X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FSupport%2FAPInt.cpp;h=89f96bd5774002b3956d409e244bf4467c795e73;hb=9bcad42c3aadab118b6ed5f30f2ea0d87228fd3f;hp=9532e1e160bed1329ae36b180259a698ab40ce9f;hpb=d73bf5987a0855e677fcefba74334c6a85b0b326;p=oota-llvm.git diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index 9532e1e160b..89f96bd5774 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -14,17 +14,18 @@ #define DEBUG_TYPE "apint" #include "llvm/ADT/APInt.h" -#include "llvm/ADT/StringRef.h" #include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringRef.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include -#include -#include #include +#include +#include using namespace llvm; /// A utility function for allocating memory, checking for allocation failures, @@ -48,18 +49,20 @@ inline static uint64_t* getMemory(unsigned numWords) { inline static unsigned getDigit(char cdigit, uint8_t radix) { unsigned r; - if (radix == 16) { + if (radix == 16 || radix == 36) { r = cdigit - '0'; if (r <= 9) return r; r = cdigit - 'A'; - if (r <= 5) + if (r <= radix - 11U) return r + 10; r = cdigit - 'a'; - if (r <= 5) + if (r <= radix - 11U) return r + 10; + + radix = 10; } r = cdigit - '0'; @@ -83,26 +86,34 @@ void APInt::initSlowCase(const APInt& that) { memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); } - -APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) - : BitWidth(numBits), VAL(0) { +void APInt::initFromArray(ArrayRef bigVal) { assert(BitWidth && "Bitwidth too small"); - assert(bigVal && "Null pointer detected!"); + assert(bigVal.data() && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0]; else { // Get memory, cleared to 0 pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy - unsigned words = std::min(numWords, getNumWords()); + unsigned words = std::min(bigVal.size(), getNumWords()); // Copy the words from bigVal to pVal - memcpy(pVal, bigVal, words * APINT_WORD_SIZE); + memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); } // Make sure unused high bits are cleared clearUnusedBits(); } -APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix) +APInt::APInt(unsigned numBits, ArrayRef bigVal) + : BitWidth(numBits), VAL(0) { + initFromArray(bigVal); +} + +APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) + : BitWidth(numBits), VAL(0) { + initFromArray(makeArrayRef(bigVal, numWords)); +} + +APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) : BitWidth(numbits), VAL(0) { assert(BitWidth && "Bitwidth too small"); fromString(numbits, Str, radix); @@ -273,7 +284,7 @@ APInt& APInt::operator-=(const APInt& RHS) { return clearUnusedBits(); } -/// Multiplies an integer array, x by a a uint64_t integer and places the result +/// Multiplies an integer array, x, by a uint64_t integer and places the result /// into dest. /// @returns the carry out of the multiplication. /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. @@ -361,7 +372,7 @@ APInt& APInt::operator*=(const APInt& RHS) { unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; if (!rhsWords) { // X * 0 ===> 0 - clear(); + clearAllBits(); return *this; } @@ -373,9 +384,10 @@ APInt& APInt::operator*=(const APInt& RHS) { mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); // Copy result back into *this - clear(); + clearAllBits(); unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); + clearUnusedBits(); // delete dest array and return delete[] dest; @@ -445,23 +457,13 @@ APInt APInt::XorSlowCase(const APInt& RHS) const { return APInt(val, getBitWidth()).clearUnusedBits(); } -bool APInt::operator !() const { - if (isSingleWord()) - return !VAL; - - for (unsigned i = 0; i < getNumWords(); ++i) - if (pVal[i]) - return false; - return true; -} - APInt APInt::operator*(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL * RHS.VAL); APInt Result(*this); Result *= RHS; - return Result.clearUnusedBits(); + return Result; } APInt APInt::operator+(const APInt& RHS) const { @@ -482,11 +484,6 @@ APInt APInt::operator-(const APInt& RHS) const { return Result.clearUnusedBits(); } -bool APInt::operator[](unsigned bitPosition) const { - return (maskBit(bitPosition) & - (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; -} - bool APInt::EqualSlowCase(const APInt& RHS) const { // Get some facts about the number of bits used in the two operands. unsigned n1 = getActiveBits(); @@ -561,13 +558,13 @@ bool APInt::slt(const APInt& RHS) const { bool rhsNeg = rhs.isNegative(); if (lhsNeg) { // Sign bit is set so perform two's complement to make it positive - lhs.flip(); - lhs++; + lhs.flipAllBits(); + ++lhs; } if (rhsNeg) { // Sign bit is set so perform two's complement to make it positive - rhs.flip(); - rhs++; + rhs.flipAllBits(); + ++rhs; } // Now we have unsigned values to compare so do the comparison if necessary @@ -583,22 +580,20 @@ bool APInt::slt(const APInt& RHS) const { return lhs.ult(rhs); } -APInt& APInt::set(unsigned bitPosition) { +void APInt::setBit(unsigned bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); - return *this; } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. -APInt& APInt::clear(unsigned bitPosition) { +void APInt::clearBit(unsigned bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); - return *this; } /// @brief Toggle every bit to its opposite value. @@ -606,17 +601,17 @@ APInt& APInt::clear(unsigned bitPosition) { /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. -APInt& APInt::flip(unsigned bitPosition) { +void APInt::flipBit(unsigned bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); - if ((*this)[bitPosition]) clear(bitPosition); - else set(bitPosition); - return *this; + if ((*this)[bitPosition]) clearBit(bitPosition); + else setBit(bitPosition); } -unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) { +unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { assert(!str.empty() && "Invalid string length"); - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || + radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); size_t slen = str.size(); @@ -638,6 +633,8 @@ unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) { if (radix == 16) return slen * 4 + isNegative; + // FIXME: base 36 + // This is grossly inefficient but accurate. We could probably do something // with a computation of roughly slen*64/20 and then adjust by the value of // the first few digits. But, I'm not sure how accurate that could be. @@ -646,7 +643,9 @@ unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) { // be too large. This avoids the assertion in the constructor. This // calculation doesn't work appropriately for the numbers 0-9, so just use 4 // bits in that case. - unsigned sufficient = slen == 1 ? 4 : slen * 64/18; + unsigned sufficient + = radix == 10? (slen == 1 ? 4 : slen * 64/18) + : (slen == 1 ? 7 : slen * 16/3); // Convert to the actual binary value. APInt tmp(sufficient, StringRef(p, slen), radix); @@ -661,94 +660,11 @@ unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) { } } -// From http://www.burtleburtle.net, byBob Jenkins. -// When targeting x86, both GCC and LLVM seem to recognize this as a -// rotate instruction. -#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) - -// From http://www.burtleburtle.net, by Bob Jenkins. -#define mix(a,b,c) \ - { \ - a -= c; a ^= rot(c, 4); c += b; \ - b -= a; b ^= rot(a, 6); a += c; \ - c -= b; c ^= rot(b, 8); b += a; \ - a -= c; a ^= rot(c,16); c += b; \ - b -= a; b ^= rot(a,19); a += c; \ - c -= b; c ^= rot(b, 4); b += a; \ - } - -// From http://www.burtleburtle.net, by Bob Jenkins. -#define final(a,b,c) \ - { \ - c ^= b; c -= rot(b,14); \ - a ^= c; a -= rot(c,11); \ - b ^= a; b -= rot(a,25); \ - c ^= b; c -= rot(b,16); \ - a ^= c; a -= rot(c,4); \ - b ^= a; b -= rot(a,14); \ - c ^= b; c -= rot(b,24); \ - } - -// hashword() was adapted from http://www.burtleburtle.net, by Bob -// Jenkins. k is a pointer to an array of uint32_t values; length is -// the length of the key, in 32-bit chunks. This version only handles -// keys that are a multiple of 32 bits in size. -static inline uint32_t hashword(const uint64_t *k64, size_t length) -{ - const uint32_t *k = reinterpret_cast(k64); - uint32_t a,b,c; - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); - - /*------------------------------------------------- handle most of the key */ - while (length > 3) - { - a += k[0]; - b += k[1]; - c += k[2]; - mix(a,b,c); - length -= 3; - k += 3; - } +hash_code llvm::hash_value(const APInt &Arg) { + if (Arg.isSingleWord()) + return hash_combine(Arg.VAL); - /*------------------------------------------- handle the last 3 uint32_t's */ - switch (length) { /* all the case statements fall through */ - case 3 : c+=k[2]; - case 2 : b+=k[1]; - case 1 : a+=k[0]; - final(a,b,c); - case 0: /* case 0: nothing left to add */ - break; - } - /*------------------------------------------------------ report the result */ - return c; -} - -// hashword8() was adapted from http://www.burtleburtle.net, by Bob -// Jenkins. This computes a 32-bit hash from one 64-bit word. When -// targeting x86 (32 or 64 bit), both LLVM and GCC compile this -// function into about 35 instructions when inlined. -static inline uint32_t hashword8(const uint64_t k64) -{ - uint32_t a,b,c; - a = b = c = 0xdeadbeef + 4; - b += k64 >> 32; - a += k64 & 0xffffffff; - final(a,b,c); - return c; -} -#undef final -#undef mix -#undef rot - -uint64_t APInt::getHashValue() const { - uint64_t hash; - if (isSingleWord()) - hash = hashword8(VAL); - else - hash = hashword(pVal, getNumWords()*2); - return hash; + return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); } /// HiBits - This function returns the high "numBits" bits of this APInt. @@ -762,40 +678,37 @@ APInt APInt::getLoBits(unsigned numBits) const { BitWidth - numBits); } -bool APInt::isPowerOf2() const { - return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); -} - unsigned APInt::countLeadingZerosSlowCase() const { - unsigned Count = 0; - for (unsigned i = getNumWords(); i > 0u; --i) { + // Treat the most significand word differently because it might have + // meaningless bits set beyond the precision. + unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; + integerPart MSWMask; + if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; + else { + MSWMask = ~integerPart(0); + BitsInMSW = APINT_BITS_PER_WORD; + } + + unsigned i = getNumWords(); + integerPart MSW = pVal[i-1] & MSWMask; + if (MSW) + return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); + + unsigned Count = BitsInMSW; + for (--i; i > 0u; --i) { if (pVal[i-1] == 0) Count += APINT_BITS_PER_WORD; else { - Count += CountLeadingZeros_64(pVal[i-1]); + Count += llvm::countLeadingZeros(pVal[i-1]); break; } } - unsigned remainder = BitWidth % APINT_BITS_PER_WORD; - if (remainder) - Count -= APINT_BITS_PER_WORD - remainder; - return std::min(Count, BitWidth); -} - -static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { - unsigned Count = 0; - if (skip) - V <<= skip; - while (V && (V & (1ULL << 63))) { - Count++; - V <<= 1; - } return Count; } unsigned APInt::countLeadingOnes() const { if (isSingleWord()) - return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); + return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth)); unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; unsigned shift; @@ -806,13 +719,13 @@ unsigned APInt::countLeadingOnes() const { shift = APINT_BITS_PER_WORD - highWordBits; } int i = getNumWords() - 1; - unsigned Count = countLeadingOnes_64(pVal[i], shift); + unsigned Count = CountLeadingOnes_64(pVal[i] << shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (pVal[i] == -1ULL) Count += APINT_BITS_PER_WORD; else { - Count += countLeadingOnes_64(pVal[i], 0); + Count += CountLeadingOnes_64(pVal[i]); break; } } @@ -822,13 +735,13 @@ unsigned APInt::countLeadingOnes() const { unsigned APInt::countTrailingZeros() const { if (isSingleWord()) - return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); + return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); unsigned Count = 0; unsigned i = 0; for (; i < getNumWords() && pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) - Count += CountTrailingZeros_64(pVal[i]); + Count += llvm::countTrailingZeros(pVal[i]); return std::min(Count, BitWidth); } @@ -849,30 +762,43 @@ unsigned APInt::countPopulationSlowCase() const { return Count; } +/// Perform a logical right-shift from Src to Dst, which must be equal or +/// non-overlapping, of Words words, by Shift, which must be less than 64. +static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, + unsigned Shift) { + uint64_t Carry = 0; + for (int I = Words - 1; I >= 0; --I) { + uint64_t Tmp = Src[I]; + Dst[I] = (Tmp >> Shift) | Carry; + Carry = Tmp << (64 - Shift); + } +} + APInt APInt::byteSwap() const { assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); - else if (BitWidth == 32) + if (BitWidth == 32) return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); - else if (BitWidth == 48) { + if (BitWidth == 48) { unsigned Tmp1 = unsigned(VAL >> 16); Tmp1 = ByteSwap_32(Tmp1); uint16_t Tmp2 = uint16_t(VAL); Tmp2 = ByteSwap_16(Tmp2); return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); - } else if (BitWidth == 64) + } + if (BitWidth == 64) return APInt(BitWidth, ByteSwap_64(VAL)); - else { - APInt Result(BitWidth, 0); - char *pByte = (char*)Result.pVal; - for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { - char Tmp = pByte[i]; - pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; - pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; - } - return Result; + + APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); + for (unsigned I = 0, N = getNumWords(); I != N; ++I) + Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); + if (Result.BitWidth != BitWidth) { + lshrNear(Result.pVal, Result.pVal, getNumWords(), + Result.BitWidth - BitWidth); + Result.BitWidth = BitWidth; } + return Result; } APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, @@ -990,96 +916,90 @@ double APInt::roundToDouble(bool isSigned) const { } // Truncate to new width. -APInt &APInt::trunc(unsigned width) { +APInt APInt::trunc(unsigned width) const { assert(width < BitWidth && "Invalid APInt Truncate request"); assert(width && "Can't truncate to 0 bits"); - unsigned wordsBefore = getNumWords(); - BitWidth = width; - unsigned wordsAfter = getNumWords(); - if (wordsBefore != wordsAfter) { - if (wordsAfter == 1) { - uint64_t *tmp = pVal; - VAL = pVal[0]; - delete [] tmp; - } else { - uint64_t *newVal = getClearedMemory(wordsAfter); - for (unsigned i = 0; i < wordsAfter; ++i) - newVal[i] = pVal[i]; - delete [] pVal; - pVal = newVal; - } - } - return clearUnusedBits(); + + if (width <= APINT_BITS_PER_WORD) + return APInt(width, getRawData()[0]); + + APInt Result(getMemory(getNumWords(width)), width); + + // Copy full words. + unsigned i; + for (i = 0; i != width / APINT_BITS_PER_WORD; i++) + Result.pVal[i] = pVal[i]; + + // Truncate and copy any partial word. + unsigned bits = (0 - width) % APINT_BITS_PER_WORD; + if (bits != 0) + Result.pVal[i] = pVal[i] << bits >> bits; + + return Result; } // Sign extend to a new width. -APInt &APInt::sext(unsigned width) { +APInt APInt::sext(unsigned width) const { assert(width > BitWidth && "Invalid APInt SignExtend request"); - // If the sign bit isn't set, this is the same as zext. - if (!isNegative()) { - zext(width); - return *this; + + if (width <= APINT_BITS_PER_WORD) { + uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); + val = (int64_t)val >> (width - BitWidth); + return APInt(width, val >> (APINT_BITS_PER_WORD - width)); } - // The sign bit is set. First, get some facts - unsigned wordsBefore = getNumWords(); - unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; - BitWidth = width; - unsigned wordsAfter = getNumWords(); - - // Mask the high order word appropriately - if (wordsBefore == wordsAfter) { - unsigned newWordBits = width % APINT_BITS_PER_WORD; - // The extension is contained to the wordsBefore-1th word. - uint64_t mask = ~0ULL; - if (newWordBits) - mask >>= APINT_BITS_PER_WORD - newWordBits; - mask <<= wordBits; - if (wordsBefore == 1) - VAL |= mask; - else - pVal[wordsBefore-1] |= mask; - return clearUnusedBits(); + APInt Result(getMemory(getNumWords(width)), width); + + // Copy full words. + unsigned i; + uint64_t word = 0; + for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { + word = getRawData()[i]; + Result.pVal[i] = word; } - uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits; - uint64_t *newVal = getMemory(wordsAfter); - if (wordsBefore == 1) - newVal[0] = VAL | mask; - else { - for (unsigned i = 0; i < wordsBefore; ++i) - newVal[i] = pVal[i]; - newVal[wordsBefore-1] |= mask; + // Read and sign-extend any partial word. + unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; + if (bits != 0) + word = (int64_t)getRawData()[i] << bits >> bits; + else + word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); + + // Write remaining full words. + for (; i != width / APINT_BITS_PER_WORD; i++) { + Result.pVal[i] = word; + word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); } - for (unsigned i = wordsBefore; i < wordsAfter; i++) - newVal[i] = -1ULL; - if (wordsBefore != 1) - delete [] pVal; - pVal = newVal; - return clearUnusedBits(); + + // Write any partial word. + bits = (0 - width) % APINT_BITS_PER_WORD; + if (bits != 0) + Result.pVal[i] = word << bits >> bits; + + return Result; } // Zero extend to a new width. -APInt &APInt::zext(unsigned width) { +APInt APInt::zext(unsigned width) const { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); - unsigned wordsBefore = getNumWords(); - BitWidth = width; - unsigned wordsAfter = getNumWords(); - if (wordsBefore != wordsAfter) { - uint64_t *newVal = getClearedMemory(wordsAfter); - if (wordsBefore == 1) - newVal[0] = VAL; - else - for (unsigned i = 0; i < wordsBefore; ++i) - newVal[i] = pVal[i]; - if (wordsBefore != 1) - delete [] pVal; - pVal = newVal; - } - return *this; + + if (width <= APINT_BITS_PER_WORD) + return APInt(width, VAL); + + APInt Result(getMemory(getNumWords(width)), width); + + // Copy words. + unsigned i; + for (i = 0; i != getNumWords(); i++) + Result.pVal[i] = getRawData()[i]; + + // Zero remaining words. + memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); + + return Result; } -APInt &APInt::zextOrTrunc(unsigned width) { +APInt APInt::zextOrTrunc(unsigned width) const { if (BitWidth < width) return zext(width); if (BitWidth > width) @@ -1087,7 +1007,7 @@ APInt &APInt::zextOrTrunc(unsigned width) { return *this; } -APInt &APInt::sextOrTrunc(unsigned width) { +APInt APInt::sextOrTrunc(unsigned width) const { if (BitWidth < width) return sext(width); if (BitWidth > width) @@ -1095,6 +1015,18 @@ APInt &APInt::sextOrTrunc(unsigned width) { return *this; } +APInt APInt::zextOrSelf(unsigned width) const { + if (BitWidth < width) + return zext(width); + return *this; +} + +APInt APInt::sextOrSelf(unsigned width) const { + if (BitWidth < width) + return sext(width); + return *this; +} + /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(const APInt &shiftAmt) const { @@ -1194,7 +1126,7 @@ APInt APInt::lshr(const APInt &shiftAmt) const { /// @brief Logical right-shift function. APInt APInt::lshr(unsigned shiftAmt) const { if (isSingleWord()) { - if (shiftAmt == BitWidth) + if (shiftAmt >= BitWidth) return APInt(BitWidth, 0); else return APInt(BitWidth, this->VAL >> shiftAmt); @@ -1203,7 +1135,7 @@ APInt APInt::lshr(unsigned shiftAmt) const { // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. - if (shiftAmt == BitWidth) + if (shiftAmt >= BitWidth) return APInt(BitWidth, 0); // If none of the bits are shifted out, the result is *this. This avoids @@ -1217,11 +1149,7 @@ APInt APInt::lshr(unsigned shiftAmt) const { // If we are shifting less than a word, compute the shift with a simple carry if (shiftAmt < APINT_BITS_PER_WORD) { - uint64_t carry = 0; - for (int i = getNumWords()-1; i >= 0; --i) { - val[i] = (pVal[i] >> shiftAmt) | carry; - carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt); - } + lshrNear(val, pVal, getNumWords(), shiftAmt); return APInt(val, BitWidth).clearUnusedBits(); } @@ -1314,14 +1242,10 @@ APInt APInt::rotl(const APInt &rotateAmt) const { } APInt APInt::rotl(unsigned rotateAmt) const { + rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; - // Don't get too fancy, just use existing shift/or facilities - APInt hi(*this); - APInt lo(*this); - hi.shl(rotateAmt); - lo.lshr(BitWidth - rotateAmt); - return hi | lo; + return shl(rotateAmt) | lshr(BitWidth - rotateAmt); } APInt APInt::rotr(const APInt &rotateAmt) const { @@ -1329,14 +1253,10 @@ APInt APInt::rotr(const APInt &rotateAmt) const { } APInt APInt::rotr(unsigned rotateAmt) const { + rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; - // Don't get too fancy, just use existing shift/or facilities - APInt hi(*this); - APInt lo(*this); - lo.lshr(rotateAmt); - hi.shl(BitWidth - rotateAmt); - return hi | lo; + return lshr(rotateAmt) | shl(BitWidth - rotateAmt); } // Square Root - this method computes and returns the square root of "this". @@ -1371,13 +1291,12 @@ APInt APInt::sqrt() const { // libc sqrt function which will probably use a hardware sqrt computation. // This should be faster than the algorithm below. if (magnitude < 52) { -#ifdef _MSC_VER - // Amazingly, VC++ doesn't have round(). +#if HAVE_ROUND return APInt(BitWidth, - uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5); + uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); #else return APInt(BitWidth, - uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); + uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); #endif } @@ -1417,15 +1336,11 @@ APInt APInt::sqrt() const { APInt nextSquare((x_old + 1) * (x_old +1)); if (this->ult(square)) return x_old; - else if (this->ule(nextSquare)) { - APInt midpoint((nextSquare - square).udiv(two)); - APInt offset(*this - square); - if (offset.ult(midpoint)) - return x_old; - else - return x_old + 1; - } else - llvm_unreachable("Error in APInt::sqrt computation"); + assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); + APInt midpoint((nextSquare - square).udiv(two)); + APInt offset(*this - square); + if (offset.ult(midpoint)) + return x_old; return x_old + 1; } @@ -1507,7 +1422,7 @@ APInt::ms APInt::magic() const { r2 = r2 - ad; } delta = ad - r2; - } while (q1.ule(delta) || (q1 == delta && r1 == 0)); + } while (q1.ult(delta) || (q1 == delta && r1 == 0)); mag.m = q2 + 1; if (d.isNegative()) mag.m = -mag.m; // resulting magic number @@ -1519,17 +1434,19 @@ APInt::ms APInt::magic() const { /// division by a constant as a sequence of multiplies, adds and shifts. /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry /// S. Warren, Jr., chapter 10. -APInt::mu APInt::magicu() const { +/// LeadingZeros can be used to simplify the calculation if the upper bits +/// of the divided value are known zero. +APInt::mu APInt::magicu(unsigned LeadingZeros) const { const APInt& d = *this; unsigned p; APInt nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator - APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()); + APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); - nc = allOnes - (-d).urem(d); + nc = allOnes - (allOnes - d).urem(d); p = d.getBitWidth() - 1; // initialize p q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) @@ -1580,12 +1497,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, uint64_t b = uint64_t(1) << 32; #if 0 - DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); - DEBUG(errs() << "KnuthDiv: original:"); - DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); - DEBUG(errs() << " by"); - DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]); - DEBUG(errs() << '\n'); + DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); + DEBUG(dbgs() << "KnuthDiv: original:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << " by"); + DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); + DEBUG(dbgs() << '\n'); #endif // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power @@ -1595,7 +1512,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. - unsigned shift = CountLeadingZeros_32(v[n-1]); + unsigned shift = countLeadingZeros(v[n-1]); unsigned v_carry = 0; unsigned u_carry = 0; if (shift) { @@ -1612,17 +1529,17 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, } u[m+n] = u_carry; #if 0 - DEBUG(errs() << "KnuthDiv: normal:"); - DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); - DEBUG(errs() << " by"); - DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]); - DEBUG(errs() << '\n'); + DEBUG(dbgs() << "KnuthDiv: normal:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << " by"); + DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); + DEBUG(dbgs() << '\n'); #endif // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; do { - DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n'); + DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); // D3. [Calculate q'.]. // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') @@ -1632,7 +1549,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // value qp is one too large, and it eliminates all cases where qp is two // too large. uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); - DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n'); + DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { @@ -1641,7 +1558,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) qp--; } - DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); + DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation @@ -1652,7 +1569,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; - DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp + DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp << ", subtrahend == " << subtrahend << ", borrow = " << borrow << '\n'); @@ -1666,12 +1583,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, k++; } isNeg |= borrow; - DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << + DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << u[j+i+1] << '\n'); } - DEBUG(errs() << "KnuthDiv: after subtraction:"); - DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); - DEBUG(errs() << '\n'); + DEBUG(dbgs() << "KnuthDiv: after subtraction:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << '\n'); // The digits (u[j+n]...u[j]) should be kept positive; if the result of // this step is actually negative, (u[j+n]...u[j]) should be left as the // true value plus b**(n+1), namely as the b's complement of @@ -1684,9 +1601,9 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, carry = carry && u[i] == 0; } } - DEBUG(errs() << "KnuthDiv: after complement:"); - DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); - DEBUG(errs() << '\n'); + DEBUG(dbgs() << "KnuthDiv: after complement:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. @@ -1707,16 +1624,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, } u[j+n] += carry; } - DEBUG(errs() << "KnuthDiv: after correction:"); - DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]); - DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); + DEBUG(dbgs() << "KnuthDiv: after correction:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); + DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. } while (--j >= 0); - DEBUG(errs() << "KnuthDiv: quotient:"); - DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]); - DEBUG(errs() << '\n'); + DEBUG(dbgs() << "KnuthDiv: quotient:"); + DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); + DEBUG(dbgs() << '\n'); // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired // remainder may be obtained by dividing u[...] by d. If r is non-null we @@ -1727,22 +1644,22 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // shift right here. In order to mak if (shift) { unsigned carry = 0; - DEBUG(errs() << "KnuthDiv: remainder:"); + DEBUG(dbgs() << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; carry = u[i] << (32 - shift); - DEBUG(errs() << " " << r[i]); + DEBUG(dbgs() << " " << r[i]); } } else { for (int i = n-1; i >= 0; i--) { r[i] = u[i]; - DEBUG(errs() << " " << r[i]); + DEBUG(dbgs() << " " << r[i]); } } - DEBUG(errs() << '\n'); + DEBUG(dbgs() << '\n'); } #if 0 - DEBUG(errs() << '\n'); + DEBUG(dbgs() << '\n'); #endif } @@ -1754,7 +1671,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords, // First, compose the values into an array of 32-bit words instead of // 64-bit words. This is a necessity of both the "short division" algorithm - // and the the Knuth "classical algorithm" which requires there to be native + // and the Knuth "classical algorithm" which requires there to be native // operations for +, -, and * on an m bit value with an m*2 bit result. We // can't use 64-bit operands here because we don't have native results of // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't @@ -1863,7 +1780,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords, if (!Quotient->isSingleWord()) Quotient->pVal = getClearedMemory(Quotient->getNumWords()); } else - Quotient->clear(); + Quotient->clearAllBits(); // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. @@ -1894,7 +1811,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords, if (!Remainder->isSingleWord()) Remainder->pVal = getClearedMemory(Remainder->getNumWords()); } else - Remainder->clear(); + Remainder->clearAllBits(); // The remainder is in R. Reconstitute the remainder into Remainder's low // order words. @@ -1959,6 +1876,17 @@ APInt APInt::udiv(const APInt& RHS) const { return Quotient; } +APInt APInt::sdiv(const APInt &RHS) const { + if (isNegative()) { + if (RHS.isNegative()) + return (-(*this)).udiv(-RHS); + return -((-(*this)).udiv(RHS)); + } + if (RHS.isNegative()) + return -(this->udiv(-RHS)); + return this->udiv(RHS); +} + APInt APInt::urem(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { @@ -1996,6 +1924,17 @@ APInt APInt::urem(const APInt& RHS) const { return Remainder; } +APInt APInt::srem(const APInt &RHS) const { + if (isNegative()) { + if (RHS.isNegative()) + return -((-(*this)).urem(-RHS)); + return -((-(*this)).urem(RHS)); + } + if (RHS.isNegative()) + return this->urem(-RHS); + return this->urem(RHS); +} + void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { // Get some size facts about the dividend and divisor @@ -2036,11 +1975,98 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); } -void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) { +void APInt::sdivrem(const APInt &LHS, const APInt &RHS, + APInt &Quotient, APInt &Remainder) { + if (LHS.isNegative()) { + if (RHS.isNegative()) + APInt::udivrem(-LHS, -RHS, Quotient, Remainder); + else { + APInt::udivrem(-LHS, RHS, Quotient, Remainder); + Quotient = -Quotient; + } + Remainder = -Remainder; + } else if (RHS.isNegative()) { + APInt::udivrem(LHS, -RHS, Quotient, Remainder); + Quotient = -Quotient; + } else { + APInt::udivrem(LHS, RHS, Quotient, Remainder); + } +} + +APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this+RHS; + Overflow = isNonNegative() == RHS.isNonNegative() && + Res.isNonNegative() != isNonNegative(); + return Res; +} + +APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this+RHS; + Overflow = Res.ult(RHS); + return Res; +} + +APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this - RHS; + Overflow = isNonNegative() != RHS.isNonNegative() && + Res.isNonNegative() != isNonNegative(); + return Res; +} + +APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this-RHS; + Overflow = Res.ugt(*this); + return Res; +} + +APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { + // MININT/-1 --> overflow. + Overflow = isMinSignedValue() && RHS.isAllOnesValue(); + return sdiv(RHS); +} + +APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this * RHS; + + if (*this != 0 && RHS != 0) + Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; + else + Overflow = false; + return Res; +} + +APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this * RHS; + + if (*this != 0 && RHS != 0) + Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; + else + Overflow = false; + return Res; +} + +APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { + Overflow = ShAmt >= getBitWidth(); + if (Overflow) + ShAmt = getBitWidth()-1; + + if (isNonNegative()) // Don't allow sign change. + Overflow = ShAmt >= countLeadingZeros(); + else + Overflow = ShAmt >= countLeadingOnes(); + + return *this << ShAmt; +} + + + + +void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { // Check our assumptions here assert(!str.empty() && "Invalid string length"); - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || + radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); StringRef::iterator p = str.begin(); size_t slen = str.size(); @@ -2053,8 +2079,8 @@ void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) { assert((slen <= numbits || radix != 2) && "Insufficient bit width"); assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); - assert((((slen-1)*64)/22 <= numbits || radix != 10) - && "Insufficient bit width"); + assert((((slen-1)*64)/22 <= numbits || radix != 10) && + "Insufficient bit width"); // Allocate memory if (!isSingleWord()) @@ -2090,40 +2116,72 @@ void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) { } // If its negative, put it in two's complement form if (isNeg) { - (*this)--; - this->flip(); + --(*this); + this->flipAllBits(); } } void APInt::toString(SmallVectorImpl &Str, unsigned Radix, - bool Signed) const { - assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) && - "Radix should be 2, 8, 10, or 16!"); + bool Signed, bool formatAsCLiteral) const { + assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || + Radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); + + const char *Prefix = ""; + if (formatAsCLiteral) { + switch (Radix) { + case 2: + // Binary literals are a non-standard extension added in gcc 4.3: + // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html + Prefix = "0b"; + break; + case 8: + Prefix = "0"; + break; + case 10: + break; // No prefix + case 16: + Prefix = "0x"; + break; + default: + llvm_unreachable("Invalid radix!"); + } + } // First, check for a zero value and just short circuit the logic below. if (*this == 0) { + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; Str.push_back('0'); return; } - static const char Digits[] = "0123456789ABCDEF"; + static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; if (isSingleWord()) { char Buffer[65]; char *BufPtr = Buffer+65; uint64_t N; - if (Signed) { + if (!Signed) { + N = getZExtValue(); + } else { int64_t I = getSExtValue(); - if (I < 0) { + if (I >= 0) { + N = I; + } else { Str.push_back('-'); - I = -I; + N = -(uint64_t)I; } - N = I; - } else { - N = getZExtValue(); } + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; + while (N) { *--BufPtr = Digits[N % Radix]; N /= Radix; @@ -2138,18 +2196,23 @@ void APInt::toString(SmallVectorImpl &Str, unsigned Radix, // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. - Tmp.flip(); - Tmp++; + Tmp.flipAllBits(); + ++Tmp; Str.push_back('-'); } + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; + // We insert the digits backward, then reverse them to get the right order. unsigned StartDig = Str.size(); // For the 2, 8 and 16 bit cases, we can just shift instead of divide // because the number of bits per digit (1, 3 and 4 respectively) divides // equaly. We just shift until the value is zero. - if (Radix != 10) { + if (Radix == 2 || Radix == 8 || Radix == 16) { // Just shift tmp right for each digit width until it becomes zero unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); unsigned MaskAmt = Radix - 1; @@ -2160,7 +2223,7 @@ void APInt::toString(SmallVectorImpl &Str, unsigned Radix, Tmp = Tmp.lshr(ShiftAmt); } } else { - APInt divisor(4, 10); + APInt divisor(Radix == 10? 4 : 8, Radix); while (Tmp != 0) { APInt APdigit(1, 0); APInt tmp2(Tmp.getBitWidth(), 0); @@ -2182,7 +2245,7 @@ void APInt::toString(SmallVectorImpl &Str, unsigned Radix, /// to the methods above. std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { SmallString<40> S; - toString(S, Radix, Signed); + toString(S, Radix, Signed, /* formatAsCLiteral = */false); return S.str(); } @@ -2191,13 +2254,13 @@ void APInt::dump() const { SmallString<40> S, U; this->toStringUnsigned(U); this->toStringSigned(S); - errs() << "APInt(" << BitWidth << "b, " + dbgs() << "APInt(" << BitWidth << "b, " << U.str() << "u " << S.str() << "s)"; } void APInt::print(raw_ostream &OS, bool isSigned) const { SmallString<40> S; - this->toString(S, 10, isSigned); + this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); OS << S.str(); } @@ -2217,7 +2280,7 @@ namespace { static inline integerPart lowBitMask(unsigned int bits) { - assert (bits != 0 && bits <= integerPartWidth); + assert(bits != 0 && bits <= integerPartWidth); return ~(integerPart) 0 >> (integerPartWidth - bits); } @@ -2241,24 +2304,7 @@ namespace { static unsigned int partMSB(integerPart value) { - unsigned int n, msb; - - if (value == 0) - return -1U; - - n = integerPartWidth / 2; - - msb = 0; - do { - if (value >> n) { - value >>= n; - msb += n; - } - - n >>= 1; - } while (n); - - return msb; + return findLastSet(value, ZB_Max); } /* Returns the bit number of the least significant set bit of a @@ -2266,24 +2312,7 @@ namespace { static unsigned int partLSB(integerPart value) { - unsigned int n, lsb; - - if (value == 0) - return -1U; - - lsb = integerPartWidth - 1; - n = integerPartWidth / 2; - - do { - if (value << n) { - value <<= n; - lsb -= n; - } - - n >>= 1; - } while (n); - - return lsb; + return findFirstSet(value, ZB_Max); } } @@ -2294,10 +2323,10 @@ APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) { unsigned int i; - assert (parts > 0); + assert(parts > 0); dst[0] = part; - for(i = 1; i < parts; i++) + for (i = 1; i < parts; i++) dst[i] = 0; } @@ -2307,7 +2336,7 @@ APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] = src[i]; } @@ -2317,7 +2346,7 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) if (src[i]) return false; @@ -2328,17 +2357,25 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts) int APInt::tcExtractBit(const integerPart *parts, unsigned int bit) { - return(parts[bit / integerPartWidth] - & ((integerPart) 1 << bit % integerPartWidth)) != 0; + return (parts[bit / integerPartWidth] & + ((integerPart) 1 << bit % integerPartWidth)) != 0; } -/* Set the given bit of a bignum. */ +/* Set the given bit of a bignum. */ void APInt::tcSetBit(integerPart *parts, unsigned int bit) { parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); } +/* Clears the given bit of a bignum. */ +void +APInt::tcClearBit(integerPart *parts, unsigned int bit) +{ + parts[bit / integerPartWidth] &= + ~((integerPart) 1 << (bit % integerPartWidth)); +} + /* Returns the bit number of the least significant set bit of a number. If the input number has no bits set -1U is returned. */ unsigned int @@ -2346,7 +2383,7 @@ APInt::tcLSB(const integerPart *parts, unsigned int n) { unsigned int i, lsb; - for(i = 0; i < n; i++) { + for (i = 0; i < n; i++) { if (parts[i] != 0) { lsb = partLSB(parts[i]); @@ -2365,13 +2402,13 @@ APInt::tcMSB(const integerPart *parts, unsigned int n) unsigned int msb; do { - --n; + --n; - if (parts[n] != 0) { - msb = partMSB(parts[n]); + if (parts[n] != 0) { + msb = partMSB(parts[n]); - return msb + n * integerPartWidth; - } + return msb + n * integerPartWidth; + } } while (n); return -1U; @@ -2388,7 +2425,7 @@ APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, unsigned int firstSrcPart, dstParts, shift, n; dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; - assert (dstParts <= dstCount); + assert(dstParts <= dstCount); firstSrcPart = srcLSB / integerPartWidth; tcAssign (dst, src + firstSrcPart, dstParts); @@ -2423,7 +2460,7 @@ APInt::tcAdd(integerPart *dst, const integerPart *rhs, assert(c <= 1); - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart l; l = dst[i]; @@ -2448,7 +2485,7 @@ APInt::tcSubtract(integerPart *dst, const integerPart *rhs, assert(c <= 1); - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart l; l = dst[i]; @@ -2498,7 +2535,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, /* N loops; minimum of dstParts and srcParts. */ n = dstParts < srcParts ? dstParts: srcParts; - for(i = 0; i < n; i++) { + for (i = 0; i < n; i++) { integerPart low, mid, high, srcPart; /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. @@ -2563,7 +2600,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, non-zero. This is true if any remaining src parts are non-zero and the multiplier is non-zero. */ if (multiplier) - for(; i < srcParts; i++) + for (; i < srcParts; i++) if (src[i]) return 1; @@ -2588,7 +2625,7 @@ APInt::tcMultiply(integerPart *dst, const integerPart *lhs, overflow = 0; tcSet(dst, 0, parts); - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, true); @@ -2614,7 +2651,7 @@ APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, tcSet(dst, 0, rhsParts); - for(n = 0; n < lhsParts; n++) + for (n = 0; n < lhsParts; n++) tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); n = lhsParts + rhsParts; @@ -2658,7 +2695,7 @@ APInt::tcDivide(integerPart *lhs, const integerPart *rhs, /* Loop, subtracting SRHS if REMAINDER is greater and adding that to the total. */ - for(;;) { + for (;;) { int compare; compare = tcCompare(remainder, srhs, parts); @@ -2726,7 +2763,7 @@ APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) /* Perform the shift. This leaves the most significant COUNT bits of the result at zero. */ - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart part; if (i + jump >= parts) { @@ -2751,7 +2788,7 @@ APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] &= rhs[i]; } @@ -2761,7 +2798,7 @@ APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] |= rhs[i]; } @@ -2771,7 +2808,7 @@ APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] ^= rhs[i]; } @@ -2781,7 +2818,7 @@ APInt::tcComplement(integerPart *dst, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] = ~dst[i]; } @@ -2810,13 +2847,27 @@ APInt::tcIncrement(integerPart *dst, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) if (++dst[i] != 0) break; return i == parts; } +/* Decrement a bignum in-place, return the borrow flag. */ +integerPart +APInt::tcDecrement(integerPart *dst, unsigned int parts) { + for (unsigned int i = 0; i < parts; i++) { + // If the current word is non-zero, then the decrement has no effect on the + // higher-order words of the integer and no borrow can occur. Exit early. + if (dst[i]--) + return 0; + } + // If every word was zero, then there is a borrow. + return 1; +} + + /* Set the least significant BITS bits of a bignum, clear the rest. */ void