PTy->getValueType() == Type::SByteTy || - isa(PTy->getValueType())) { - return lle_VP_printstr(M, ArgVal); - } - - Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]); - return GenericValue(); -} - -// Implement 'void printString(X)' -// Argument must be [ubyte {x N} ] * or sbyte * -GenericValue lle_X_printString(MethodType *M, const vector &ArgVal) { - assert(ArgVal.size() == 1 && "generic print only takes one argument!"); - return lle_VP_printstr(M, ArgVal); -} - -// Implement 'void print(X)' for each primitive type or pointer type -#define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \ - GenericValue lle_X_print##TYPENAME(MethodType *M,\ - const vector &ArgVal) {\ - assert(ArgVal.size() == 1 && "generic print only takes one argument!");\ - assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::##TYPEID);\ - Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\ - return GenericValue();\ - } - -PRINT_TYPE_FUNC(SByte, SByteTyID) -PRINT_TYPE_FUNC(UByte, UByteTyID) -PRINT_TYPE_FUNC(Short, ShortTyID) -PRINT_TYPE_FUNC(UShort, UShortTyID) -PRINT_TYPE_FUNC(Int, IntTyID) -PRINT_TYPE_FUNC(UInt, UIntTyID) -PRINT_TYPE_FUNC(Long, LongTyID) -PRINT_TYPE_FUNC(ULong, ULongTyID) -PRINT_TYPE_FUNC(Float, FloatTyID) -PRINT_TYPE_FUNC(Double, DoubleTyID) -PRINT_TYPE_FUNC(Pointer, PointerTyID) - - -// void "putchar"(sbyte) -GenericValue lle_Vb_putchar(MethodType *M, const vector &Args) { - cout << Args[0].SByteVal; - return GenericValue(); +// int putchar(int) +GenericValue lle_ii_putchar(FunctionType *M, const vector &Args) { + cout << ((char)Args[0].Int32Val) << std::flush; + return Args[0]; } -// int "putchar"(int) -GenericValue lle_ii_putchar(MethodType *M, const vector &Args) { - cout << ((char)Args[0].IntVal) << flush; +// void putchar(ubyte) +GenericValue lle_Vb_putchar(FunctionType *M, const vector &Args) { + cout << Args[0].Int8Val << std::flush; return Args[0]; } -// void "putchar"(ubyte) -GenericValue lle_VB_putchar(MethodType *M, const vector &Args) { - cout << Args[0].SByteVal << flush; - return Args[0]; +// void atexit(Function*) +GenericValue lle_X_atexit(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); + GenericValue GV; + GV.Int32Val = 0; + return GV; } -// void "__main"() -GenericValue lle_V___main(MethodType *M, const vector &Args) { +// void exit(int) +GenericValue lle_X_exit(FunctionType *M, const vector &Args) { + TheInterpreter->exitCalled(Args[0]); return GenericValue(); } -// void "exit"(int) -GenericValue lle_X_exit(MethodType *M, const vector &Args) { - TheInterpreter->exitCalled(Args[0]); +// void abort(void) +GenericValue lle_X_abort(FunctionType *M, const vector &Args) { + raise (SIGABRT); return GenericValue(); } // void *malloc(uint) -GenericValue lle_X_malloc(MethodType *M, const vector &Args) { +GenericValue lle_X_malloc(FunctionType *M, const vector &Args) { assert(Args.size() == 1 && "Malloc expects one argument!"); - GenericValue GV; - GV.PointerVal = (uint64_t)malloc(Args[0].UIntVal); - return GV; + return PTOGV(malloc(Args[0].Int32Val)); +} + +// void *calloc(uint, uint) +GenericValue lle_X_calloc(FunctionType *M, const vector &Args) { + assert(Args.size() == 2 && "calloc expects two arguments!"); + return PTOGV(calloc(Args[0].Int32Val, Args[1].Int32Val)); } // void free(void *) -GenericValue lle_X_free(MethodType *M, const vector &Args) { +GenericValue lle_X_free(FunctionType *M, const vector &Args) { assert(Args.size() == 1); - free((void*)Args[0].PointerVal); + free(GVTOP(Args[0])); return GenericValue(); } +// int atoi(char *) +GenericValue lle_X_atoi(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = atoi((char*)GVTOP(Args[0])); + return GV; +} + // double pow(double, double) -GenericValue lle_X_pow(MethodType *M, const vector &Args) { +GenericValue lle_X_pow(FunctionType *M, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); return GV; } +// double exp(double) +GenericValue lle_X_exp(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = exp(Args[0].DoubleVal); + return GV; +} + // double sqrt(double) -GenericValue lle_X_sqrt(MethodType *M, const vector &Args) { +GenericValue lle_X_sqrt(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = sqrt(Args[0].DoubleVal); @@ -230,109 +203,531 @@ GenericValue lle_X_sqrt(MethodType *M, const vector &Args) { } // double log(double) -GenericValue lle_X_log(MethodType *M, const vector &Args) { +GenericValue lle_X_log(FunctionType *M, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = log(Args[0].DoubleVal); return GV; } +// double floor(double) +GenericValue lle_X_floor(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = floor(Args[0].DoubleVal); + return GV; +} + +#ifdef HAVE_RAND48 + // double drand48() -GenericValue lle_X_drand48(MethodType *M, const vector &Args) { +GenericValue lle_X_drand48(FunctionType *M, const vector &Args) { assert(Args.size() == 0); GenericValue GV; GV.DoubleVal = drand48(); return GV; } +// long lrand48() +GenericValue lle_X_lrand48(FunctionType *M, const vector &Args) { + assert(Args.size() == 0); + GenericValue GV; + GV.Int32Val = lrand48(); + return GV; +} -// int printf(sbyte *, ...) - a very rough implementation to make output useful. -GenericValue lle_X_printf(MethodType *M, const vector &Args) { - const char *FmtStr = (const char *)Args[0].PointerVal; - unsigned ArgNo = 1; +// void srand48(long) +GenericValue lle_X_srand48(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + srand48(Args[0].Int32Val); + return GenericValue(); +} + +#endif + +// int rand() +GenericValue lle_X_rand(FunctionType *M, const vector &Args) { + assert(Args.size() == 0); + GenericValue GV; + GV.Int32Val = rand(); + return GV; +} + +// void srand(uint) +GenericValue lle_X_srand(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + srand(Args[0].Int32Val); + return GenericValue(); +} + +// int puts(const char*) +GenericValue lle_X_puts(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = puts((char*)GVTOP(Args[0])); + return GV; +} + +// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make +// output useful. +GenericValue lle_X_sprintf(FunctionType *M, const vector &Args) { + char *OutputBuffer = (char *)GVTOP(Args[0]); + const char *FmtStr = (const char *)GVTOP(Args[1]); + unsigned ArgNo = 2; // printf should return # chars printed. This is completely incorrect, but // close enough for now. - GenericValue GV; GV.IntVal = strlen(FmtStr); + GenericValue GV; GV.Int32Val = strlen(FmtStr); while (1) { switch (*FmtStr) { case 0: return GV; // Null terminator... default: // Normal nonspecial character - cout << *FmtStr++; + sprintf(OutputBuffer++, "%c", *FmtStr++); break; case '\\': { // Handle escape codes - char Buffer[3]; - Buffer[0] = *FmtStr++; - Buffer[1] = *FmtStr++; - Buffer[2] = 0; - cout << Buffer; + sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); + FmtStr += 2; OutputBuffer += 2; break; } case '%': { // Handle format specifiers - bool isLong = false; - ++FmtStr; - if (*FmtStr == 'l') { - isLong = true; - FmtStr++; + char FmtBuf[100] = "", Buffer[1000] = ""; + char *FB = FmtBuf; + *FB++ = *FmtStr++; + char Last = *FB++ = *FmtStr++; + unsigned HowLong = 0; + while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && + Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && + Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && + Last != 'p' && Last != 's' && Last != '%') { + if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's + Last = *FB++ = *FmtStr++; } - - if (*FmtStr == '%') - cout << *FmtStr; // %% - else { - char Fmt[] = "%d", Buffer[1000] = ""; - Fmt[1] = *FmtStr; - - switch (*FmtStr) { - case 'c': - sprintf(Buffer, Fmt, Args[ArgNo++].SByteVal); break; - case 'd': case 'i': - case 'u': case 'o': - case 'x': case 'X': - sprintf(Buffer, Fmt, Args[ArgNo++].IntVal); break; - case 'e': case 'E': case 'g': case 'G': case 'f': - sprintf(Buffer, Fmt, Args[ArgNo++].DoubleVal); break; - case 'p': - sprintf(Buffer, Fmt, (void*)Args[ArgNo++].PointerVal); break; - case 's': cout << (char*)Args[ArgNo++].PointerVal; break; // %s - default: cout << ""; - ArgNo++; break; - } - cout << Buffer; + *FB = 0; + + switch (Last) { + case '%': + sprintf(Buffer, FmtBuf); break; + case 'c': + sprintf(Buffer, FmtBuf, Args[ArgNo++].Int32Val); break; + case 'd': case 'i': + case 'u': case 'o': + case 'x': case 'X': + if (HowLong >= 1) { + if (HowLong == 1 && + TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && + sizeof(long) < sizeof(int64_t)) { + // Make sure we use %lld with a 64 bit argument because we might be + // compiling LLI on a 32 bit compiler. + unsigned Size = strlen(FmtBuf); + FmtBuf[Size] = FmtBuf[Size-1]; + FmtBuf[Size+1] = 0; + FmtBuf[Size-1] = 'l'; + } + sprintf(Buffer, FmtBuf, Args[ArgNo++].Int64Val); + } else + sprintf(Buffer, FmtBuf, Args[ArgNo++].Int32Val); break; + case 'e': case 'E': case 'g': case 'G': case 'f': + sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; + case 'p': + sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; + case 's': + sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; + default: cerr << ""; + ArgNo++; break; + } + strcpy(OutputBuffer, Buffer); + OutputBuffer += strlen(Buffer); } - ++FmtStr; break; } + } +} + +// int printf(sbyte *, ...) - a very rough implementation to make output useful. +GenericValue lle_X_printf(FunctionType *M, const vector &Args) { + char Buffer[10000]; + vector NewArgs; + NewArgs.push_back(PTOGV(Buffer)); + NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); + GenericValue GV = lle_X_sprintf(M, NewArgs); + cout << Buffer; + return GV; +} + +static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, + void *Arg2, void *Arg3, void *Arg4, void *Arg5, + void *Arg6, void *Arg7, void *Arg8) { + void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; + + // Loop over the format string, munging read values as appropriate (performs + // byteswaps as necessary). + unsigned ArgNo = 0; + while (*Fmt) { + if (*Fmt++ == '%') { + // Read any flag characters that may be present... + bool Suppress = false; + bool Half = false; + bool Long = false; + bool LongLong = false; // long long or long double + + while (1) { + switch (*Fmt++) { + case '*': Suppress = true; break; + case 'a': /*Allocate = true;*/ break; // We don't need to track this + case 'h': Half = true; break; + case 'l': Long = true; break; + case 'q': + case 'L': LongLong = true; break; + default: + if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs + goto Out; + } + } + Out: + + // Read the conversion character + if (!Suppress && Fmt[-1] != '%') { // Nothing to do? + unsigned Size = 0; + const Type *Ty = 0; + + switch (Fmt[-1]) { + case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': + case 'd': + if (Long || LongLong) { + Size = 8; Ty = Type::Int64Ty; + } else if (Half) { + Size = 4; Ty = Type::Int16Ty; + } else { + Size = 4; Ty = Type::Int32Ty; + } + break; + + case 'e': case 'g': case 'E': + case 'f': + if (Long || LongLong) { + Size = 8; Ty = Type::DoubleTy; + } else { + Size = 4; Ty = Type::FloatTy; + } + break; + + case 's': case 'c': case '[': // No byteswap needed + Size = 1; + Ty = Type::Int8Ty; + break; + + default: break; + } + + if (Size) { + GenericValue GV; + void *Arg = Args[ArgNo++]; + memcpy(&GV, Arg, Size); + TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); + } + } } } } +// int sscanf(const char *format, ...); +GenericValue lle_X_sscanf(FunctionType *M, const vector &args) { + assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.Int32Val = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9]); + ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9], 0); + return GV; +} + +// int scanf(const char *format, ...); +GenericValue lle_X_scanf(FunctionType *M, const vector &args) { + assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.Int32Val = scanf( Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9]); + ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9]); + return GV; +} + + +// int clock(void) - Profiling implementation +GenericValue lle_i_clock(FunctionType *M, const vector &Args) { + extern unsigned int clock(void); + GenericValue GV; GV.Int32Val = clock(); + return GV; +} + + +//===----------------------------------------------------------------------===// +// String Functions... +//===----------------------------------------------------------------------===// + +// int strcmp(const char *S1, const char *S2); +GenericValue lle_X_strcmp(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + GenericValue Ret; + Ret.Int32Val = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])); + return Ret; +} + +// char *strcat(char *Dest, const char *src); +GenericValue lle_X_strcat(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +// char *strcpy(char *Dest, const char *src); +GenericValue lle_X_strcpy(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +static GenericValue size_t_to_GV (size_t n) { + GenericValue Ret; + if (sizeof (size_t) == sizeof (uint64_t)) { + Ret.Int64Val = n; + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + Ret.Int32Val = n; + } + return Ret; +} + +static size_t GV_to_size_t (GenericValue GV) { + size_t count; + if (sizeof (size_t) == sizeof (uint64_t)) { + count = (size_t)GV.Int64Val; + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + count = (size_t)GV.Int32Val; + } + return count; +} + +// size_t strlen(const char *src); +GenericValue lle_X_strlen(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + size_t strlenResult = strlen ((char *) GVTOP (Args[0])); + return size_t_to_GV (strlenResult); +} + +// char *strdup(const char *src); +GenericValue lle_X_strdup(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// char *__strdup(const char *src); +GenericValue lle_X___strdup(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// void *memset(void *S, int C, size_t N) +GenericValue lle_X_memset(FunctionType *M, const vector &Args) { + assert(Args.size() == 3); + size_t count = GV_to_size_t (Args[2]); + return PTOGV(memset(GVTOP(Args[0]), Args[1].Int32Val, count)); +} + +// void *memcpy(void *Dest, void *src, size_t Size); +GenericValue lle_X_memcpy(FunctionType *M, const vector &Args) { + assert(Args.size() == 3); + size_t count = GV_to_size_t (Args[2]); + return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); +} + +//===----------------------------------------------------------------------===// +// IO Functions... +//===----------------------------------------------------------------------===// + +// getFILE - Turn a pointer in the host address space into a legit pointer in +// the interpreter address space. This is an identity transformation. +#define getFILE(ptr) ((FILE*)ptr) + +// FILE *fopen(const char *filename, const char *mode); +GenericValue lle_X_fopen(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + return PTOGV(fopen((const char *)GVTOP(Args[0]), + (const char *)GVTOP(Args[1]))); +} + +// int fclose(FILE *F); +GenericValue lle_X_fclose(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = fclose(getFILE(GVTOP(Args[0]))); + return GV; +} + +// int feof(FILE *stream); +GenericValue lle_X_feof(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + + GV.Int32Val = feof(getFILE(GVTOP(Args[0]))); + return GV; +} + +// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fread(FunctionType *M, const vector &Args) { + assert(Args.size() == 4); + size_t result; + + result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fwrite(FunctionType *M, const vector &Args) { + assert(Args.size() == 4); + size_t result; + + result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// char *fgets(char *s, int n, FILE *stream); +GenericValue lle_X_fgets(FunctionType *M, const vector &Args) { + assert(Args.size() == 3); + return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].Int32Val, + getFILE(GVTOP(Args[2])))); +} + +// FILE *freopen(const char *path, const char *mode, FILE *stream); +GenericValue lle_X_freopen(FunctionType *M, const vector &Args) { + assert(Args.size() == 3); + return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), + getFILE(GVTOP(Args[2])))); +} + +// int fflush(FILE *stream); +GenericValue lle_X_fflush(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = fflush(getFILE(GVTOP(Args[0]))); + return GV; +} + +// int getc(FILE *stream); +GenericValue lle_X_getc(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = getc(getFILE(GVTOP(Args[0]))); + return GV; +} + +// int _IO_getc(FILE *stream); +GenericValue lle_X__IO_getc(FunctionType *F, const vector &Args) { + return lle_X_getc(F, Args); +} + +// int fputc(int C, FILE *stream); +GenericValue lle_X_fputc(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.Int32Val = fputc(Args[0].Int32Val, getFILE(GVTOP(Args[1]))); + return GV; +} + +// int ungetc(int C, FILE *stream); +GenericValue lle_X_ungetc(FunctionType *M, const vector &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.Int32Val = ungetc(Args[0].Int32Val, getFILE(GVTOP(Args[1]))); + return GV; +} + +// int ferror (FILE *stream); +GenericValue lle_X_ferror(FunctionType *M, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.Int32Val = ferror (getFILE(GVTOP(Args[0]))); + return GV; +} + +// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output +// useful. +GenericValue lle_X_fprintf(FunctionType *M, const vector &Args) { + assert(Args.size() >= 2); + char Buffer[10000]; + vector NewArgs; + NewArgs.push_back(PTOGV(Buffer)); + NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); + GenericValue GV = lle_X_sprintf(M, NewArgs); + + fputs(Buffer, getFILE(GVTOP(Args[0]))); + return GV; +} + } // End extern "C" -void Interpreter::initializeExternalMethods() { - FuncNames["lle_VP_printstr"] = lle_VP_printstr; - FuncNames["lle_X_print"] = lle_X_print; - FuncNames["lle_X_printVal"] = lle_X_printVal; - FuncNames["lle_X_printString"] = lle_X_printString; - FuncNames["lle_X_printUByte"] = lle_X_printUByte; - FuncNames["lle_X_printSByte"] = lle_X_printSByte; - FuncNames["lle_X_printUShort"] = lle_X_printUShort; - FuncNames["lle_X_printShort"] = lle_X_printShort; - FuncNames["lle_X_printInt"] = lle_X_printInt; - FuncNames["lle_X_printUInt"] = lle_X_printUInt; - FuncNames["lle_X_printLong"] = lle_X_printLong; - FuncNames["lle_X_printULong"] = lle_X_printULong; - FuncNames["lle_X_printFloat"] = lle_X_printFloat; - FuncNames["lle_X_printDouble"] = lle_X_printDouble; - FuncNames["lle_X_printPointer"] = lle_X_printPointer; +void Interpreter::initializeExternalFunctions() { FuncNames["lle_Vb_putchar"] = lle_Vb_putchar; FuncNames["lle_ii_putchar"] = lle_ii_putchar; FuncNames["lle_VB_putchar"] = lle_VB_putchar; - FuncNames["lle_V___main"] = lle_V___main; FuncNames["lle_X_exit"] = lle_X_exit; + FuncNames["lle_X_abort"] = lle_X_abort; FuncNames["lle_X_malloc"] = lle_X_malloc; + FuncNames["lle_X_calloc"] = lle_X_calloc; FuncNames["lle_X_free"] = lle_X_free; + FuncNames["lle_X_atoi"] = lle_X_atoi; FuncNames["lle_X_pow"] = lle_X_pow; + FuncNames["lle_X_exp"] = lle_X_exp; + FuncNames["lle_X_log"] = lle_X_log; + FuncNames["lle_X_floor"] = lle_X_floor; + FuncNames["lle_X_srand"] = lle_X_srand; + FuncNames["lle_X_rand"] = lle_X_rand; +#ifdef HAVE_RAND48 + FuncNames["lle_X_drand48"] = lle_X_drand48; + FuncNames["lle_X_srand48"] = lle_X_srand48; + FuncNames["lle_X_lrand48"] = lle_X_lrand48; +#endif FuncNames["lle_X_sqrt"] = lle_X_sqrt; + FuncNames["lle_X_puts"] = lle_X_puts; FuncNames["lle_X_printf"] = lle_X_printf; + FuncNames["lle_X_sprintf"] = lle_X_sprintf; + FuncNames["lle_X_sscanf"] = lle_X_sscanf; + FuncNames["lle_X_scanf"] = lle_X_scanf; + FuncNames["lle_i_clock"] = lle_i_clock; + + FuncNames["lle_X_strcmp"] = lle_X_strcmp; + FuncNames["lle_X_strcat"] = lle_X_strcat; + FuncNames["lle_X_strcpy"] = lle_X_strcpy; + FuncNames["lle_X_strlen"] = lle_X_strlen; + FuncNames["lle_X___strdup"] = lle_X___strdup; + FuncNames["lle_X_memset"] = lle_X_memset; + FuncNames["lle_X_memcpy"] = lle_X_memcpy; + + FuncNames["lle_X_fopen"] = lle_X_fopen; + FuncNames["lle_X_fclose"] = lle_X_fclose; + FuncNames["lle_X_feof"] = lle_X_feof; + FuncNames["lle_X_fread"] = lle_X_fread; + FuncNames["lle_X_fwrite"] = lle_X_fwrite; + FuncNames["lle_X_fgets"] = lle_X_fgets; + FuncNames["lle_X_fflush"] = lle_X_fflush; + FuncNames["lle_X_fgetc"] = lle_X_getc; + FuncNames["lle_X_getc"] = lle_X_getc; + FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; + FuncNames["lle_X_fputc"] = lle_X_fputc; + FuncNames["lle_X_ungetc"] = lle_X_ungetc; + FuncNames["lle_X_fprintf"] = lle_X_fprintf; + FuncNames["lle_X_freopen"] = lle_X_freopen; } +