X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FRuntimeDyld%2FRuntimeDyldELF.cpp;h=0f3ca0f2f3921551bbe4a019c313e4623cafca36;hb=61bd005d1bad6dcea556e541fdbd31e7451b33aa;hp=434a1adf4f0fa63fd07105e3e16874bd253791eb;hpb=0d338a59bdd823e055d27a735eb521e870823f73;p=oota-llvm.git diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp index 434a1adf4f0..0f3ca0f2f39 100644 --- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp @@ -12,33 +12,32 @@ //===----------------------------------------------------------------------===// #include "RuntimeDyldELF.h" -#include "JITRegistrar.h" -#include "ObjectImageCommon.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" -#include "llvm/ExecutionEngine/ObjectBuffer.h" -#include "llvm/ExecutionEngine/ObjectImage.h" +#include "llvm/MC/MCStreamer.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/ELF.h" +#include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/TargetRegistry.h" using namespace llvm; using namespace llvm::object; #define DEBUG_TYPE "dyld" -namespace { - -static inline error_code check(error_code Err) { +static inline std::error_code check(std::error_code Err) { if (Err) { report_fatal_error(Err.message()); } return Err; } +namespace { + template class DyldELFObject : public ELFObjectFile { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) @@ -52,10 +51,11 @@ template class DyldELFObject : public ELFObjectFile { typedef typename ELFDataTypeTypedefHelper::value_type addr_type; public: - DyldELFObject(MemoryBuffer *Wrapper, error_code &ec); + DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec); void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); - void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr); + + void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); // Methods for type inquiry through isa, cast and dyn_cast static inline bool classof(const Binary *v) { @@ -65,47 +65,17 @@ public: static inline bool classof(const ELFObjectFile *v) { return v->isDyldType(); } -}; - -template class ELFObjectImage : public ObjectImageCommon { -protected: - DyldELFObject *DyldObj; - bool Registered; - -public: - ELFObjectImage(ObjectBuffer *Input, DyldELFObject *Obj) - : ObjectImageCommon(Input, Obj), DyldObj(Obj), Registered(false) {} - - virtual ~ELFObjectImage() { - if (Registered) - deregisterWithDebugger(); - } - // Subclasses can override these methods to update the image with loaded - // addresses for sections and common symbols - void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override { - DyldObj->updateSectionAddress(Sec, Addr); - } +}; - void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override { - DyldObj->updateSymbolAddress(Sym, Addr); - } - void registerWithDebugger() override { - JITRegistrar::getGDBRegistrar().registerObject(*Buffer); - Registered = true; - } - void deregisterWithDebugger() override { - JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer); - } -}; // The MemoryBuffer passed into this constructor is just a wrapper around the // actual memory. Ultimately, the Binary parent class will take ownership of // this MemoryBuffer object but not the underlying memory. template -DyldELFObject::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec) - : ELFObjectFile(Wrapper, ec) { +DyldELFObject::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC) + : ELFObjectFile(Wrapper, EC) { this->isDyldELFObject = true; } @@ -133,10 +103,89 @@ void DyldELFObject::updateSymbolAddress(const SymbolRef &SymRef, sym->st_value = static_cast(Addr); } +class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo { +public: + LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx, + unsigned EndIdx) + : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {} + + OwningBinary + getObjectForDebug(const ObjectFile &Obj) const override; +}; + +template +std::unique_ptr> +createRTDyldELFObject(MemoryBufferRef Buffer, + const LoadedELFObjectInfo &L, + std::error_code &ec) { + typedef typename ELFFile::Elf_Shdr Elf_Shdr; + typedef typename ELFDataTypeTypedefHelper::value_type addr_type; + + std::unique_ptr> Obj = + llvm::make_unique>(Buffer, ec); + + // Iterate over all sections in the object. + for (const auto &Sec : Obj->sections()) { + StringRef SectionName; + Sec.getName(SectionName); + if (SectionName != "") { + DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); + Elf_Shdr *shdr = const_cast( + reinterpret_cast(ShdrRef.p)); + + if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) { + // This assumes that the address passed in matches the target address + // bitness. The template-based type cast handles everything else. + shdr->sh_addr = static_cast(SecLoadAddr); + } + } + } + + return Obj; +} + +OwningBinary createELFDebugObject(const ObjectFile &Obj, + const LoadedELFObjectInfo &L) { + assert(Obj.isELF() && "Not an ELF object file."); + + std::unique_ptr Buffer = + MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); + + std::error_code ec; + + std::unique_ptr DebugObj; + if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) { + typedef ELFType ELF32LE; + DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), L, ec); + } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) { + typedef ELFType ELF32BE; + DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), L, ec); + } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) { + typedef ELFType ELF64BE; + DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), L, ec); + } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) { + typedef ELFType ELF64LE; + DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), L, ec); + } else + llvm_unreachable("Unexpected ELF format"); + + assert(!ec && "Could not construct copy ELF object file"); + + return OwningBinary(std::move(DebugObj), std::move(Buffer)); +} + +OwningBinary +LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { + return createELFDebugObject(Obj, *this); +} + } // namespace namespace llvm { +RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} +RuntimeDyldELF::~RuntimeDyldELF() {} + void RuntimeDyldELF::registerEHFrames() { if (!MemMgr) return; @@ -164,72 +213,14 @@ void RuntimeDyldELF::deregisterEHFrames() { RegisteredEHFrameSections.clear(); } -ObjectImage * -RuntimeDyldELF::createObjectImageFromFile(object::ObjectFile *ObjFile) { - if (!ObjFile) - return NULL; - - error_code ec; - MemoryBuffer *Buffer = - MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false); - - if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) { - DyldELFObject> *Obj = - new DyldELFObject>(Buffer, ec); - return new ELFObjectImage>(NULL, Obj); - } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) { - DyldELFObject> *Obj = - new DyldELFObject>(Buffer, ec); - return new ELFObjectImage>(NULL, Obj); - } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) { - DyldELFObject> *Obj = - new DyldELFObject>(Buffer, ec); - return new ELFObjectImage>(NULL, Obj); - } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) { - DyldELFObject> *Obj = - new DyldELFObject>(Buffer, ec); - return new ELFObjectImage>(NULL, Obj); - } else - llvm_unreachable("Unexpected ELF format"); +std::unique_ptr +RuntimeDyldELF::loadObject(const object::ObjectFile &O) { + unsigned SectionStartIdx, SectionEndIdx; + std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O); + return llvm::make_unique(*this, SectionStartIdx, + SectionEndIdx); } -ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) { - if (Buffer->getBufferSize() < ELF::EI_NIDENT) - llvm_unreachable("Unexpected ELF object size"); - std::pair Ident = - std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS], - (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]); - error_code ec; - - if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) { - DyldELFObject> *Obj = - new DyldELFObject>( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage>(Buffer, Obj); - } else if (Ident.first == ELF::ELFCLASS32 && - Ident.second == ELF::ELFDATA2MSB) { - DyldELFObject> *Obj = - new DyldELFObject>( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage>(Buffer, Obj); - } else if (Ident.first == ELF::ELFCLASS64 && - Ident.second == ELF::ELFDATA2MSB) { - DyldELFObject> *Obj = - new DyldELFObject>( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage>(Buffer, Obj); - } else if (Ident.first == ELF::ELFCLASS64 && - Ident.second == ELF::ELFDATA2LSB) { - DyldELFObject> *Obj = - new DyldELFObject>( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage>(Buffer, Obj); - } else - llvm_unreachable("Unexpected ELF format"); -} - -RuntimeDyldELF::~RuntimeDyldELF() {} - void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend, @@ -239,10 +230,9 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_X86_64_64: { - uint64_t *Target = reinterpret_cast(Section.Address + Offset); - *Target = Value + Addend; + support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend; DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " - << format("%p\n", Target)); + << format("%p\n", Section.Address + Offset)); break; } case ELF::R_X86_64_32: @@ -252,17 +242,15 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); - uint32_t *Target = reinterpret_cast(Section.Address + Offset); - *Target = TruncatedAddr; + support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr; DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " - << format("%p\n", Target)); + << format("%p\n", Section.Address + Offset)); break; } case ELF::R_X86_64_GOTPCREL: { // findGOTEntry returns the 'G + GOT' part of the relocation calculation // based on the load/target address of the GOT (not the current/local addr). uint64_t GOTAddr = findGOTEntry(Value, SymOffset); - uint32_t *Target = reinterpret_cast(Section.Address + Offset); uint64_t FinalAddress = Section.LoadAddress + Offset; // The processRelocationRef method combines the symbol offset and the addend // and in most cases that's what we want. For this relocation type, we need @@ -270,30 +258,29 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); - *Target = TruncOffset; + support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; break; } case ELF::R_X86_64_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = - reinterpret_cast(Section.ObjAddress + Offset); - uint32_t *Target = reinterpret_cast(Section.Address + Offset); + support::ulittle32_t::ref Placeholder( + (void *)(Section.ObjAddress + Offset)); uint64_t FinalAddress = Section.LoadAddress + Offset; - int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress; + int64_t RealOffset = Placeholder + Value + Addend - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); - *Target = TruncOffset; + support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; break; } case ELF::R_X86_64_PC64: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint64_t *Placeholder = - reinterpret_cast(Section.ObjAddress + Offset); - uint64_t *Target = reinterpret_cast(Section.Address + Offset); + support::ulittle64_t::ref Placeholder( + (void *)(Section.ObjAddress + Offset)); uint64_t FinalAddress = Section.LoadAddress + Offset; - *Target = *Placeholder + Value + Addend - FinalAddress; + support::ulittle64_t::ref(Section.Address + Offset) = + Placeholder + Value + Addend - FinalAddress; break; } } @@ -306,21 +293,20 @@ void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, case ELF::R_386_32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = - reinterpret_cast(Section.ObjAddress + Offset); - uint32_t *Target = reinterpret_cast(Section.Address + Offset); - *Target = *Placeholder + Value + Addend; + support::ulittle32_t::ref Placeholder( + (void *)(Section.ObjAddress + Offset)); + support::ulittle32_t::ref(Section.Address + Offset) = + Placeholder + Value + Addend; break; } case ELF::R_386_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = - reinterpret_cast(Section.ObjAddress + Offset); - uint32_t *Target = reinterpret_cast(Section.Address + Offset); + support::ulittle32_t::ref Placeholder( + (void *)(Section.ObjAddress + Offset)); uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); - uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress; - *Target = RealOffset; + uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress; + support::ulittle32_t::ref(Section.Address + Offset) = RealOffset; break; } default: @@ -592,43 +578,51 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, } } -// Return the .TOC. section address to R_PPC64_TOC relocations. -uint64_t RuntimeDyldELF::findPPC64TOC() const { +// Return the .TOC. section and offset. +void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj, + ObjSectionToIDMap &LocalSections, + RelocationValueRef &Rel) { + // Set a default SectionID in case we do not find a TOC section below. + // This may happen for references to TOC base base (sym@toc, .odp + // relocation) without a .toc directive. In this case just use the + // first section (which is usually the .odp) since the code won't + // reference the .toc base directly. + Rel.SymbolName = NULL; + Rel.SectionID = 0; + // The TOC consists of sections .got, .toc, .tocbss, .plt in that // order. The TOC starts where the first of these sections starts. - SectionList::const_iterator it = Sections.begin(); - SectionList::const_iterator ite = Sections.end(); - for (; it != ite; ++it) { - if (it->Name == ".got" || it->Name == ".toc" || it->Name == ".tocbss" || - it->Name == ".plt") + for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); + si != se; ++si) { + + StringRef SectionName; + check(si->getName(SectionName)); + + if (SectionName == ".got" + || SectionName == ".toc" + || SectionName == ".tocbss" + || SectionName == ".plt") { + Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections); break; + } } - if (it == ite) { - // This may happen for - // * references to TOC base base (sym@toc, .odp relocation) without - // a .toc directive. - // In this case just use the first section (which is usually - // the .odp) since the code won't reference the .toc base - // directly. - it = Sections.begin(); - } - assert(it != ite); + // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. - return it->LoadAddress + 0x8000; + Rel.Addend = 0x8000; } // Returns the sections and offset associated with the ODP entry referenced // by Symbol. -void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, +void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel) { // Get the ELF symbol value (st_value) to compare with Relocation offset in // .opd entries - for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections(); + for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); si != se; ++si) { section_iterator RelSecI = si->getRelocatedSection(); - if (RelSecI == Obj.end_sections()) + if (RelSecI == Obj.section_end()) continue; StringRef RelSectionName; @@ -670,10 +664,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, if (Rel.Addend != (int64_t)TargetSymbolOffset) continue; - section_iterator tsi(Obj.end_sections()); + section_iterator tsi(Obj.section_end()); check(TargetSymbol->getSection(tsi)); - bool IsCode = false; - tsi->isText(IsCode); + bool IsCode = tsi->isText(); Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections); Rel.Addend = (intptr_t)Addend; return; @@ -682,24 +675,37 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, llvm_unreachable("Attempting to get address of ODP entry!"); } -// Relocation masks following the #lo(value), #hi(value), #higher(value), -// and #highest(value) macros defined in section 4.5.1. Relocation Types -// in PPC-elf64abi document. -// +// Relocation masks following the #lo(value), #hi(value), #ha(value), +// #higher(value), #highera(value), #highest(value), and #highesta(value) +// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi +// document. + static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } static inline uint16_t applyPPChi(uint64_t value) { return (value >> 16) & 0xffff; } +static inline uint16_t applyPPCha (uint64_t value) { + return ((value + 0x8000) >> 16) & 0xffff; +} + static inline uint16_t applyPPChigher(uint64_t value) { return (value >> 32) & 0xffff; } +static inline uint16_t applyPPChighera (uint64_t value) { + return ((value + 0x8000) >> 32) & 0xffff; +} + static inline uint16_t applyPPChighest(uint64_t value) { return (value >> 48) & 0xffff; } +static inline uint16_t applyPPChighesta (uint64_t value) { + return ((value + 0x8000) >> 48) & 0xffff; +} + void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { @@ -708,24 +714,57 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, default: llvm_unreachable("Relocation type not implemented yet!"); break; + case ELF::R_PPC64_ADDR16: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_DS: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); + break; case ELF::R_PPC64_ADDR16_LO: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; + case ELF::R_PPC64_ADDR16_LO_DS: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); + break; case ELF::R_PPC64_ADDR16_HI: writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); break; + case ELF::R_PPC64_ADDR16_HA: + writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); + break; case ELF::R_PPC64_ADDR16_HIGHER: writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); break; + case ELF::R_PPC64_ADDR16_HIGHERA: + writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); + break; case ELF::R_PPC64_ADDR16_HIGHEST: writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); break; + case ELF::R_PPC64_ADDR16_HIGHESTA: + writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); + break; case ELF::R_PPC64_ADDR14: { assert(((Value + Addend) & 3) == 0); // Preserve the AA/LK bits in the branch instruction uint8_t aalk = *(LocalAddress + 3); writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); } break; + case ELF::R_PPC64_REL16_LO: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPClo(Delta)); + } break; + case ELF::R_PPC64_REL16_HI: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPChi(Delta)); + } break; + case ELF::R_PPC64_REL16_HA: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPCha(Delta)); + } break; case ELF::R_PPC64_ADDR32: { int32_t Result = static_cast(Value + Addend); if (SignExtend32<32>(Result) != Result) @@ -755,19 +794,6 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, case ELF::R_PPC64_ADDR64: writeInt64BE(LocalAddress, Value + Addend); break; - case ELF::R_PPC64_TOC: - writeInt64BE(LocalAddress, findPPC64TOC()); - break; - case ELF::R_PPC64_TOC16: { - uint64_t TOCStart = findPPC64TOC(); - Value = applyPPClo((Value + Addend) - TOCStart); - writeInt16BE(LocalAddress, applyPPClo(Value)); - } break; - case ELF::R_PPC64_TOC16_DS: { - uint64_t TOCStart = findPPC64TOC(); - Value = ((Value + Addend) - TOCStart); - writeInt16BE(LocalAddress, applyPPClo(Value)); - } break; } } @@ -873,8 +899,9 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, } relocation_iterator RuntimeDyldELF::processRelocationRef( - unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, + unsigned SectionID, relocation_iterator RelI, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { uint64_t RelType; Check(RelI->getType(RelType)); @@ -884,74 +911,66 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( // Obtain the symbol name which is referenced in the relocation StringRef TargetName; - if (Symbol != Obj.end_symbols()) + if (Symbol != Obj.symbol_end()) Symbol->getName(TargetName); DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend << " TargetName: " << TargetName << "\n"); RelocationValueRef Value; // First search for the symbol in the local symbol table - SymbolTableMap::const_iterator lsi = Symbols.end(); SymbolRef::Type SymType = SymbolRef::ST_Unknown; - if (Symbol != Obj.end_symbols()) { - lsi = Symbols.find(TargetName.data()); + + // Search for the symbol in the global symbol table + RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); + if (Symbol != Obj.symbol_end()) { + gsi = GlobalSymbolTable.find(TargetName.data()); Symbol->getType(SymType); } - if (lsi != Symbols.end()) { - Value.SectionID = lsi->second.first; - Value.Offset = lsi->second.second; - Value.Addend = lsi->second.second + Addend; + if (gsi != GlobalSymbolTable.end()) { + const auto &SymInfo = gsi->second; + Value.SectionID = SymInfo.getSectionID(); + Value.Offset = SymInfo.getOffset(); + Value.Addend = SymInfo.getOffset() + Addend; } else { - // Search for the symbol in the global symbol table - SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end(); - if (Symbol != Obj.end_symbols()) - gsi = GlobalSymbolTable.find(TargetName.data()); - if (gsi != GlobalSymbolTable.end()) { - Value.SectionID = gsi->second.first; - Value.Offset = gsi->second.second; - Value.Addend = gsi->second.second + Addend; - } else { - switch (SymType) { - case SymbolRef::ST_Debug: { - // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously - // and can be changed by another developers. Maybe best way is add - // a new symbol type ST_Section to SymbolRef and use it. - section_iterator si(Obj.end_sections()); - Symbol->getSection(si); - if (si == Obj.end_sections()) - llvm_unreachable("Symbol section not found, bad object file format!"); - DEBUG(dbgs() << "\t\tThis is section symbol\n"); - // Default to 'true' in case isText fails (though it never does). - bool isCode = true; - si->isText(isCode); - Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); - Value.Addend = Addend; - break; - } - case SymbolRef::ST_Data: - case SymbolRef::ST_Unknown: { - Value.SymbolName = TargetName.data(); - Value.Addend = Addend; - - // Absolute relocations will have a zero symbol ID (STN_UNDEF), which - // will manifest here as a NULL symbol name. - // We can set this as a valid (but empty) symbol name, and rely - // on addRelocationForSymbol to handle this. - if (!Value.SymbolName) - Value.SymbolName = ""; - break; - } - default: - llvm_unreachable("Unresolved symbol type!"); - break; - } + switch (SymType) { + case SymbolRef::ST_Debug: { + // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously + // and can be changed by another developers. Maybe best way is add + // a new symbol type ST_Section to SymbolRef and use it. + section_iterator si(Obj.section_end()); + Symbol->getSection(si); + if (si == Obj.section_end()) + llvm_unreachable("Symbol section not found, bad object file format!"); + DEBUG(dbgs() << "\t\tThis is section symbol\n"); + bool isCode = si->isText(); + Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); + Value.Addend = Addend; + break; + } + case SymbolRef::ST_Data: + case SymbolRef::ST_Unknown: { + Value.SymbolName = TargetName.data(); + Value.Addend = Addend; + + // Absolute relocations will have a zero symbol ID (STN_UNDEF), which + // will manifest here as a NULL symbol name. + // We can set this as a valid (but empty) symbol name, and rely + // on addRelocationForSymbol to handle this. + if (!Value.SymbolName) + Value.SymbolName = ""; + break; + } + default: + llvm_unreachable("Unresolved symbol type!"); + break; } } + uint64_t Offset; Check(RelI->getOffset(Offset)); DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset << "\n"); - if (Arch == Triple::aarch64 && + if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) && (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) { // This is an AArch64 branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); @@ -1073,6 +1092,10 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( } } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { if (RelType == ELF::R_PPC64_REL24) { + // Determine ABI variant in use for this object. + unsigned AbiVariant; + Obj.getPlatformFlags(AbiVariant); + AbiVariant &= ELF::EF_PPC64_ABI; // A PPC branch relocation will need a stub function if the target is // an external symbol (Symbol::ST_Unknown) or if the target address // is not within the signed 24-bits branch address. @@ -1080,10 +1103,18 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( uint8_t *Target = Section.Address + Offset; bool RangeOverflow = false; if (SymType != SymbolRef::ST_Unknown) { - // A function call may points to the .opd entry, so the final symbol - // value - // in calculated based in the relocation values in .opd section. - findOPDEntrySection(Obj, ObjSectionToID, Value); + if (AbiVariant != 2) { + // In the ELFv1 ABI, a function call may point to the .opd entry, + // so the final symbol value is calculated based on the relocation + // values in the .opd section. + findOPDEntrySection(Obj, ObjSectionToID, Value); + } else { + // In the ELFv2 ABI, a function symbol may provide a local entry + // point, which must be used for direct calls. + uint8_t SymOther; + Symbol->getOther(SymOther); + Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); + } uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend; int32_t delta = static_cast(Target - RelocTarget); // If it is within 24-bits branch range, just set the branch target @@ -1111,19 +1142,26 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; uint8_t *StubTargetAddr = - createStubFunction(Section.Address + Section.StubOffset); + createStubFunction(Section.Address + Section.StubOffset, + AbiVariant); RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, ELF::R_PPC64_ADDR64, Value.Addend); // Generates the 64-bits address loads as exemplified in section - // 4.5.1 in PPC64 ELF ABI. - RelocationEntry REhst(SectionID, StubTargetAddr - Section.Address + 2, + // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to + // apply to the low part of the instructions, so we have to update + // the offset according to the target endianness. + uint64_t StubRelocOffset = StubTargetAddr - Section.Address; + if (!IsTargetLittleEndian) + StubRelocOffset += 2; + + RelocationEntry REhst(SectionID, StubRelocOffset + 0, ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); - RelocationEntry REhr(SectionID, StubTargetAddr - Section.Address + 6, + RelocationEntry REhr(SectionID, StubRelocOffset + 4, ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); - RelocationEntry REh(SectionID, StubTargetAddr - Section.Address + 14, + RelocationEntry REh(SectionID, StubRelocOffset + 12, ELF::R_PPC64_ADDR16_HI, Value.Addend); - RelocationEntry REl(SectionID, StubTargetAddr - Section.Address + 18, + RelocationEntry REl(SectionID, StubRelocOffset + 16, ELF::R_PPC64_ADDR16_LO, Value.Addend); if (Value.SymbolName) { @@ -1143,16 +1181,60 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( RelType, 0); Section.StubOffset += getMaxStubSize(); } - if (SymType == SymbolRef::ST_Unknown) + if (SymType == SymbolRef::ST_Unknown) { // Restore the TOC for external calls - writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) + if (AbiVariant == 2) + writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) + else + writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) + } + } + } else if (RelType == ELF::R_PPC64_TOC16 || + RelType == ELF::R_PPC64_TOC16_DS || + RelType == ELF::R_PPC64_TOC16_LO || + RelType == ELF::R_PPC64_TOC16_LO_DS || + RelType == ELF::R_PPC64_TOC16_HI || + RelType == ELF::R_PPC64_TOC16_HA) { + // These relocations are supposed to subtract the TOC address from + // the final value. This does not fit cleanly into the RuntimeDyld + // scheme, since there may be *two* sections involved in determining + // the relocation value (the section of the symbol refered to by the + // relocation, and the TOC section associated with the current module). + // + // Fortunately, these relocations are currently only ever generated + // refering to symbols that themselves reside in the TOC, which means + // that the two sections are actually the same. Thus they cancel out + // and we can immediately resolve the relocation right now. + switch (RelType) { + case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; + case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; + case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; + case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; + case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; + case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; + default: llvm_unreachable("Wrong relocation type."); } + + RelocationValueRef TOCValue; + findPPC64TOCSection(Obj, ObjSectionToID, TOCValue); + if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) + llvm_unreachable("Unsupported TOC relocation."); + Value.Addend -= TOCValue.Addend; + resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); } else { + // There are two ways to refer to the TOC address directly: either + // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are + // ignored), or via any relocation that refers to the magic ".TOC." + // symbols (in which case the addend is respected). + if (RelType == ELF::R_PPC64_TOC) { + RelType = ELF::R_PPC64_ADDR64; + findPPC64TOCSection(Obj, ObjSectionToID, Value); + } else if (TargetName == ".TOC.") { + findPPC64TOCSection(Obj, ObjSectionToID, Value); + Value.Addend += Addend; + } + RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); - // Extra check to avoid relocation againt empty symbols (usually - // the R_PPC64_TOC). - if (SymType != SymbolRef::ST_Unknown && TargetName.empty()) - Value.SymbolName = NULL; if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); @@ -1192,7 +1274,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef( Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, - Value.Addend - Addend); + Value.Offset); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else @@ -1284,7 +1366,8 @@ void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) { for (it = GOTs.begin(); it != end; ++it) { GOTRelocations &GOTEntries = it->second; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { - if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) { + if (GOTEntries[i].SymbolName != nullptr && + GOTEntries[i].SymbolName == Name) { GOTEntries[i].Offset = Addr; } } @@ -1298,6 +1381,7 @@ size_t RuntimeDyldELF::getGOTEntrySize() { switch (Arch) { case Triple::x86_64: case Triple::aarch64: + case Triple::aarch64_be: case Triple::ppc64: case Triple::ppc64le: case Triple::systemz: @@ -1332,7 +1416,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) { // Find the matching entry in our vector. uint64_t SymbolOffset = 0; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { - if (GOTEntries[i].SymbolName == 0) { + if (!GOTEntries[i].SymbolName) { if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress && GOTEntries[i].Offset == Offset) { GOTIndex = i; @@ -1370,7 +1454,8 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) { return 0; } -void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) { +void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, + ObjSectionToIDMap &SectionMap) { // If necessary, allocate the global offset table if (MemMgr) { // Allocate the GOT if necessary @@ -1407,15 +1492,8 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) { } } -bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const { - if (Buffer->getBufferSize() < strlen(ELF::ElfMagic)) - return false; - return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, - strlen(ELF::ElfMagic))) == 0; -} - -bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const { - return Obj->isELF(); +bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { + return Obj.isELF(); } } // namespace llvm