X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FSupport%2FAPInt.cpp;h=a034fd1e797076b69a121fcfcee5a77f33861b52;hb=3a4a884c1618d94202ee714ea5c899cd80d1c536;hp=d579ae0965b338eb84b934717fabe1b616f0e2e7;hpb=9f17eb0b79717d479e462f0284442adbeae903ef;p=oota-llvm.git diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index d579ae0965b..a034fd1e797 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -15,28 +15,20 @@ #define DEBUG_TYPE "apint" #include "llvm/ADT/APInt.h" #include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallString.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include +#include "llvm/Support/raw_ostream.h" +#include #include #include #include -#include - using namespace llvm; -/// This enumeration just provides for internal constants used in this -/// translation unit. -enum { - MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified - ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS - MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified - ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS -}; - /// A utility function for allocating memory, checking for allocation failures, /// and ensuring the contents are zeroed. -inline static uint64_t* getClearedMemory(uint32_t numWords) { +inline static uint64_t* getClearedMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); memset(result, 0, numWords * sizeof(uint64_t)); @@ -45,32 +37,29 @@ inline static uint64_t* getClearedMemory(uint32_t numWords) { /// A utility function for allocating memory and checking for allocation /// failure. The content is not zeroed. -inline static uint64_t* getMemory(uint32_t numWords) { +inline static uint64_t* getMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); return result; } -APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned) - : BitWidth(numBits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - if (isSingleWord()) - VAL = val; - else { - pVal = getClearedMemory(getNumWords()); - pVal[0] = val; - if (isSigned && int64_t(val) < 0) - for (unsigned i = 1; i < getNumWords(); ++i) - pVal[i] = -1ULL; - } - clearUnusedBits(); +void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { + pVal = getClearedMemory(getNumWords()); + pVal[0] = val; + if (isSigned && int64_t(val) < 0) + for (unsigned i = 1; i < getNumWords(); ++i) + pVal[i] = -1ULL; +} + +void APInt::initSlowCase(const APInt& that) { + pVal = getMemory(getNumWords()); + memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); } -APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) - : BitWidth(numBits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); + +APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) + : BitWidth(numBits), VAL(0) { + assert(BitWidth && "bitwidth too small"); assert(bigVal && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0]; @@ -78,7 +67,7 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) // Get memory, cleared to 0 pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy - uint32_t words = std::min(numWords, getNumWords()); + unsigned words = std::min(numWords, getNumWords()); // Copy the words from bigVal to pVal memcpy(pVal, bigVal, words * APINT_WORD_SIZE); } @@ -86,54 +75,32 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) clearUnusedBits(); } -APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, +APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen, uint8_t radix) : BitWidth(numbits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); + assert(BitWidth && "bitwidth too small"); fromString(numbits, StrStart, slen, radix); } -APInt::APInt(const APInt& that) - : BitWidth(that.BitWidth), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - if (isSingleWord()) - VAL = that.VAL; - else { - pVal = getMemory(getNumWords()); - memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); - } -} - -APInt::~APInt() { - if (!isSingleWord() && pVal) - delete [] pVal; -} - -APInt& APInt::operator=(const APInt& RHS) { +APInt& APInt::AssignSlowCase(const APInt& RHS) { // Don't do anything for X = X if (this == &RHS) return *this; - // If the bitwidths are the same, we can avoid mucking with memory if (BitWidth == RHS.getBitWidth()) { - if (isSingleWord()) - VAL = RHS.VAL; - else - memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); + // assume same bit-width single-word case is already handled + assert(!isSingleWord()); + memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); return *this; } - if (isSingleWord()) - if (RHS.isSingleWord()) - VAL = RHS.VAL; - else { - VAL = 0; - pVal = getMemory(RHS.getNumWords()); - memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); - } - else if (getNumWords() == RHS.getNumWords()) + if (isSingleWord()) { + // assume case where both are single words is already handled + assert(!RHS.isSingleWord()); + VAL = 0; + pVal = getMemory(RHS.getNumWords()); + memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); + } else if (getNumWords() == RHS.getNumWords()) memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); else if (RHS.isSingleWord()) { delete [] pVal; @@ -166,7 +133,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const { return; } - uint32_t NumWords = getNumWords(); + unsigned NumWords = getNumWords(); for (unsigned i = 0; i < NumWords; ++i) ID.AddInteger(pVal[i]); } @@ -175,8 +142,8 @@ void APInt::Profile(FoldingSetNodeID& ID) const { /// "digit" integer array, x[]. x[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. -static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { dest[i] = y + x[i]; if (dest[i] < y) y = 1; // Carry one to next digit. @@ -203,8 +170,8 @@ APInt& APInt::operator++() { /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. /// In other words, if y > x then this function returns 1, otherwise 0. /// @returns the borrow out of the subtraction -static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= y; if (y > X) @@ -231,9 +198,9 @@ APInt& APInt::operator--() { /// @returns the carry out from the addition /// @brief General addition of 64-bit integer arrays static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { + unsigned len) { bool carry = false; - for (uint32_t i = 0; i< len; ++i) { + for (unsigned i = 0; i< len; ++i) { uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x dest[i] = x[i] + y[i] + carry; carry = dest[i] < limit || (carry && dest[i] == limit); @@ -258,9 +225,9 @@ APInt& APInt::operator+=(const APInt& RHS) { /// @returns returns the borrow out. /// @brief Generalized subtraction of 64-bit integer arrays. static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { + unsigned len) { bool borrow = false; - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; borrow = y[i] > x_tmp || (borrow && x[i] == 0); dest[i] = x_tmp - y[i]; @@ -284,13 +251,13 @@ APInt& APInt::operator-=(const APInt& RHS) { /// into dest. /// @returns the carry out of the multiplication. /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. -static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { +static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { // Split y into high 32-bit part (hy) and low 32-bit part (ly) uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0; // For each digit of x. - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { // Split x into high and low words uint64_t lx = x[i] & 0xffffffffULL; uint64_t hx = x[i] >> 32; @@ -318,13 +285,13 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { /// Multiplies integer array x by integer array y and stores the result into /// the integer array dest. Note that dest's size must be >= xlen + ylen. /// @brief Generalized multiplicate of integer arrays. -static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], - uint32_t ylen) { +static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], + unsigned ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); - for (uint32_t i = 1; i < ylen; ++i) { + for (unsigned i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx = 0, hx = 0; - for (uint32_t j = 0; j < xlen; ++j) { + for (unsigned j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. @@ -357,15 +324,15 @@ APInt& APInt::operator*=(const APInt& RHS) { } // Get some bit facts about LHS and check for zero - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; if (!lhsWords) // 0 * X ===> 0 return *this; // Get some bit facts about RHS and check for zero - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; if (!rhsWords) { // X * 0 ===> 0 clear(); @@ -373,7 +340,7 @@ APInt& APInt::operator*=(const APInt& RHS) { } // Allocate space for the result - uint32_t destWords = rhsWords + lhsWords; + unsigned destWords = rhsWords + lhsWords; uint64_t *dest = getMemory(destWords); // Perform the long multiply @@ -381,7 +348,7 @@ APInt& APInt::operator*=(const APInt& RHS) { // Copy result back into *this clear(); - uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; + unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); // delete dest array and return @@ -395,8 +362,8 @@ APInt& APInt::operator&=(const APInt& RHS) { VAL &= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] &= RHS.pVal[i]; return *this; } @@ -407,8 +374,8 @@ APInt& APInt::operator|=(const APInt& RHS) { VAL |= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] |= RHS.pVal[i]; return *this; } @@ -420,44 +387,32 @@ APInt& APInt::operator^=(const APInt& RHS) { this->clearUnusedBits(); return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] ^= RHS.pVal[i]; return clearUnusedBits(); } -APInt APInt::operator&(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(getBitWidth(), VAL & RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::AndSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t* val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] & RHS.pVal[i]; return APInt(val, getBitWidth()); } -APInt APInt::operator|(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(getBitWidth(), VAL | RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::OrSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] | RHS.pVal[i]; return APInt(val, getBitWidth()); } -APInt APInt::operator^(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(BitWidth, VAL ^ RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::XorSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] ^ RHS.pVal[i]; // 0^0==1 so clear the high bits in case they got set. @@ -468,7 +423,7 @@ bool APInt::operator !() const { if (isSingleWord()) return !VAL; - for (uint32_t i = 0; i < getNumWords(); ++i) + for (unsigned i = 0; i < getNumWords(); ++i) if (pVal[i]) return false; return true; @@ -501,19 +456,15 @@ APInt APInt::operator-(const APInt& RHS) const { return Result.clearUnusedBits(); } -bool APInt::operator[](uint32_t bitPosition) const { +bool APInt::operator[](unsigned bitPosition) const { return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } -bool APInt::operator==(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); - if (isSingleWord()) - return VAL == RHS.VAL; - +bool APInt::EqualSlowCase(const APInt& RHS) const { // Get some facts about the number of bits used in the two operands. - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If the number of bits isn't the same, they aren't equal if (n1 != n2) @@ -530,11 +481,8 @@ bool APInt::operator==(const APInt& RHS) const { return true; } -bool APInt::operator==(uint64_t Val) const { - if (isSingleWord()) - return VAL == Val; - - uint32_t n = getActiveBits(); +bool APInt::EqualSlowCase(uint64_t Val) const { + unsigned n = getActiveBits(); if (n <= APINT_BITS_PER_WORD) return pVal[0] == Val; else @@ -547,8 +495,8 @@ bool APInt::ult(const APInt& RHS) const { return VAL < RHS.VAL; // Get active bit length of both operands - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If magnitude of LHS is less than RHS, return true. if (n1 < n2) @@ -563,7 +511,7 @@ bool APInt::ult(const APInt& RHS) const { return pVal[0] < RHS.pVal[0]; // Otherwise, compare all words - uint32_t topWord = whichWord(std::max(n1,n2)-1); + unsigned topWord = whichWord(std::max(n1,n2)-1); for (int i = topWord; i >= 0; --i) { if (pVal[i] > RHS.pVal[i]) return false; @@ -609,7 +557,7 @@ bool APInt::slt(const APInt& RHS) const { return lhs.ult(rhs); } -APInt& APInt::set(uint32_t bitPosition) { +APInt& APInt::set(unsigned bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else @@ -617,22 +565,9 @@ APInt& APInt::set(uint32_t bitPosition) { return *this; } -APInt& APInt::set() { - if (isSingleWord()) { - VAL = -1ULL; - return clearUnusedBits(); - } - - // Set all the bits in all the words. - for (uint32_t i = 0; i < getNumWords(); ++i) - pVal[i] = -1ULL; - // Clear the unused ones - return clearUnusedBits(); -} - /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. -APInt& APInt::clear(uint32_t bitPosition) { +APInt& APInt::clear(unsigned bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else @@ -640,50 +575,24 @@ APInt& APInt::clear(uint32_t bitPosition) { return *this; } -/// @brief Set every bit to 0. -APInt& APInt::clear() { - if (isSingleWord()) - VAL = 0; - else - memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); - return *this; -} - -/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on -/// this APInt. -APInt APInt::operator~() const { - APInt Result(*this); - Result.flip(); - return Result; -} - /// @brief Toggle every bit to its opposite value. -APInt& APInt::flip() { - if (isSingleWord()) { - VAL ^= -1ULL; - return clearUnusedBits(); - } - for (uint32_t i = 0; i < getNumWords(); ++i) - pVal[i] ^= -1ULL; - return clearUnusedBits(); -} /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. -APInt& APInt::flip(uint32_t bitPosition) { +APInt& APInt::flip(unsigned bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); if ((*this)[bitPosition]) clear(bitPosition); else set(bitPosition); return *this; } -uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { +unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) { assert(str != 0 && "Invalid value string"); assert(slen > 0 && "Invalid string length"); // Each computation below needs to know if its negative - uint32_t isNegative = str[0] == '-'; + unsigned isNegative = str[0] == '-'; if (isNegative) { slen--; str++; @@ -706,7 +615,7 @@ uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { // Compute a sufficient number of bits that is always large enough but might // be too large. This avoids the assertion in the constructor. - uint32_t sufficient = slen*64/18; + unsigned sufficient = slen*64/18; // Convert to the actual binary value. APInt tmp(sufficient, str, slen, radix); @@ -715,26 +624,103 @@ uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { return isNegative + tmp.logBase2() + 1; } -uint64_t APInt::getHashValue() const { - // Put the bit width into the low order bits. - uint64_t hash = BitWidth; +// From http://www.burtleburtle.net, byBob Jenkins. +// When targeting x86, both GCC and LLVM seem to recognize this as a +// rotate instruction. +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +// From http://www.burtleburtle.net, by Bob Jenkins. +#define mix(a,b,c) \ + { \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ + } + +// From http://www.burtleburtle.net, by Bob Jenkins. +#define final(a,b,c) \ + { \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ + } + +// hashword() was adapted from http://www.burtleburtle.net, by Bob +// Jenkins. k is a pointer to an array of uint32_t values; length is +// the length of the key, in 32-bit chunks. This version only handles +// keys that are a multiple of 32 bits in size. +static inline uint32_t hashword(const uint64_t *k64, size_t length) +{ + const uint32_t *k = reinterpret_cast(k64); + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch (length) { /* all the case statements fall through */ + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; +} + +// hashword8() was adapted from http://www.burtleburtle.net, by Bob +// Jenkins. This computes a 32-bit hash from one 64-bit word. When +// targeting x86 (32 or 64 bit), both LLVM and GCC compile this +// function into about 35 instructions when inlined. +static inline uint32_t hashword8(const uint64_t k64) +{ + uint32_t a,b,c; + a = b = c = 0xdeadbeef + 4; + b += k64 >> 32; + a += k64 & 0xffffffff; + final(a,b,c); + return c; +} +#undef final +#undef mix +#undef rot - // Add the sum of the words to the hash. +uint64_t APInt::getHashValue() const { + uint64_t hash; if (isSingleWord()) - hash += VAL << 6; // clear separation of up to 64 bits + hash = hashword8(VAL); else - for (uint32_t i = 0; i < getNumWords(); ++i) - hash += pVal[i] << 6; // clear sepration of up to 64 bits + hash = hashword(pVal, getNumWords()*2); return hash; } /// HiBits - This function returns the high "numBits" bits of this APInt. -APInt APInt::getHiBits(uint32_t numBits) const { +APInt APInt::getHiBits(unsigned numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. -APInt APInt::getLoBits(uint32_t numBits) const { +APInt APInt::getLoBits(unsigned numBits) const { return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), BitWidth - numBits); } @@ -743,28 +729,24 @@ bool APInt::isPowerOf2() const { return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); } -uint32_t APInt::countLeadingZeros() const { - uint32_t Count = 0; - if (isSingleWord()) - Count = CountLeadingZeros_64(VAL); - else { - for (uint32_t i = getNumWords(); i > 0u; --i) { - if (pVal[i-1] == 0) - Count += APINT_BITS_PER_WORD; - else { - Count += CountLeadingZeros_64(pVal[i-1]); - break; - } +unsigned APInt::countLeadingZerosSlowCase() const { + unsigned Count = 0; + for (unsigned i = getNumWords(); i > 0u; --i) { + if (pVal[i-1] == 0) + Count += APINT_BITS_PER_WORD; + else { + Count += CountLeadingZeros_64(pVal[i-1]); + break; } } - uint32_t remainder = BitWidth % APINT_BITS_PER_WORD; + unsigned remainder = BitWidth % APINT_BITS_PER_WORD; if (remainder) Count -= APINT_BITS_PER_WORD - remainder; return std::min(Count, BitWidth); } -static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { - uint32_t Count = 0; +static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { + unsigned Count = 0; if (skip) V <<= skip; while (V && (V & (1ULL << 63))) { @@ -774,14 +756,20 @@ static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { return Count; } -uint32_t APInt::countLeadingOnes() const { +unsigned APInt::countLeadingOnes() const { if (isSingleWord()) return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); - uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD; - uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits); + unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; + unsigned shift; + if (!highWordBits) { + highWordBits = APINT_BITS_PER_WORD; + shift = 0; + } else { + shift = APINT_BITS_PER_WORD - highWordBits; + } int i = getNumWords() - 1; - uint32_t Count = countLeadingOnes_64(pVal[i], shift); + unsigned Count = countLeadingOnes_64(pVal[i], shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (pVal[i] == -1ULL) @@ -795,11 +783,11 @@ uint32_t APInt::countLeadingOnes() const { return Count; } -uint32_t APInt::countTrailingZeros() const { +unsigned APInt::countTrailingZeros() const { if (isSingleWord()) - return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth); - uint32_t Count = 0; - uint32_t i = 0; + return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -807,11 +795,9 @@ uint32_t APInt::countTrailingZeros() const { return std::min(Count, BitWidth); } -uint32_t APInt::countTrailingOnes() const { - if (isSingleWord()) - return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth); - uint32_t Count = 0; - uint32_t i = 0; +unsigned APInt::countTrailingOnesSlowCase() const { + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == -1ULL; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -819,11 +805,9 @@ uint32_t APInt::countTrailingOnes() const { return std::min(Count, BitWidth); } -uint32_t APInt::countPopulation() const { - if (isSingleWord()) - return CountPopulation_64(VAL); - uint32_t Count = 0; - for (uint32_t i = 0; i < getNumWords(); ++i) +unsigned APInt::countPopulationSlowCase() const { + unsigned Count = 0; + for (unsigned i = 0; i < getNumWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } @@ -833,9 +817,9 @@ APInt APInt::byteSwap() const { if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); else if (BitWidth == 32) - return APInt(BitWidth, ByteSwap_32(uint32_t(VAL))); + return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); else if (BitWidth == 48) { - uint32_t Tmp1 = uint32_t(VAL >> 16); + unsigned Tmp1 = unsigned(VAL >> 16); Tmp1 = ByteSwap_32(Tmp1); uint16_t Tmp2 = uint16_t(VAL); Tmp2 = ByteSwap_16(Tmp2); @@ -845,7 +829,7 @@ APInt APInt::byteSwap() const { else { APInt Result(BitWidth, 0); char *pByte = (char*)Result.pVal; - for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { + for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { char Tmp = pByte[i]; pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; @@ -865,7 +849,7 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, return A; } -APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { +APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { union { double D; uint64_t I; @@ -897,7 +881,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { // Otherwise, we have to shift the mantissa bits up to the right location APInt Tmp(width, mantissa); - Tmp = Tmp.shl((uint32_t)exp - 52); + Tmp = Tmp.shl((unsigned)exp - 52); return isNeg ? -Tmp : Tmp; } @@ -926,7 +910,7 @@ double APInt::roundToDouble(bool isSigned) const { APInt Tmp(isNeg ? -(*this) : (*this)); // Figure out how many bits we're using. - uint32_t n = Tmp.getActiveBits(); + unsigned n = Tmp.getActiveBits(); // The exponent (without bias normalization) is just the number of bits // we are using. Note that the sign bit is gone since we constructed the @@ -968,12 +952,12 @@ double APInt::roundToDouble(bool isSigned) const { } // Truncate to new width. -APInt &APInt::trunc(uint32_t width) { +APInt &APInt::trunc(unsigned width) { assert(width < BitWidth && "Invalid APInt Truncate request"); - assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits"); - uint32_t wordsBefore = getNumWords(); + assert(width && "Can't truncate to 0 bits"); + unsigned wordsBefore = getNumWords(); BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { if (wordsAfter == 1) { uint64_t *tmp = pVal; @@ -981,7 +965,7 @@ APInt &APInt::trunc(uint32_t width) { delete [] tmp; } else { uint64_t *newVal = getClearedMemory(wordsAfter); - for (uint32_t i = 0; i < wordsAfter; ++i) + for (unsigned i = 0; i < wordsAfter; ++i) newVal[i] = pVal[i]; delete [] pVal; pVal = newVal; @@ -991,9 +975,8 @@ APInt &APInt::trunc(uint32_t width) { } // Sign extend to a new width. -APInt &APInt::sext(uint32_t width) { +APInt &APInt::sext(unsigned width) { assert(width > BitWidth && "Invalid APInt SignExtend request"); - assert(width <= MAX_INT_BITS && "Too many bits"); // If the sign bit isn't set, this is the same as zext. if (!isNegative()) { zext(width); @@ -1001,14 +984,14 @@ APInt &APInt::sext(uint32_t width) { } // The sign bit is set. First, get some facts - uint32_t wordsBefore = getNumWords(); - uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; + unsigned wordsBefore = getNumWords(); + unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); // Mask the high order word appropriately if (wordsBefore == wordsAfter) { - uint32_t newWordBits = width % APINT_BITS_PER_WORD; + unsigned newWordBits = width % APINT_BITS_PER_WORD; // The extension is contained to the wordsBefore-1th word. uint64_t mask = ~0ULL; if (newWordBits) @@ -1026,11 +1009,11 @@ APInt &APInt::sext(uint32_t width) { if (wordsBefore == 1) newVal[0] = VAL | mask; else { - for (uint32_t i = 0; i < wordsBefore; ++i) + for (unsigned i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; newVal[wordsBefore-1] |= mask; } - for (uint32_t i = wordsBefore; i < wordsAfter; i++) + for (unsigned i = wordsBefore; i < wordsAfter; i++) newVal[i] = -1ULL; if (wordsBefore != 1) delete [] pVal; @@ -1039,18 +1022,17 @@ APInt &APInt::sext(uint32_t width) { } // Zero extend to a new width. -APInt &APInt::zext(uint32_t width) { +APInt &APInt::zext(unsigned width) { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); - assert(width <= MAX_INT_BITS && "Too many bits"); - uint32_t wordsBefore = getNumWords(); + unsigned wordsBefore = getNumWords(); BitWidth = width; - uint32_t wordsAfter = getNumWords(); + unsigned wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { uint64_t *newVal = getClearedMemory(wordsAfter); if (wordsBefore == 1) newVal[0] = VAL; else - for (uint32_t i = 0; i < wordsBefore; ++i) + for (unsigned i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; if (wordsBefore != 1) delete [] pVal; @@ -1059,7 +1041,7 @@ APInt &APInt::zext(uint32_t width) { return *this; } -APInt &APInt::zextOrTrunc(uint32_t width) { +APInt &APInt::zextOrTrunc(unsigned width) { if (BitWidth < width) return zext(width); if (BitWidth > width) @@ -1067,7 +1049,7 @@ APInt &APInt::zextOrTrunc(uint32_t width) { return *this; } -APInt &APInt::sextOrTrunc(uint32_t width) { +APInt &APInt::sextOrTrunc(unsigned width) { if (BitWidth < width) return sext(width); if (BitWidth > width) @@ -1078,12 +1060,12 @@ APInt &APInt::sextOrTrunc(uint32_t width) { /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(const APInt &shiftAmt) const { - return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. -APInt APInt::ashr(uint32_t shiftAmt) const { +APInt APInt::ashr(unsigned shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); // Handle a degenerate case if (shiftAmt == 0) @@ -1094,7 +1076,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // undefined else { - uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth; + unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; return APInt(BitWidth, (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); } @@ -1114,17 +1096,17 @@ APInt APInt::ashr(uint32_t shiftAmt) const { uint64_t * val = new uint64_t[getNumWords()]; // Compute some values needed by the following shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift - uint32_t breakWord = getNumWords() - 1 - offset; // last word affected - uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word? + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift + unsigned breakWord = getNumWords() - 1 - offset; // last word affected + unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? if (bitsInWord == 0) bitsInWord = APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { // Move the words containing significant bits - for (uint32_t i = 0; i <= breakWord; ++i) + for (unsigned i = 0; i <= breakWord; ++i) val[i] = pVal[i+offset]; // move whole word // Adjust the top significant word for sign bit fill, if negative @@ -1133,7 +1115,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { val[breakWord] |= ~0ULL << bitsInWord; // set high bits } else { // Shift the low order words - for (uint32_t i = 0; i < breakWord; ++i) { + for (unsigned i = 0; i < breakWord; ++i) { // This combines the shifted corresponding word with the low bits from // the next word (shifted into this word's high bits). val[i] = (pVal[i+offset] >> wordShift) | @@ -1159,7 +1141,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const { // Remaining words are 0 or -1, just assign them. uint64_t fillValue = (isNegative() ? -1ULL : 0); - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = fillValue; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1167,12 +1149,12 @@ APInt APInt::ashr(uint32_t shiftAmt) const { /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt APInt::lshr(const APInt &shiftAmt) const { - return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. -APInt APInt::lshr(uint32_t shiftAmt) const { +APInt APInt::lshr(unsigned shiftAmt) const { if (isSingleWord()) { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); @@ -1187,7 +1169,7 @@ APInt APInt::lshr(uint32_t shiftAmt) const { return APInt(BitWidth, 0); // If none of the bits are shifted out, the result is *this. This avoids - // issues with shifting byt he size of the integer type, which produces + // issues with shifting by the size of the integer type, which produces // undefined results in the code below. This is also an optimization. if (shiftAmt == 0) return *this; @@ -1206,28 +1188,28 @@ APInt APInt::lshr(uint32_t shiftAmt) const { } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < getNumWords() - offset; ++i) + for (unsigned i = 0; i < getNumWords() - offset; ++i) val[i] = pVal[i+offset]; - for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++) + for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) val[i] = 0; return APInt(val,BitWidth).clearUnusedBits(); } // Shift the low order words - uint32_t breakWord = getNumWords() - offset -1; - for (uint32_t i = 0; i < breakWord; ++i) + unsigned breakWord = getNumWords() - offset -1; + for (unsigned i = 0; i < breakWord; ++i) val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); // Shift the break word. val[breakWord] = pVal[breakWord+offset] >> wordShift; // Remaining words are 0 - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = 0; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1235,20 +1217,11 @@ APInt APInt::lshr(uint32_t shiftAmt) const { /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt APInt::shl(const APInt &shiftAmt) const { - // It's undefined behavior in C to shift by BitWidth or greater, but - return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + // It's undefined behavior in C to shift by BitWidth or greater. + return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); } -/// Left-shift this APInt by shiftAmt. -/// @brief Left-shift function. -APInt APInt::shl(uint32_t shiftAmt) const { - assert(shiftAmt <= BitWidth && "Invalid shift amount"); - if (isSingleWord()) { - if (shiftAmt == BitWidth) - return APInt(BitWidth, 0); // avoid undefined shift results - return APInt(BitWidth, VAL << shiftAmt); - } - +APInt APInt::shlSlowCase(unsigned shiftAmt) const { // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. @@ -1267,7 +1240,7 @@ APInt APInt::shl(uint32_t shiftAmt) const { // If we are shifting less than a word, do it the easy way if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; - for (uint32_t i = 0; i < getNumWords(); i++) { + for (unsigned i = 0; i < getNumWords(); i++) { val[i] = pVal[i] << shiftAmt | carry; carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); } @@ -1275,20 +1248,20 @@ APInt APInt::shl(uint32_t shiftAmt) const { } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < offset; i++) + for (unsigned i = 0; i < offset; i++) val[i] = 0; - for (uint32_t i = offset; i < getNumWords(); i++) + for (unsigned i = offset; i < getNumWords(); i++) val[i] = pVal[i-offset]; return APInt(val,BitWidth).clearUnusedBits(); } // Copy whole words from this to Result. - uint32_t i = getNumWords() - 1; + unsigned i = getNumWords() - 1; for (; i > offset; --i) val[i] = pVal[i-offset] << wordShift | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); @@ -1299,10 +1272,10 @@ APInt APInt::shl(uint32_t shiftAmt) const { } APInt APInt::rotl(const APInt &rotateAmt) const { - return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotl(uint32_t rotateAmt) const { +APInt APInt::rotl(unsigned rotateAmt) const { if (rotateAmt == 0) return *this; // Don't get too fancy, just use existing shift/or facilities @@ -1314,10 +1287,10 @@ APInt APInt::rotl(uint32_t rotateAmt) const { } APInt APInt::rotr(const APInt &rotateAmt) const { - return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotr(uint32_t rotateAmt) const { +APInt APInt::rotr(unsigned rotateAmt) const { if (rotateAmt == 0) return *this; // Don't get too fancy, just use existing shift/or facilities @@ -1338,7 +1311,7 @@ APInt APInt::rotr(uint32_t rotateAmt) const { APInt APInt::sqrt() const { // Determine the magnitude of the value. - uint32_t magnitude = getActiveBits(); + unsigned magnitude = getActiveBits(); // Use a fast table for some small values. This also gets rid of some // rounding errors in libc sqrt for small values. @@ -1375,7 +1348,7 @@ APInt APInt::sqrt() const { // was adapted to APINt from a wikipedia article on such computations. // See http://www.wikipedia.org/ and go to the page named // Calculate_an_integer_square_root. - uint32_t nbits = BitWidth, i = 4; + unsigned nbits = BitWidth, i = 4; APInt testy(BitWidth, 16); APInt x_old(BitWidth, 1); APInt x_new(BitWidth, 0); @@ -1414,7 +1387,7 @@ APInt APInt::sqrt() const { else return x_old + 1; } else - assert(0 && "Error in APInt::sqrt computation"); + llvm_unreachable("Error in APInt::sqrt computation"); return x_old + 1; } @@ -1462,12 +1435,104 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const { return t[i].isNegative() ? t[i] + modulo : t[i]; } +/// Calculate the magic numbers required to implement a signed integer division +/// by a constant as a sequence of multiplies, adds and shifts. Requires that +/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. +/// Warren, Jr., chapter 10. +APInt::ms APInt::magic() const { + const APInt& d = *this; + unsigned p; + APInt ad, anc, delta, q1, r1, q2, r2, t; + APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()); + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); + struct ms mag; + + ad = d.abs(); + t = signedMin + (d.lshr(d.getBitWidth() - 1)); + anc = t - 1 - t.urem(ad); // absolute value of nc + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) + r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) + q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) + r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) + do { + p = p + 1; + q1 = q1<<1; // update q1 = 2p/abs(nc) + r1 = r1<<1; // update r1 = rem(2p/abs(nc)) + if (r1.uge(anc)) { // must be unsigned comparison + q1 = q1 + 1; + r1 = r1 - anc; + } + q2 = q2<<1; // update q2 = 2p/abs(d) + r2 = r2<<1; // update r2 = rem(2p/abs(d)) + if (r2.uge(ad)) { // must be unsigned comparison + q2 = q2 + 1; + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1.ule(delta) || (q1 == delta && r1 == 0)); + + mag.m = q2 + 1; + if (d.isNegative()) mag.m = -mag.m; // resulting magic number + mag.s = p - d.getBitWidth(); // resulting shift + return mag; +} + +/// Calculate the magic numbers required to implement an unsigned integer +/// division by a constant as a sequence of multiplies, adds and shifts. +/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry +/// S. Warren, Jr., chapter 10. +APInt::mu APInt::magicu() const { + const APInt& d = *this; + unsigned p; + APInt nc, delta, q1, r1, q2, r2; + struct mu magu; + magu.a = 0; // initialize "add" indicator + APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()); + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); + + nc = allOnes - (-d).urem(d); + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc + r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) + q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d + r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) + do { + p = p + 1; + if (r1.uge(nc - r1)) { + q1 = q1 + q1 + 1; // update q1 + r1 = r1 + r1 - nc; // update r1 + } + else { + q1 = q1+q1; // update q1 + r1 = r1+r1; // update r1 + } + if ((r2 + 1).uge(d - r2)) { + if (q2.uge(signedMax)) magu.a = 1; + q2 = q2+q2 + 1; // update q2 + r2 = r2+r2 + 1 - d; // update r2 + } + else { + if (q2.uge(signedMin)) magu.a = 1; + q2 = q2+q2; // update q2 + r2 = r2+r2 + 1; // update r2 + } + delta = d - 1 - r2; + } while (p < d.getBitWidth()*2 && + (q1.ult(delta) || (q1 == delta && r1 == 0))); + magu.m = q2 + 1; // resulting magic number + magu.s = p - d.getBitWidth(); // resulting shift + return magu; +} + /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. -static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, - uint32_t m, uint32_t n) { +static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, + unsigned m, unsigned n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); @@ -1478,12 +1543,14 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // is 2^31 so we just set it to -1u. uint64_t b = uint64_t(1) << 32; - DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n'); - DEBUG(cerr << "KnuthDiv: original:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); - DEBUG(cerr << " by"); - DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); - DEBUG(cerr << '\n'); +#if 0 + DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); + DEBUG(errs() << "KnuthDiv: original:"); + DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); + DEBUG(errs() << " by"); + DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]); + DEBUG(errs() << '\n'); +#endif // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of @@ -1492,32 +1559,34 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. - uint32_t shift = CountLeadingZeros_32(v[n-1]); - uint32_t v_carry = 0; - uint32_t u_carry = 0; + unsigned shift = CountLeadingZeros_32(v[n-1]); + unsigned v_carry = 0; + unsigned u_carry = 0; if (shift) { - for (uint32_t i = 0; i < m+n; ++i) { - uint32_t u_tmp = u[i] >> (32 - shift); + for (unsigned i = 0; i < m+n; ++i) { + unsigned u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } - for (uint32_t i = 0; i < n; ++i) { - uint32_t v_tmp = v[i] >> (32 - shift); + for (unsigned i = 0; i < n; ++i) { + unsigned v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } } u[m+n] = u_carry; - DEBUG(cerr << "KnuthDiv: normal:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); - DEBUG(cerr << " by"); - DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); - DEBUG(cerr << '\n'); +#if 0 + DEBUG(errs() << "KnuthDiv: normal:"); + DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); + DEBUG(errs() << " by"); + DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]); + DEBUG(errs() << '\n'); +#endif // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; do { - DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n'); + DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n'); // D3. [Calculate q'.]. // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') @@ -1527,7 +1596,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // value qp is one too large, and it eliminates all cases where qp is two // too large. uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); - DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n'); + DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { @@ -1536,37 +1605,37 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) qp--; } - DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); + DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with // a subtraction. bool isNeg = false; - for (uint32_t i = 0; i < n; ++i) { + for (unsigned i = 0; i < n; ++i) { uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; - DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp - << ", subtrahend == " << subtrahend - << ", borrow = " << borrow << '\n'); + DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp + << ", subtrahend == " << subtrahend + << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; - uint32_t k = j + i; - u[k++] = (uint32_t)(result & (b-1)); // subtract low word - u[k++] = (uint32_t)(result >> 32); // subtract high word + unsigned k = j + i; + u[k++] = (unsigned)(result & (b-1)); // subtract low word + u[k++] = (unsigned)(result >> 32); // subtract high word while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; k++; } isNeg |= borrow; - DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << + DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << u[j+i+1] << '\n'); } - DEBUG(cerr << "KnuthDiv: after subtraction:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); - DEBUG(cerr << '\n'); + DEBUG(errs() << "KnuthDiv: after subtraction:"); + DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); + DEBUG(errs() << '\n'); // The digits (u[j+n]...u[j]) should be kept positive; if the result of // this step is actually negative, (u[j+n]...u[j]) should be left as the // true value plus b**(n+1), namely as the b's complement of @@ -1574,18 +1643,18 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // if (isNeg) { bool carry = true; // true because b's complement is "complement + 1" - for (uint32_t i = 0; i <= m+n; ++i) { + for (unsigned i = 0; i <= m+n; ++i) { u[i] = ~u[i] + carry; // b's complement carry = carry && u[i] == 0; } } - DEBUG(cerr << "KnuthDiv: after complement:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); - DEBUG(cerr << '\n'); + DEBUG(errs() << "KnuthDiv: after complement:"); + DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]); + DEBUG(errs() << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. - q[j] = (uint32_t)qp; + q[j] = (unsigned)qp; if (isNeg) { // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for @@ -1595,23 +1664,23 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // A carry will occur to the left of u[j+n], and it should be ignored // since it cancels with the borrow that occurred in D4. bool carry = false; - for (uint32_t i = 0; i < n; i++) { - uint32_t limit = std::min(u[j+i],v[i]); + for (unsigned i = 0; i < n; i++) { + unsigned limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } u[j+n] += carry; } - DEBUG(cerr << "KnuthDiv: after correction:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]); - DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n'); + DEBUG(errs() << "KnuthDiv: after correction:"); + DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]); + DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. } while (--j >= 0); - DEBUG(cerr << "KnuthDiv: quotient:"); - DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]); - DEBUG(cerr << '\n'); + DEBUG(errs() << "KnuthDiv: quotient:"); + DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]); + DEBUG(errs() << '\n'); // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired // remainder may be obtained by dividing u[...] by d. If r is non-null we @@ -1621,26 +1690,28 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // multiplication by d by using a shift left. So, all we have to do is // shift right here. In order to mak if (shift) { - uint32_t carry = 0; - DEBUG(cerr << "KnuthDiv: remainder:"); + unsigned carry = 0; + DEBUG(errs() << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; carry = u[i] << (32 - shift); - DEBUG(cerr << " " << r[i]); + DEBUG(errs() << " " << r[i]); } } else { for (int i = n-1; i >= 0; i--) { r[i] = u[i]; - DEBUG(cerr << " " << r[i]); + DEBUG(errs() << " " << r[i]); } } - DEBUG(cerr << '\n'); + DEBUG(errs() << '\n'); } - DEBUG(cerr << std::setbase(10) << '\n'); +#if 0 + DEBUG(errs() << '\n'); +#endif } -void APInt::divide(const APInt LHS, uint32_t lhsWords, - const APInt &RHS, uint32_t rhsWords, +void APInt::divide(const APInt LHS, unsigned lhsWords, + const APInt &RHS, unsigned rhsWords, APInt *Quotient, APInt *Remainder) { assert(lhsWords >= rhsWords && "Fractional result"); @@ -1650,19 +1721,19 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, // and the the Knuth "classical algorithm" which requires there to be native // operations for +, -, and * on an m bit value with an m*2 bit result. We // can't use 64-bit operands here because we don't have native results of - // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't + // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. - uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); - uint32_t n = rhsWords * 2; - uint32_t m = (lhsWords * 2) - n; + uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); + unsigned n = rhsWords * 2; + unsigned m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. - uint32_t SPACE[128]; - uint32_t *U = 0; - uint32_t *V = 0; - uint32_t *Q = 0; - uint32_t *R = 0; + unsigned SPACE[128]; + unsigned *U = 0; + unsigned *V = 0; + unsigned *Q = 0; + unsigned *R = 0; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; @@ -1670,34 +1741,34 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { - U = new uint32_t[m + n + 1]; - V = new uint32_t[n]; - Q = new uint32_t[m+n]; + U = new unsigned[m + n + 1]; + V = new unsigned[n]; + Q = new unsigned[m+n]; if (Remainder) - R = new uint32_t[n]; + R = new unsigned[n]; } // Initialize the dividend - memset(U, 0, (m+n+1)*sizeof(uint32_t)); + memset(U, 0, (m+n+1)*sizeof(unsigned)); for (unsigned i = 0; i < lhsWords; ++i) { uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); - U[i * 2] = (uint32_t)(tmp & mask); - U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + U[i * 2] = (unsigned)(tmp & mask); + U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor - memset(V, 0, (n)*sizeof(uint32_t)); + memset(V, 0, (n)*sizeof(unsigned)); for (unsigned i = 0; i < rhsWords; ++i) { uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); - V[i * 2] = (uint32_t)(tmp & mask); - V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + V[i * 2] = (unsigned)(tmp & mask); + V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); } // initialize the quotient and remainder - memset(Q, 0, (m+n) * sizeof(uint32_t)); + memset(Q, 0, (m+n) * sizeof(unsigned)); if (Remainder) - memset(R, 0, n * sizeof(uint32_t)); + memset(R, 0, n * sizeof(unsigned)); // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the @@ -1718,8 +1789,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { - uint32_t divisor = V[0]; - uint32_t remainder = 0; + unsigned divisor = V[0]; + unsigned remainder = 0; for (int i = m+n-1; i >= 0; i--) { uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; if (partial_dividend == 0) { @@ -1727,13 +1798,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; - remainder = (uint32_t)partial_dividend; + remainder = (unsigned)partial_dividend; } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { - Q[i] = (uint32_t)(partial_dividend / divisor); - remainder = (uint32_t)(partial_dividend - (Q[i] * divisor)); + Q[i] = (unsigned)(partial_dividend / divisor); + remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); } } if (R) @@ -1825,11 +1896,11 @@ APInt APInt::udiv(const APInt& RHS) const { } // Get some facts about the LHS and RHS number of bits and words - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); - uint32_t lhsBits = this->getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned lhsBits = this->getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases if (!lhsWords) @@ -1860,12 +1931,12 @@ APInt APInt::urem(const APInt& RHS) const { } // Get some facts about the LHS - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); // Get some facts about the RHS - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases @@ -1892,10 +1963,10 @@ APInt APInt::urem(const APInt& RHS) const { void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { // Get some size facts about the dividend and divisor - uint32_t lhsBits = LHS.getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned lhsBits = LHS.getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); // Check the degenerate cases if (lhsWords == 0) { @@ -1929,7 +2000,7 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); } -void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, +void APInt::fromString(unsigned numbits, const char *str, unsigned slen, uint8_t radix) { // Check our assumptions here assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && @@ -1939,16 +2010,16 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, if (isNeg) str++, slen--; assert((slen <= numbits || radix != 2) && "Insufficient bit width"); - assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width"); - assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width"); - assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width"); + assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); + assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); + assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width"); // Allocate memory if (!isSingleWord()) pVal = getClearedMemory(getNumWords()); // Figure out if we can shift instead of multiply - uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); + unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); // Set up an APInt for the digit to add outside the loop so we don't // constantly construct/destruct it. @@ -1958,11 +2029,11 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, // Enter digit traversal loop for (unsigned i = 0; i < slen; i++) { // Get a digit - uint32_t digit = 0; + unsigned digit = 0; char cdigit = str[i]; if (radix == 16) { if (!isxdigit(cdigit)) - assert(0 && "Invalid hex digit in string"); + llvm_unreachable("Invalid hex digit in string"); if (isdigit(cdigit)) digit = cdigit - '0'; else if (cdigit >= 'a') @@ -1970,7 +2041,7 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, else if (cdigit >= 'A') digit = cdigit - 'A' + 10; else - assert(0 && "huh? we shouldn't get here"); + llvm_unreachable("huh? we shouldn't get here"); } else if (isdigit(cdigit)) { digit = cdigit - '0'; assert((radix == 10 || @@ -1978,14 +2049,16 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, (radix == 2 && (digit == 0 || digit == 1))) && "Invalid digit in string for given radix"); } else { - assert(0 && "Invalid character in digit string"); + llvm_unreachable("Invalid character in digit string"); } // Shift or multiply the value by the radix - if (shift) - *this <<= shift; - else - *this *= apradix; + if (slen > 1) { + if (shift) + *this <<= shift; + else + *this *= apradix; + } // Add in the digit we just interpreted if (apdigit.isSingleWord()) @@ -2001,112 +2074,115 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, } } -std::string APInt::toString(uint8_t radix, bool wantSigned) const { - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && +void APInt::toString(SmallVectorImpl &Str, unsigned Radix, + bool Signed) const { + assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) && "Radix should be 2, 8, 10, or 16!"); - static const char *const digits[] = { - "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" - }; - std::string result; - uint32_t bits_used = getActiveBits(); + + // First, check for a zero value and just short circuit the logic below. + if (*this == 0) { + Str.push_back('0'); + return; + } + + static const char Digits[] = "0123456789ABCDEF"; + if (isSingleWord()) { - char buf[65]; - const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : - (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); - if (format) { - if (wantSigned) { - int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> - (APINT_BITS_PER_WORD-BitWidth); - sprintf(buf, format, sextVal); - } else - sprintf(buf, format, VAL); - } else { - memset(buf, 0, 65); - uint64_t v = VAL; - while (bits_used) { - uint32_t bit = (uint32_t)v & 1; - bits_used--; - buf[bits_used] = digits[bit][0]; - v >>=1; + char Buffer[65]; + char *BufPtr = Buffer+65; + + uint64_t N; + if (Signed) { + int64_t I = getSExtValue(); + if (I < 0) { + Str.push_back('-'); + I = -I; } + N = I; + } else { + N = getZExtValue(); } - result = buf; - return result; - } - - if (radix != 10) { - // For the 2, 8 and 16 bit cases, we can just shift instead of divide - // because the number of bits per digit (1,3 and 4 respectively) divides - // equaly. We just shift until there value is zero. - - // First, check for a zero value and just short circuit the logic below. - if (*this == 0) - result = "0"; - else { - APInt tmp(*this); - size_t insert_at = 0; - if (wantSigned && this->isNegative()) { - // They want to print the signed version and it is a negative value - // Flip the bits and add one to turn it into the equivalent positive - // value and put a '-' in the result. - tmp.flip(); - tmp++; - result = "-"; - insert_at = 1; - } - // Just shift tmp right for each digit width until it becomes zero - uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1)); - uint64_t mask = radix - 1; - APInt zero(tmp.getBitWidth(), 0); - while (tmp.ne(zero)) { - unsigned digit = - (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask); - result.insert(insert_at, digits[digit]); - tmp = tmp.lshr(shift); - } + + while (N) { + *--BufPtr = Digits[N % Radix]; + N /= Radix; } - return result; + Str.append(BufPtr, Buffer+65); + return; } - APInt tmp(*this); - APInt divisor(4, radix); - APInt zero(tmp.getBitWidth(), 0); - size_t insert_at = 0; - if (wantSigned && tmp[BitWidth-1]) { + APInt Tmp(*this); + + if (Signed && isNegative()) { // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. - tmp.flip(); - tmp++; - result = "-"; - insert_at = 1; - } - if (tmp == zero) - result = "0"; - else while (tmp.ne(zero)) { - APInt APdigit(1,0); - APInt tmp2(tmp.getBitWidth(), 0); - divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, - &APdigit); - uint32_t digit = (uint32_t)APdigit.getZExtValue(); - assert(digit < radix && "divide failed"); - result.insert(insert_at,digits[digit]); - tmp = tmp2; + Tmp.flip(); + Tmp++; + Str.push_back('-'); } + + // We insert the digits backward, then reverse them to get the right order. + unsigned StartDig = Str.size(); + + // For the 2, 8 and 16 bit cases, we can just shift instead of divide + // because the number of bits per digit (1, 3 and 4 respectively) divides + // equaly. We just shift until the value is zero. + if (Radix != 10) { + // Just shift tmp right for each digit width until it becomes zero + unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); + unsigned MaskAmt = Radix - 1; + + while (Tmp != 0) { + unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; + Str.push_back(Digits[Digit]); + Tmp = Tmp.lshr(ShiftAmt); + } + } else { + APInt divisor(4, 10); + while (Tmp != 0) { + APInt APdigit(1, 0); + APInt tmp2(Tmp.getBitWidth(), 0); + divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, + &APdigit); + unsigned Digit = (unsigned)APdigit.getZExtValue(); + assert(Digit < Radix && "divide failed"); + Str.push_back(Digits[Digit]); + Tmp = tmp2; + } + } + + // Reverse the digits before returning. + std::reverse(Str.begin()+StartDig, Str.end()); +} - return result; +/// toString - This returns the APInt as a std::string. Note that this is an +/// inefficient method. It is better to pass in a SmallVector/SmallString +/// to the methods above. +std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { + SmallString<40> S; + toString(S, Radix, Signed); + return S.c_str(); } -void APInt::dump() const -{ - cerr << "APInt(" << BitWidth << ")=" << std::setbase(16); - if (isSingleWord()) - cerr << VAL; - else for (unsigned i = getNumWords(); i > 0; i--) { - cerr << pVal[i-1] << " "; - } - cerr << " U(" << this->toStringUnsigned(10) << ") S(" - << this->toStringSigned(10) << ")" << std::setbase(10); + +void APInt::dump() const { + SmallString<40> S, U; + this->toStringUnsigned(U); + this->toStringSigned(S); + fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str()); +} + +void APInt::print(raw_ostream &OS, bool isSigned) const { + SmallString<40> S; + this->toString(S, 10, isSigned); + OS << S.c_str(); +} + +std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) { + raw_os_ostream OS(o); + OS << I; + return o; } // This implements a variety of operations on a representation of @@ -2290,7 +2366,7 @@ APInt::tcMSB(const integerPart *parts, unsigned int n) the least significant bit of DST. All high bits above srcBITS in DST are zero-filled. */ void -APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src, +APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, unsigned int srcBits, unsigned int srcLSB) { unsigned int firstSrcPart, dstParts, shift, n;