X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FLinker%2FLinkModules.cpp;h=d20044fa3c872db79f8495f9608731a6ce43d7c3;hb=77a498cd7eb4e3f0e1fafff27f7e5c13a8cd7516;hp=3fdbc7f03db51598218e588df15645862fa6ad82;hpb=4c00e53b81de81ecf4ba0c4e287ea230c79e82ae;p=oota-llvm.git diff --git a/lib/Linker/LinkModules.cpp b/lib/Linker/LinkModules.cpp index 3fdbc7f03db..d20044fa3c8 100644 --- a/lib/Linker/LinkModules.cpp +++ b/lib/Linker/LinkModules.cpp @@ -1,4 +1,11 @@ -//===- Linker.cpp - Module Linker Implementation --------------------------===// +//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file implements the LLVM module linker. // @@ -9,68 +16,183 @@ // //===----------------------------------------------------------------------===// -#include "llvm/Transforms/Utils/Linker.h" +#include "llvm/Linker.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" -#include "llvm/DerivedTypes.h" -#include "llvm/iOther.h" -#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/System/Path.h" +#include +#include +using namespace llvm; // Error - Simple wrapper function to conditionally assign to E and return true. // This just makes error return conditions a little bit simpler... -// static inline bool Error(std::string *E, const std::string &Message) { if (E) *E = Message; return true; } -// ResolveTypes - Attempt to link the two specified types together. Return true -// if there is an error and they cannot yet be linked. +// ToStr - Simple wrapper function to convert a type to a string. +static std::string ToStr(const Type *Ty, const Module *M) { + std::ostringstream OS; + WriteTypeSymbolic(OS, Ty, M); + return OS.str(); +} + +// +// Function: ResolveTypes() +// +// Description: +// Attempt to link the two specified types together. +// +// Inputs: +// DestTy - The type to which we wish to resolve. +// SrcTy - The original type which we want to resolve. +// Name - The name of the type. +// +// Outputs: +// DestST - The symbol table in which the new type should be placed. // -static bool ResolveTypes(Type *DestTy, Type *SrcTy, SymbolTable *DestST, - const std::string &Name) { +// Return value: +// true - There is an error and the types cannot yet be linked. +// false - No errors. +// +static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, + SymbolTable *DestST, const std::string &Name) { + if (DestTy == SrcTy) return false; // If already equal, noop + // Does the type already exist in the module? if (DestTy && !isa(DestTy)) { // Yup, the type already exists... - if (DestTy == SrcTy) return false; // If already equal, noop - if (OpaqueType *OT = dyn_cast(SrcTy)) { - OT->refineAbstractTypeTo(DestTy); + if (const OpaqueType *OT = dyn_cast(SrcTy)) { + const_cast(OT)->refineAbstractTypeTo(DestTy); } else { return true; // Cannot link types... neither is opaque and not-equal } } else { // Type not in dest module. Add it now. if (DestTy) // Type _is_ in module, just opaque... - cast(DestTy)->refineAbstractTypeTo(SrcTy); - else - DestST->insert(Name, SrcTy); + const_cast(cast(DestTy)) + ->refineAbstractTypeTo(SrcTy); + else if (!Name.empty()) + DestST->insert(Name, const_cast(SrcTy)); } return false; } +static const FunctionType *getFT(const PATypeHolder &TH) { + return cast(TH.get()); +} +static const StructType *getST(const PATypeHolder &TH) { + return cast(TH.get()); +} + +// RecursiveResolveTypes - This is just like ResolveTypes, except that it +// recurses down into derived types, merging the used types if the parent types +// are compatible. +static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, + const PATypeHolder &SrcTy, + SymbolTable *DestST, const std::string &Name, + std::vector > &Pointers) { + const Type *SrcTyT = SrcTy.get(); + const Type *DestTyT = DestTy.get(); + if (DestTyT == SrcTyT) return false; // If already equal, noop + + // If we found our opaque type, resolve it now! + if (isa(DestTyT) || isa(SrcTyT)) + return ResolveTypes(DestTyT, SrcTyT, DestST, Name); + + // Two types cannot be resolved together if they are of different primitive + // type. For example, we cannot resolve an int to a float. + if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true; + + // Otherwise, resolve the used type used by this derived type... + switch (DestTyT->getTypeID()) { + case Type::FunctionTyID: { + if (cast(DestTyT)->isVarArg() != + cast(SrcTyT)->isVarArg() || + cast(DestTyT)->getNumContainedTypes() != + cast(SrcTyT)->getNumContainedTypes()) + return true; + for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) + if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), + getFT(SrcTy)->getContainedType(i), DestST, "", + Pointers)) + return true; + return false; + } + case Type::StructTyID: { + if (getST(DestTy)->getNumContainedTypes() != + getST(SrcTy)->getNumContainedTypes()) return 1; + for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) + if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), + getST(SrcTy)->getContainedType(i), DestST, "", + Pointers)) + return true; + return false; + } + case Type::ArrayTyID: { + const ArrayType *DAT = cast(DestTy.get()); + const ArrayType *SAT = cast(SrcTy.get()); + if (DAT->getNumElements() != SAT->getNumElements()) return true; + return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), + DestST, "", Pointers); + } + case Type::PointerTyID: { + // If this is a pointer type, check to see if we have already seen it. If + // so, we are in a recursive branch. Cut off the search now. We cannot use + // an associative container for this search, because the type pointers (keys + // in the container) change whenever types get resolved... + for (unsigned i = 0, e = Pointers.size(); i != e; ++i) + if (Pointers[i].first == DestTy) + return Pointers[i].second != SrcTy; + + // Otherwise, add the current pointers to the vector to stop recursion on + // this pair. + Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); + bool Result = + RecursiveResolveTypesI(cast(DestTy.get())->getElementType(), + cast(SrcTy.get())->getElementType(), + DestST, "", Pointers); + Pointers.pop_back(); + return Result; + } + default: assert(0 && "Unexpected type!"); return true; + } +} + +static bool RecursiveResolveTypes(const PATypeHolder &DestTy, + const PATypeHolder &SrcTy, + SymbolTable *DestST, const std::string &Name){ + std::vector > PointerTypes; + return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); +} + + // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. // Make sure there are no type name conflicts. -// static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { SymbolTable *DestST = &Dest->getSymbolTable(); const SymbolTable *SrcST = &Src->getSymbolTable(); // Look for a type plane for Type's... - SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy); - if (PI == SrcST->end()) return false; // No named types, do nothing. + SymbolTable::type_const_iterator TI = SrcST->type_begin(); + SymbolTable::type_const_iterator TE = SrcST->type_end(); + if (TI == TE) return false; // No named types, do nothing. - // Some types cannot be resolved immediately becuse they depend on other types - // being resolved to each other first. This contains a list of types we are - // waiting to recheck. + // Some types cannot be resolved immediately because they depend on other + // types being resolved to each other first. This contains a list of types we + // are waiting to recheck. std::vector DelayedTypesToResolve; - const SymbolTable::VarMap &VM = PI->second; - for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end(); - I != E; ++I) { - const std::string &Name = I->first; - Type *RHS = cast(I->second); + for ( ; TI != TE; ++TI ) { + const std::string &Name = TI->first; + const Type *RHS = TI->second; // Check to see if this type name is already in the dest module... - Type *Entry = cast_or_null(DestST->lookup(Type::TypeTy, Name)); + Type *Entry = DestST->lookupType(Name); if (ResolveTypes(Entry, RHS, DestST, Name)) { // They look different, save the types 'till later to resolve. @@ -83,10 +205,11 @@ static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { // Loop over all of the types, attempting to resolve them if possible... unsigned OldSize = DelayedTypesToResolve.size(); + // Try direct resolution by name... for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { const std::string &Name = DelayedTypesToResolve[i]; - Type *T1 = cast(VM.find(Name)->second); - Type *T2 = cast(DestST->lookup(Type::TypeTy, Name)); + Type *T1 = SrcST->lookupType(Name); + Type *T2 = DestST->lookupType(Name); if (!ResolveTypes(T2, T1, DestST, Name)) { // We are making progress! DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); @@ -96,18 +219,28 @@ static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { // Did we not eliminate any types? if (DelayedTypesToResolve.size() == OldSize) { - // Build up an error message of all of the mismatched types. - std::string ErrorMessage; + // Attempt to resolve subelements of types. This allows us to merge these + // two types: { int* } and { opaque* } for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { const std::string &Name = DelayedTypesToResolve[i]; - const Type *T1 = cast(VM.find(Name)->second); - const Type *T2 = cast(DestST->lookup(Type::TypeTy, Name)); - ErrorMessage += " Type named '" + Name + - "' conflicts.\n Src='" + T1->getDescription() + - "'.\n Dest='" + T2->getDescription() + "'\n"; + PATypeHolder T1(SrcST->lookupType(Name)); + PATypeHolder T2(DestST->lookupType(Name)); + + if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { + // We are making progress! + DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); + + // Go back to the main loop, perhaps we can resolve directly by name + // now... + break; + } + } + + // If we STILL cannot resolve the types, then there is something wrong. + if (DelayedTypesToResolve.size() == OldSize) { + // Remove the symbol name from the destination. + DelayedTypesToResolve.pop_back(); } - return Error(Err, "Type conflict between types in modules:\n" + - ErrorMessage); } } @@ -127,70 +260,66 @@ static void PrintMap(const std::map &M) { } -// RemapOperand - Use LocalMap and GlobalMap to convert references from one -// module to another. This is somewhat sophisticated in that it can -// automatically handle constant references correctly as well... -// +// RemapOperand - Use ValueMap to convert references from one module to another. +// This is somewhat sophisticated in that it can automatically handle constant +// references correctly as well... static Value *RemapOperand(const Value *In, - std::map &LocalMap, - std::map *GlobalMap) { - std::map::const_iterator I = LocalMap.find(In); - if (I != LocalMap.end()) return I->second; - - if (GlobalMap) { - I = GlobalMap->find(In); - if (I != GlobalMap->end()) return I->second; - } + std::map &ValueMap) { + std::map::const_iterator I = ValueMap.find(In); + if (I != ValueMap.end()) return I->second; - // Check to see if it's a constant that we are interesting in transforming... + // Check to see if it's a constant that we are interesting in transforming. if (const Constant *CPV = dyn_cast(In)) { - if (!isa(CPV->getType()) && !isa(CPV)) - return const_cast(CPV); // Simple constants stay identical... + if ((!isa(CPV->getType()) && !isa(CPV)) || + isa(CPV)) + return const_cast(CPV); // Simple constants stay identical. Constant *Result = 0; if (const ConstantArray *CPA = dyn_cast(CPV)) { - const std::vector &Ops = CPA->getValues(); - std::vector Operands(Ops.size()); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - Operands[i] = - cast(RemapOperand(Ops[i], LocalMap, GlobalMap)); + std::vector Operands(CPA->getNumOperands()); + for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) + Operands[i] =cast(RemapOperand(CPA->getOperand(i), ValueMap)); Result = ConstantArray::get(cast(CPA->getType()), Operands); } else if (const ConstantStruct *CPS = dyn_cast(CPV)) { - const std::vector &Ops = CPS->getValues(); - std::vector Operands(Ops.size()); - for (unsigned i = 0; i < Ops.size(); ++i) - Operands[i] = - cast(RemapOperand(Ops[i], LocalMap, GlobalMap)); + std::vector Operands(CPS->getNumOperands()); + for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) + Operands[i] =cast(RemapOperand(CPS->getOperand(i), ValueMap)); Result = ConstantStruct::get(cast(CPS->getType()), Operands); - } else if (isa(CPV)) { + } else if (isa(CPV) || isa(CPV)) { Result = const_cast(CPV); - } else if (const ConstantPointerRef *CPR = - dyn_cast(CPV)) { - Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap); - Result = ConstantPointerRef::get(cast(V)); + } else if (isa(CPV)) { + Result = cast(RemapOperand(CPV, ValueMap)); } else if (const ConstantExpr *CE = dyn_cast(CPV)) { if (CE->getOpcode() == Instruction::GetElementPtr) { - Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); + Value *Ptr = RemapOperand(CE->getOperand(0), ValueMap); std::vector Indices; Indices.reserve(CE->getNumOperands()-1); for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) Indices.push_back(cast(RemapOperand(CE->getOperand(i), - LocalMap, GlobalMap))); + ValueMap))); Result = ConstantExpr::getGetElementPtr(cast(Ptr), Indices); } else if (CE->getNumOperands() == 1) { // Cast instruction assert(CE->getOpcode() == Instruction::Cast); - Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); + Value *V = RemapOperand(CE->getOperand(0), ValueMap); Result = ConstantExpr::getCast(cast(V), CE->getType()); + } else if (CE->getNumOperands() == 3) { + // Select instruction + assert(CE->getOpcode() == Instruction::Select); + Value *V1 = RemapOperand(CE->getOperand(0), ValueMap); + Value *V2 = RemapOperand(CE->getOperand(1), ValueMap); + Value *V3 = RemapOperand(CE->getOperand(2), ValueMap); + Result = ConstantExpr::getSelect(cast(V1), cast(V2), + cast(V3)); } else if (CE->getNumOperands() == 2) { // Binary operator... - Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); - Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap); + Value *V1 = RemapOperand(CE->getOperand(0), ValueMap); + Value *V2 = RemapOperand(CE->getOperand(1), ValueMap); Result = ConstantExpr::get(CE->getOpcode(), cast(V1), - cast(V2)); + cast(V2)); } else { assert(0 && "Unknown constant expr type!"); } @@ -200,63 +329,133 @@ static Value *RemapOperand(const Value *In, } // Cache the mapping in our local map structure... - if (GlobalMap) - GlobalMap->insert(std::make_pair(In, Result)); - else - LocalMap.insert(std::make_pair(In, Result)); + ValueMap.insert(std::make_pair(In, Result)); return Result; } - std::cerr << "XXX LocalMap: \n"; - PrintMap(LocalMap); - - if (GlobalMap) { - std::cerr << "XXX GlobalMap: \n"; - PrintMap(*GlobalMap); - } + std::cerr << "LinkModules ValueMap: \n"; + PrintMap(ValueMap); std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; assert(0 && "Couldn't remap value!"); return 0; } +/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict +/// in the symbol table. This is good for all clients except for us. Go +/// through the trouble to force this back. +static void ForceRenaming(GlobalValue *GV, const std::string &Name) { + assert(GV->getName() != Name && "Can't force rename to self"); + SymbolTable &ST = GV->getParent()->getSymbolTable(); + + // If there is a conflict, rename the conflict. + Value *ConflictVal = ST.lookup(GV->getType(), Name); + assert(ConflictVal&&"Why do we have to force rename if there is no conflic?"); + GlobalValue *ConflictGV = cast(ConflictVal); + assert(ConflictGV->hasInternalLinkage() && + "Not conflicting with a static global, should link instead!"); + + ConflictGV->setName(""); // Eliminate the conflict + GV->setName(Name); // Force the name back + ConflictGV->setName(Name); // This will cause ConflictGV to get renamed + assert(GV->getName() == Name && ConflictGV->getName() != Name && + "ForceRenaming didn't work"); +} + +/// GetLinkageResult - This analyzes the two global values and determines what +/// the result will look like in the destination module. In particular, it +/// computes the resultant linkage type, computes whether the global in the +/// source should be copied over to the destination (replacing the existing +/// one), and computes whether this linkage is an error or not. +static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src, + GlobalValue::LinkageTypes <, bool &LinkFromSrc, + std::string *Err) { + assert((!Dest || !Src->hasInternalLinkage()) && + "If Src has internal linkage, Dest shouldn't be set!"); + if (!Dest) { + // Linking something to nothing. + LinkFromSrc = true; + LT = Src->getLinkage(); + } else if (Src->isExternal()) { + // If Src is external or if both Src & Drc are external.. Just link the + // external globals, we aren't adding anything. + LinkFromSrc = false; + LT = Dest->getLinkage(); + } else if (Dest->isExternal()) { + // If Dest is external but Src is not: + LinkFromSrc = true; + LT = Src->getLinkage(); + } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) { + if (Src->getLinkage() != Dest->getLinkage()) + return Error(Err, "Linking globals named '" + Src->getName() + + "': can only link appending global with another appending global!"); + LinkFromSrc = true; // Special cased. + LT = Src->getLinkage(); + } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) { + // At this point we know that Dest has LinkOnce, External or Weak linkage. + if (Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) { + LinkFromSrc = true; + LT = Src->getLinkage(); + } else { + LinkFromSrc = false; + LT = Dest->getLinkage(); + } + } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) { + // At this point we know that Src has External linkage. + LinkFromSrc = true; + LT = GlobalValue::ExternalLinkage; + } else { + assert(Dest->hasExternalLinkage() && Src->hasExternalLinkage() && + "Unexpected linkage type!"); + return Error(Err, "Linking globals named '" + Src->getName() + + "': symbol multiply defined!"); + } + return false; +} // LinkGlobals - Loop through the global variables in the src module and merge // them into the dest module. -// -static bool LinkGlobals(Module *Dest, const Module *Src, +static bool LinkGlobals(Module *Dest, Module *Src, std::map &ValueMap, std::multimap &AppendingVars, + std::map &GlobalsByName, std::string *Err) { // We will need a module level symbol table if the src module has a module // level symbol table... SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); - + // Loop over all of the globals in the src module, mapping them over as we go - // - for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){ - const GlobalVariable *SGV = I; + for (Module::global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I) { + GlobalVariable *SGV = I; GlobalVariable *DGV = 0; - if (SGV->hasName()) { - // A same named thing is a global variable, because the only two things - // that may be in a module level symbol table are Global Vars and - // Functions, and they both have distinct, nonoverlapping, possible types. - // - DGV = cast_or_null(ST->lookup(SGV->getType(), - SGV->getName())); - } + // Check to see if may have to link the global. + if (SGV->hasName() && !SGV->hasInternalLinkage()) + if (!(DGV = Dest->getGlobalVariable(SGV->getName(), + SGV->getType()->getElementType()))) { + std::map::iterator EGV = + GlobalsByName.find(SGV->getName()); + if (EGV != GlobalsByName.end()) + DGV = dyn_cast(EGV->second); + if (DGV) + // If types don't agree due to opaque types, try to resolve them. + RecursiveResolveTypes(SGV->getType(), DGV->getType(),ST, ""); + } + + if (DGV && DGV->hasInternalLinkage()) + DGV = 0; assert(SGV->hasInitializer() || SGV->hasExternalLinkage() && "Global must either be external or have an initializer!"); - bool SGExtern = SGV->isExternal(); - bool DGExtern = DGV ? DGV->isExternal() : false; + GlobalValue::LinkageTypes NewLinkage; + bool LinkFromSrc; + if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err)) + return true; - if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) { + if (!DGV) { // No linking to be performed, simply create an identical version of the // symbol over in the dest module... the initializer will be filled in // later by LinkGlobalInits... - // GlobalVariable *NewDGV = new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(), SGV->getLinkage(), /*init*/0, @@ -265,55 +464,15 @@ static bool LinkGlobals(Module *Dest, const Module *Src, // If the LLVM runtime renamed the global, but it is an externally visible // symbol, DGV must be an existing global with internal linkage. Rename // it. - if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){ - assert(DGV && DGV->getName() == SGV->getName() && - DGV->hasInternalLinkage()); - DGV->setName(""); - NewDGV->setName(SGV->getName()); // Force the name back - DGV->setName(SGV->getName()); // This will cause a renaming - assert(NewDGV->getName() == SGV->getName() && - DGV->getName() != SGV->getName()); - } + if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()) + ForceRenaming(NewDGV, SGV->getName()); // Make sure to remember this mapping... ValueMap.insert(std::make_pair(SGV, NewDGV)); if (SGV->hasAppendingLinkage()) // Keep track that this is an appending variable... AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); - - } else if (SGV->isExternal()) { - // If SGV is external or if both SGV & DGV are external.. Just link the - // external globals, we aren't adding anything. - ValueMap.insert(std::make_pair(SGV, DGV)); - - } else if (DGV->isExternal()) { // If DGV is external but SGV is not... - ValueMap.insert(std::make_pair(SGV, DGV)); - DGV->setLinkage(SGV->getLinkage()); // Inherit linkage! - } else if (SGV->getLinkage() != DGV->getLinkage()) { - return Error(Err, "Global variables named '" + SGV->getName() + - "' have different linkage specifiers!"); - } else if (SGV->hasExternalLinkage()) { - // Allow linking two exactly identical external global variables... - if (SGV->isConstant() != DGV->isConstant() || - SGV->getInitializer() != DGV->getInitializer()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - Global variables differ in const'ness"); - ValueMap.insert(std::make_pair(SGV, DGV)); - } else if (SGV->hasLinkOnceLinkage()) { - // If the global variable has a name, and that name is already in use in - // the Dest module, make sure that the name is a compatible global - // variable... - // - // Check to see if the two GV's have the same Const'ness... - if (SGV->isConstant() != DGV->isConstant()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - Global variables differ in const'ness"); - - // Okay, everything is cool, remember the mapping... - ValueMap.insert(std::make_pair(SGV, DGV)); - } else if (SGV->hasAppendingLinkage()) { + } else if (DGV->hasAppendingLinkage()) { // No linking is performed yet. Just insert a new copy of the global, and // keep track of the fact that it is an appending variable in the // AppendingVars map. The name is cleared out so that no linkage is @@ -329,7 +488,38 @@ static bool LinkGlobals(Module *Dest, const Module *Src, // Keep track that this is an appending variable... AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); } else { - assert(0 && "Unknown linkage!"); + // Otherwise, perform the mapping as instructed by GetLinkageResult. If + // the types don't match, and if we are to link from the source, nuke DGV + // and create a new one of the appropriate type. + if (SGV->getType() != DGV->getType() && LinkFromSrc) { + GlobalVariable *NewDGV = + new GlobalVariable(SGV->getType()->getElementType(), + DGV->isConstant(), DGV->getLinkage()); + Dest->getGlobalList().insert(DGV, NewDGV); + DGV->replaceAllUsesWith(ConstantExpr::getCast(NewDGV, DGV->getType())); + DGV->eraseFromParent(); + NewDGV->setName(SGV->getName()); + DGV = NewDGV; + } + + DGV->setLinkage(NewLinkage); + + if (LinkFromSrc) { + // Inherit const as appropriate + DGV->setConstant(SGV->isConstant()); + DGV->setInitializer(0); + } else { + if (SGV->isConstant() && !DGV->isConstant()) { + if (DGV->isExternal()) + DGV->setConstant(true); + } + SGV->setLinkage(GlobalValue::ExternalLinkage); + SGV->setInitializer(0); + } + + ValueMap.insert(std::make_pair(SGV, + ConstantExpr::getCast(DGV, + SGV->getType()))); } } return false; @@ -338,30 +528,30 @@ static bool LinkGlobals(Module *Dest, const Module *Src, // LinkGlobalInits - Update the initializers in the Dest module now that all // globals that may be referenced are in Dest. -// static bool LinkGlobalInits(Module *Dest, const Module *Src, std::map &ValueMap, std::string *Err) { // Loop over all of the globals in the src module, mapping them over as we go - // - for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){ + for (Module::const_global_iterator I = Src->global_begin(), E = Src->global_end(); I != E; ++I){ const GlobalVariable *SGV = I; if (SGV->hasInitializer()) { // Only process initialized GV's // Figure out what the initializer looks like in the dest module... Constant *SInit = - cast(RemapOperand(SGV->getInitializer(), ValueMap, 0)); + cast(RemapOperand(SGV->getInitializer(), ValueMap)); - GlobalVariable *DGV = cast(ValueMap[SGV]); + GlobalVariable *DGV = cast(ValueMap[SGV]); if (DGV->hasInitializer()) { - assert(SGV->getLinkage() == DGV->getLinkage()); if (SGV->hasExternalLinkage()) { if (DGV->getInitializer() != SInit) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() +"':%"+SGV->getName()+ + return Error(Err, "Global Variable Collision on '" + + ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+ " - Global variables have different initializers"); - } else if (DGV->hasLinkOnceLinkage()) { + } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) { + // Nothing is required, mapped values will take the new global + // automatically. + } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) { // Nothing is required, mapped values will take the new global // automatically. } else if (DGV->hasAppendingLinkage()) { @@ -384,39 +574,39 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src, // static bool LinkFunctionProtos(Module *Dest, const Module *Src, std::map &ValueMap, + std::map &GlobalsByName, std::string *Err) { SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); - + // Loop over all of the functions in the src module, mapping them over as we // go - // for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { const Function *SF = I; // SrcFunction Function *DF = 0; - if (SF->hasName()) - // The same named thing is a Function, because the only two things - // that may be in a module level symbol table are Global Vars and - // Functions, and they both have distinct, nonoverlapping, possible types. - // - DF = cast_or_null(ST->lookup(SF->getType(), SF->getName())); + if (SF->hasName() && !SF->hasInternalLinkage()) { + // Check to see if may have to link the function. + if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) { + std::map::iterator EF = + GlobalsByName.find(SF->getName()); + if (EF != GlobalsByName.end()) + DF = dyn_cast(EF->second); + if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, "")) + DF = 0; // FIXME: gross. + } + } if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { // Function does not already exist, simply insert an function signature // identical to SF into the dest module... Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), SF->getName(), Dest); + NewDF->setCallingConv(SF->getCallingConv()); // If the LLVM runtime renamed the function, but it is an externally // visible symbol, DF must be an existing function with internal linkage. // Rename it. - if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) { - assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage()); - DF->setName(""); - NewDF->setName(SF->getName()); // Force the name back - DF->setName(SF->getName()); // This will cause a renaming - assert(NewDF->getName() == SF->getName() && - DF->getName() != SF->getName()); - } + if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) + ForceRenaming(NewDF, SF->getName()); // ... and remember this mapping... ValueMap.insert(std::make_pair(SF, NewDF)); @@ -429,17 +619,28 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src, ValueMap.insert(std::make_pair(SF, DF)); DF->setLinkage(SF->getLinkage()); + } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) { + // At this point we know that DF has LinkOnce, Weak, or External linkage. + ValueMap.insert(std::make_pair(SF, DF)); + + // Linkonce+Weak = Weak + if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) + DF->setLinkage(SF->getLinkage()); + + } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) { + // At this point we know that SF has LinkOnce or External linkage. + ValueMap.insert(std::make_pair(SF, DF)); + if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage + DF->setLinkage(SF->getLinkage()); + } else if (SF->getLinkage() != DF->getLinkage()) { return Error(Err, "Functions named '" + SF->getName() + "' have different linkage specifiers!"); } else if (SF->hasExternalLinkage()) { // The function is defined in both modules!! - return Error(Err, "Function '" + - SF->getFunctionType()->getDescription() + "':\"" + + return Error(Err, "Function '" + + ToStr(SF->getFunctionType(), Src) + "':\"" + SF->getName() + "\" - Function is already defined!"); - } else if (SF->hasLinkOnceLinkage()) { - // Completely ignore the source function. - ValueMap.insert(std::make_pair(SF, DF)); } else { assert(0 && "Unknown linkage configuration found!"); } @@ -450,44 +651,23 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src, // LinkFunctionBody - Copy the source function over into the dest function and // fix up references to values. At this point we know that Dest is an external // function, and that Src is not. -// -static bool LinkFunctionBody(Function *Dest, const Function *Src, +static bool LinkFunctionBody(Function *Dest, Function *Src, std::map &GlobalMap, std::string *Err) { assert(Src && Dest && Dest->isExternal() && !Src->isExternal()); - std::map LocalMap; // Map for function local values - // Go through and convert function arguments over... - Function::aiterator DI = Dest->abegin(); - for (Function::const_aiterator I = Src->abegin(), E = Src->aend(); + // Go through and convert function arguments over, remembering the mapping. + Function::arg_iterator DI = Dest->arg_begin(); + for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I, ++DI) { DI->setName(I->getName()); // Copy the name information over... // Add a mapping to our local map - LocalMap.insert(std::make_pair(I, DI)); + GlobalMap.insert(std::make_pair(I, DI)); } - // Loop over all of the basic blocks, copying the instructions over... - // - for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { - // Create new basic block and add to mapping and the Dest function... - BasicBlock *DBB = new BasicBlock(I->getName(), Dest); - LocalMap.insert(std::make_pair(I, DBB)); - - // Loop over all of the instructions in the src basic block, copying them - // over. Note that this is broken in a strict sense because the cloned - // instructions will still be referencing values in the Src module, not - // the remapped values. In our case, however, we will not get caught and - // so we can delay patching the values up until later... - // - for (BasicBlock::const_iterator II = I->begin(), IE = I->end(); - II != IE; ++II) { - Instruction *DI = II->clone(); - DI->setName(II->getName()); - DBB->getInstList().push_back(DI); - LocalMap.insert(std::make_pair(II, DI)); - } - } + // Splice the body of the source function into the dest function. + Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList()); // At this point, all of the instructions and values of the function are now // copied over. The only problem is that they are still referencing values in @@ -498,7 +678,12 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src, for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) - *OI = RemapOperand(*OI, LocalMap, &GlobalMap); + if (!isa(*OI) && !isa(*OI)) + *OI = RemapOperand(*OI, GlobalMap); + + // There is no need to map the arguments anymore. + for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I) + GlobalMap.erase(I); return false; } @@ -507,28 +692,22 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src, // LinkFunctionBodies - Link in the function bodies that are defined in the // source module into the DestModule. This consists basically of copying the // function over and fixing up references to values. -// -static bool LinkFunctionBodies(Module *Dest, const Module *Src, +static bool LinkFunctionBodies(Module *Dest, Module *Src, std::map &ValueMap, std::string *Err) { // Loop over all of the functions in the src module, mapping them over as we // go - // - for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){ + for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) { if (!SF->isExternal()) { // No body if function is external Function *DF = cast(ValueMap[SF]); // Destination function // DF not external SF external? - if (!DF->isExternal()) { - if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once! - if (Err) - *Err = "Function '" + (SF->hasName() ? SF->getName() :std::string("")) - + "' body multiply defined!"; - return true; + if (DF->isExternal()) { + // Only provide the function body if there isn't one already. + if (LinkFunctionBody(DF, SF, ValueMap, Err)) + return true; } - - if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true; } } return false; @@ -536,17 +715,15 @@ static bool LinkFunctionBodies(Module *Dest, const Module *Src, // LinkAppendingVars - If there were any appending global variables, link them // together now. Return true on error. -// static bool LinkAppendingVars(Module *M, std::multimap &AppendingVars, std::string *ErrorMsg) { if (AppendingVars.empty()) return false; // Nothing to do. - + // Loop over the multimap of appending vars, processing any variables with the // same name, forming a new appending global variable with both of the // initializers merged together, then rewrite references to the old variables // and delete them. - // std::vector Inits; while (AppendingVars.size() > 1) { // Get the first two elements in the map... @@ -559,7 +736,7 @@ static bool LinkAppendingVars(Module *M, GlobalVariable *G1 = First->second, *G2 = Second->second; const ArrayType *T1 = cast(G1->getType()->getElementType()); const ArrayType *T2 = cast(G2->getType()->getElementType()); - + // Check to see that they two arrays agree on type... if (T1->getElementType() != T2->getElementType()) return Error(ErrorMsg, @@ -578,12 +755,24 @@ static bool LinkAppendingVars(Module *M, // Merge the initializer... Inits.reserve(NewSize); - ConstantArray *I = cast(G1->getInitializer()); - for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) - Inits.push_back(cast(I->getValues()[i])); - I = cast(G2->getInitializer()); - for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) - Inits.push_back(cast(I->getValues()[i])); + if (ConstantArray *I = dyn_cast(G1->getInitializer())) { + for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) + Inits.push_back(I->getOperand(i)); + } else { + assert(isa(G1->getInitializer())); + Constant *CV = Constant::getNullValue(T1->getElementType()); + for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) + Inits.push_back(CV); + } + if (ConstantArray *I = dyn_cast(G2->getInitializer())) { + for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) + Inits.push_back(I->getOperand(i)); + } else { + assert(isa(G2->getInitializer())); + Constant *CV = Constant::getNullValue(T2->getElementType()); + for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) + Inits.push_back(CV); + } NG->setInitializer(ConstantArray::get(NewType, Inits)); Inits.clear(); @@ -592,9 +781,8 @@ static bool LinkAppendingVars(Module *M, // FIXME: This should rewrite simple/straight-forward uses such as // getelementptr instructions to not use the Cast! - ConstantPointerRef *NGCP = ConstantPointerRef::get(NG); - G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType())); - G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType())); + G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType())); + G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType())); // Remove the two globals from the module now... M->getGlobalList().erase(G1); @@ -616,64 +804,106 @@ static bool LinkAppendingVars(Module *M, // error occurs, true is returned and ErrorMsg (if not null) is set to indicate // the problem. Upon failure, the Dest module could be in a modified state, and // shouldn't be relied on to be consistent. -// -bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) { - if (Dest->getEndianness() != Src->getEndianness()) +bool +Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) { + assert(Dest != 0 && "Invalid Destination module"); + assert(Src != 0 && "Invalid Source Module"); + + if (Dest->getEndianness() == Module::AnyEndianness) + Dest->setEndianness(Src->getEndianness()); + if (Dest->getPointerSize() == Module::AnyPointerSize) + Dest->setPointerSize(Src->getPointerSize()); + if (Dest->getTargetTriple().empty()) + Dest->setTargetTriple(Src->getTargetTriple()); + + if (Src->getEndianness() != Module::AnyEndianness && + Dest->getEndianness() != Src->getEndianness()) std::cerr << "WARNING: Linking two modules of different endianness!\n"; - if (Dest->getPointerSize() != Src->getPointerSize()) + if (Src->getPointerSize() != Module::AnyPointerSize && + Dest->getPointerSize() != Src->getPointerSize()) std::cerr << "WARNING: Linking two modules of different pointer size!\n"; + if (!Src->getTargetTriple().empty() && + Dest->getTargetTriple() != Src->getTargetTriple()) + std::cerr << "WARNING: Linking two modules of different target triples!\n"; + + // Update the destination module's dependent libraries list with the libraries + // from the source module. There's no opportunity for duplicates here as the + // Module ensures that duplicate insertions are discarded. + Module::lib_iterator SI = Src->lib_begin(); + Module::lib_iterator SE = Src->lib_end(); + while ( SI != SE ) { + Dest->addLibrary(*SI); + ++SI; + } // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. // Make sure there are no type name conflicts. - // if (LinkTypes(Dest, Src, ErrorMsg)) return true; // ValueMap - Mapping of values from what they used to be in Src, to what they // are now in Dest. - // std::map ValueMap; // AppendingVars - Keep track of global variables in the destination module // with appending linkage. After the module is linked together, they are // appended and the module is rewritten. - // std::multimap AppendingVars; - // Add all of the appending globals already in the Dest module to - // AppendingVars. - for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) + // GlobalsByName - The LLVM SymbolTable class fights our best efforts at + // linking by separating globals by type. Until PR411 is fixed, we replicate + // it's functionality here. + std::map GlobalsByName; + + for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end(); I != E; ++I) { + // Add all of the appending globals already in the Dest module to + // AppendingVars. if (I->hasAppendingLinkage()) AppendingVars.insert(std::make_pair(I->getName(), I)); + // Keep track of all globals by name. + if (!I->hasInternalLinkage() && I->hasName()) + GlobalsByName[I->getName()] = I; + } + + // Keep track of all globals by name. + for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I) + if (!I->hasInternalLinkage() && I->hasName()) + GlobalsByName[I->getName()] = I; + // Insert all of the globals in src into the Dest module... without linking // initializers (which could refer to functions not yet mapped over). - // - if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true; + if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg)) + return true; // Link the functions together between the two modules, without doing function // bodies... this just adds external function prototypes to the Dest // function... We do this so that when we begin processing function bodies, // all of the global values that may be referenced are available in our // ValueMap. - // - if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true; + if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg)) + return true; // Update the initializers in the Dest module now that all globals that may // be referenced are in Dest. - // if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true; // Link in the function bodies that are defined in the source module into the // DestModule. This consists basically of copying the function over and // fixing up references to values. - // if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; // If there were any appending global variables, link them together now. - // if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; + // If the source library's module id is in the dependent library list of the + // destination library, remove it since that module is now linked in. + sys::Path modId; + modId.set(Src->getModuleIdentifier()); + if (!modId.isEmpty()) + Dest->removeLibrary(modId.getBasename()); + return false; } +// vim: sw=2