X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FSupport%2FConstantRange.cpp;h=265b6e96a74698486da4881795f8d986bc985faf;hb=b9536ac581d0d74b29c11dcb33e22200b22b86b1;hp=1e2a6375c457985cbd523c2a003136ba3ce7c22e;hpb=c125c00e68138b8ae7861b589277a491ee217893;p=oota-llvm.git diff --git a/lib/Support/ConstantRange.cpp b/lib/Support/ConstantRange.cpp index 1e2a6375c45..265b6e96a74 100644 --- a/lib/Support/ConstantRange.cpp +++ b/lib/Support/ConstantRange.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -21,15 +21,15 @@ // //===----------------------------------------------------------------------===// +#include "llvm/IR/InstrTypes.h" #include "llvm/Support/ConstantRange.h" -#include "llvm/Support/Streams.h" -#include +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" using namespace llvm; /// Initialize a full (the default) or empty set for the specified type. /// -ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) : - Lower(BitWidth, 0), Upper(BitWidth, 0) { +ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) { if (Full) Lower = Upper = APInt::getMaxValue(BitWidth); else @@ -38,16 +38,82 @@ ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) : /// Initialize a range to hold the single specified value. /// -ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { } +ConstantRange::ConstantRange(APIntMoveTy V) + : Lower(llvm_move(V)), Upper(Lower + 1) {} -ConstantRange::ConstantRange(const APInt &L, const APInt &U) : - Lower(L), Upper(U) { - assert(L.getBitWidth() == U.getBitWidth() && +ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U) + : Lower(llvm_move(L)), Upper(llvm_move(U)) { + assert(Lower.getBitWidth() == Upper.getBitWidth() && "ConstantRange with unequal bit widths"); - assert((L != U || (L.isMaxValue() || L.isMinValue())) && + assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && "Lower == Upper, but they aren't min or max value!"); } +ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, + const ConstantRange &CR) { + if (CR.isEmptySet()) + return CR; + + uint32_t W = CR.getBitWidth(); + switch (Pred) { + default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()"); + case CmpInst::ICMP_EQ: + return CR; + case CmpInst::ICMP_NE: + if (CR.isSingleElement()) + return ConstantRange(CR.getUpper(), CR.getLower()); + return ConstantRange(W); + case CmpInst::ICMP_ULT: { + APInt UMax(CR.getUnsignedMax()); + if (UMax.isMinValue()) + return ConstantRange(W, /* empty */ false); + return ConstantRange(APInt::getMinValue(W), UMax); + } + case CmpInst::ICMP_SLT: { + APInt SMax(CR.getSignedMax()); + if (SMax.isMinSignedValue()) + return ConstantRange(W, /* empty */ false); + return ConstantRange(APInt::getSignedMinValue(W), SMax); + } + case CmpInst::ICMP_ULE: { + APInt UMax(CR.getUnsignedMax()); + if (UMax.isMaxValue()) + return ConstantRange(W); + return ConstantRange(APInt::getMinValue(W), UMax + 1); + } + case CmpInst::ICMP_SLE: { + APInt SMax(CR.getSignedMax()); + if (SMax.isMaxSignedValue()) + return ConstantRange(W); + return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); + } + case CmpInst::ICMP_UGT: { + APInt UMin(CR.getUnsignedMin()); + if (UMin.isMaxValue()) + return ConstantRange(W, /* empty */ false); + return ConstantRange(UMin + 1, APInt::getNullValue(W)); + } + case CmpInst::ICMP_SGT: { + APInt SMin(CR.getSignedMin()); + if (SMin.isMaxSignedValue()) + return ConstantRange(W, /* empty */ false); + return ConstantRange(SMin + 1, APInt::getSignedMinValue(W)); + } + case CmpInst::ICMP_UGE: { + APInt UMin(CR.getUnsignedMin()); + if (UMin.isMinValue()) + return ConstantRange(W); + return ConstantRange(UMin, APInt::getNullValue(W)); + } + case CmpInst::ICMP_SGE: { + APInt SMin(CR.getSignedMin()); + if (SMin.isMinSignedValue()) + return ConstantRange(W); + return ConstantRange(SMin, APInt::getSignedMinValue(W)); + } + } +} + /// isFullSet - Return true if this set contains all of the elements possible /// for this data-type bool ConstantRange::isFullSet() const { @@ -67,19 +133,25 @@ bool ConstantRange::isWrappedSet() const { return Lower.ugt(Upper); } +/// isSignWrappedSet - Return true if this set wraps around the INT_MIN of +/// its bitwidth, for example: i8 [120, 140). +/// +bool ConstantRange::isSignWrappedSet() const { + return contains(APInt::getSignedMaxValue(getBitWidth())) && + contains(APInt::getSignedMinValue(getBitWidth())); +} + /// getSetSize - Return the number of elements in this set. /// APInt ConstantRange::getSetSize() const { - if (isEmptySet()) - return APInt(getBitWidth(), 0); - if (getBitWidth() == 1) { - if (Lower != Upper) // One of T or F in the set... - return APInt(2, 1); - return APInt(2, 2); // Must be full set... + if (isFullSet()) { + APInt Size(getBitWidth()+1, 0); + Size.setBit(getBitWidth()); + return Size; } - // Simply subtract the bounds... - return Upper - Lower; + // This is also correct for wrapped sets. + return (Upper - Lower).zext(getBitWidth()+1); } /// getUnsignedMax - Return the largest unsigned value contained in the @@ -88,8 +160,7 @@ APInt ConstantRange::getSetSize() const { APInt ConstantRange::getUnsignedMax() const { if (isFullSet() || isWrappedSet()) return APInt::getMaxValue(getBitWidth()); - else - return getUpper() - 1; + return getUpper() - 1; } /// getUnsignedMin - Return the smallest unsigned value contained in the @@ -98,8 +169,7 @@ APInt ConstantRange::getUnsignedMax() const { APInt ConstantRange::getUnsignedMin() const { if (isFullSet() || (isWrappedSet() && getUpper() != 0)) return APInt::getMinValue(getBitWidth()); - else - return getLower(); + return getLower(); } /// getSignedMax - Return the largest signed value contained in the @@ -108,20 +178,13 @@ APInt ConstantRange::getUnsignedMin() const { APInt ConstantRange::getSignedMax() const { APInt SignedMax(APInt::getSignedMaxValue(getBitWidth())); if (!isWrappedSet()) { - if (getLower().slt(getUpper() - 1)) - return getUpper() - 1; - else - return SignedMax; - } else { - if ((getUpper() - 1).slt(getLower())) { - if (getLower() != SignedMax) - return SignedMax; - else - return getUpper() - 1; - } else { + if (getLower().sle(getUpper() - 1)) return getUpper() - 1; - } + return SignedMax; } + if (getLower().isNegative() == getUpper().isNegative()) + return SignedMax; + return getUpper() - 1; } /// getSignedMin - Return the smallest signed value contained in the @@ -130,20 +193,15 @@ APInt ConstantRange::getSignedMax() const { APInt ConstantRange::getSignedMin() const { APInt SignedMin(APInt::getSignedMinValue(getBitWidth())); if (!isWrappedSet()) { - if (getLower().slt(getUpper() - 1)) + if (getLower().sle(getUpper() - 1)) return getLower(); - else + return SignedMin; + } + if ((getUpper() - 1).slt(getLower())) { + if (getUpper() != SignedMin) return SignedMin; - } else { - if ((getUpper() - 1).slt(getLower())) { - if (getUpper() != SignedMin) - return SignedMin; - else - return getLower(); - } else { - return getLower(); - } } + return getLower(); } /// contains - Return true if the specified value is in the set. @@ -154,8 +212,29 @@ bool ConstantRange::contains(const APInt &V) const { if (!isWrappedSet()) return Lower.ule(V) && V.ult(Upper); - else - return Lower.ule(V) || V.ult(Upper); + return Lower.ule(V) || V.ult(Upper); +} + +/// contains - Return true if the argument is a subset of this range. +/// Two equal sets contain each other. The empty set contained by all other +/// sets. +/// +bool ConstantRange::contains(const ConstantRange &Other) const { + if (isFullSet() || Other.isEmptySet()) return true; + if (isEmptySet() || Other.isFullSet()) return false; + + if (!isWrappedSet()) { + if (Other.isWrappedSet()) + return false; + + return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); + } + + if (!Other.isWrappedSet()) + return Other.getUpper().ule(Upper) || + Lower.ule(Other.getLower()); + + return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); } /// subtract - Subtract the specified constant from the endpoints of this @@ -168,84 +247,92 @@ ConstantRange ConstantRange::subtract(const APInt &Val) const { return ConstantRange(Lower - Val, Upper - Val); } - -// intersect1Wrapped - This helper function is used to intersect two ranges when -// it is known that LHS is wrapped and RHS isn't. -// -ConstantRange -ConstantRange::intersect1Wrapped(const ConstantRange &LHS, - const ConstantRange &RHS) { - assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); - - // Check to see if we overlap on the Left side of RHS... - // - if (RHS.Lower.ult(LHS.Upper)) { - // We do overlap on the left side of RHS, see if we overlap on the right of - // RHS... - if (RHS.Upper.ugt(LHS.Lower)) { - // Ok, the result overlaps on both the left and right sides. See if the - // resultant interval will be smaller if we wrap or not... - // - if (LHS.getSetSize().ult(RHS.getSetSize())) - return LHS; - else - return RHS; - - } else { - // No overlap on the right, just on the left. - return ConstantRange(RHS.Lower, LHS.Upper); - } - } else { - // We don't overlap on the left side of RHS, see if we overlap on the right - // of RHS... - if (RHS.Upper.ugt(LHS.Lower)) { - // Simple overlap... - return ConstantRange(LHS.Lower, RHS.Upper); - } else { - // No overlap... - return ConstantRange(LHS.getBitWidth(), false); - } - } +/// \brief Subtract the specified range from this range (aka relative complement +/// of the sets). +ConstantRange ConstantRange::difference(const ConstantRange &CR) const { + return intersectWith(CR.inverse()); } /// intersectWith - Return the range that results from the intersection of this -/// range with another range. -/// +/// range with another range. The resultant range is guaranteed to include all +/// elements contained in both input ranges, and to have the smallest possible +/// set size that does so. Because there may be two intersections with the +/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A). ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { assert(getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"); - // Handle common special cases - if (isEmptySet() || CR.isFullSet()) - return *this; - if (isFullSet() || CR.isEmptySet()) + + // Handle common cases. + if ( isEmptySet() || CR.isFullSet()) return *this; + if (CR.isEmptySet() || isFullSet()) return CR; + + if (!isWrappedSet() && CR.isWrappedSet()) + return CR.intersectWith(*this); + + if (!isWrappedSet() && !CR.isWrappedSet()) { + if (Lower.ult(CR.Lower)) { + if (Upper.ule(CR.Lower)) + return ConstantRange(getBitWidth(), false); + + if (Upper.ult(CR.Upper)) + return ConstantRange(CR.Lower, Upper); + + return CR; + } + if (Upper.ult(CR.Upper)) + return *this; + + if (Lower.ult(CR.Upper)) + return ConstantRange(Lower, CR.Upper); + + return ConstantRange(getBitWidth(), false); + } + + if (isWrappedSet() && !CR.isWrappedSet()) { + if (CR.Lower.ult(Upper)) { + if (CR.Upper.ult(Upper)) + return CR; + + if (CR.Upper.ule(Lower)) + return ConstantRange(CR.Lower, Upper); + + if (getSetSize().ult(CR.getSetSize())) + return *this; + return CR; + } + if (CR.Lower.ult(Lower)) { + if (CR.Upper.ule(Lower)) + return ConstantRange(getBitWidth(), false); + + return ConstantRange(Lower, CR.Upper); + } return CR; + } - if (!isWrappedSet()) { - if (!CR.isWrappedSet()) { - using namespace APIntOps; - APInt L = umax(Lower, CR.Lower); - APInt U = umin(Upper, CR.Upper); - - if (L.ult(U)) // If range isn't empty... - return ConstantRange(L, U); - else - return ConstantRange(getBitWidth(), false);// Otherwise, empty set - } else - return intersect1Wrapped(CR, *this); - } else { // We know "this" is wrapped... - if (!CR.isWrappedSet()) - return intersect1Wrapped(*this, CR); - else { - // Both ranges are wrapped... - using namespace APIntOps; - APInt L = umax(Lower, CR.Lower); - APInt U = umin(Upper, CR.Upper); - return ConstantRange(L, U); + if (CR.Upper.ult(Upper)) { + if (CR.Lower.ult(Upper)) { + if (getSetSize().ult(CR.getSetSize())) + return *this; + return CR; } + + if (CR.Lower.ult(Lower)) + return ConstantRange(Lower, CR.Upper); + + return CR; } - return *this; + if (CR.Upper.ule(Lower)) { + if (CR.Lower.ult(Lower)) + return *this; + + return ConstantRange(CR.Lower, Upper); + } + if (getSetSize().ult(CR.getSetSize())) + return *this; + return CR; } + /// unionWith - Return the range that results from the union of this range with /// another range. The resultant range is guaranteed to include the elements of /// both sets, but may contain more. For example, [3, 9) union [12,15) is @@ -261,69 +348,70 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); - APInt L = Lower, U = Upper; - if (!isWrappedSet() && !CR.isWrappedSet()) { + if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { + // If the two ranges are disjoint, find the smaller gap and bridge it. + APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; + if (d1.ult(d2)) + return ConstantRange(Lower, CR.Upper); + return ConstantRange(CR.Lower, Upper); + } + + APInt L = Lower, U = Upper; if (CR.Lower.ult(L)) L = CR.Lower; - - if (CR.Upper.ugt(U)) + if ((CR.Upper - 1).ugt(U - 1)) U = CR.Upper; + + if (L == 0 && U == 0) + return ConstantRange(getBitWidth()); + + return ConstantRange(L, U); } - if (isWrappedSet() && !CR.isWrappedSet()) { - if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) || - (CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) { + if (!CR.isWrappedSet()) { + // ------U L----- and ------U L----- : this + // L--U L--U : CR + if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) return *this; - } - if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) { + // ------U L----- : this + // L---------U : CR + if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) return ConstantRange(getBitWidth()); - } - - if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) { - APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper; - if (d1.ult(d2)) { - U = CR.Upper; - } else { - L = CR.Upper; - } - } - if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) { + // ----U L---- : this + // L---U : CR + // + if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; - if (d1.ult(d2)) { - U = CR.Lower + 1; - } else { - L = CR.Upper - 1; - } + if (d1.ult(d2)) + return ConstantRange(Lower, CR.Upper); + return ConstantRange(CR.Lower, Upper); } - if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) { - APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower; + // ----U L----- : this + // L----U : CR + if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) + return ConstantRange(CR.Lower, Upper); - if (d1.ult(d2)) { - U = CR.Lower + 1; - } else { - L = CR.Lower; - } - } + // ------U L---- : this + // L-----U : CR + assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && + "ConstantRange::unionWith missed a case with one range wrapped"); + return ConstantRange(Lower, CR.Upper); } - if (isWrappedSet() && CR.isWrappedSet()) { - if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper)) - return ConstantRange(getBitWidth()); - - if (CR.Upper.ugt(U)) { - U = CR.Upper; - } - - if (CR.Lower.ult(L)) { - L = CR.Lower; - } + // ------U L---- and ------U L---- : this + // -U L----------- and ------------U L : CR + if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) + return ConstantRange(getBitWidth()); - if (L == U) return ConstantRange(getBitWidth()); - } + APInt L = Lower, U = Upper; + if (CR.Upper.ugt(U)) + U = CR.Upper; + if (CR.Lower.ult(L)) + L = CR.Lower; return ConstantRange(L, U); } @@ -333,15 +421,19 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { /// correspond to the possible range of values as if the source range had been /// zero extended. ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { + if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); + unsigned SrcTySize = getBitWidth(); assert(SrcTySize < DstTySize && "Not a value extension"); - if (isFullSet()) - // Change a source full set into [0, 1 << 8*numbytes) - return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize)); + if (isFullSet() || isWrappedSet()) { + // Change into [0, 1 << src bit width) + APInt LowerExt(DstTySize, 0); + if (!Upper) // special case: [X, 0) -- not really wrapping around + LowerExt = Lower.zext(DstTySize); + return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize)); + } - APInt L = Lower; L.zext(DstTySize); - APInt U = Upper; U.zext(DstTySize); - return ConstantRange(L, U); + return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); } /// signExtend - Return a new range in the specified integer type, which must @@ -349,16 +441,21 @@ ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { /// correspond to the possible range of values as if the source range had been /// sign extended. ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { + if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); + unsigned SrcTySize = getBitWidth(); assert(SrcTySize < DstTySize && "Not a value extension"); - if (isFullSet()) { + + // special case: [X, INT_MIN) -- not really wrapping around + if (Upper.isMinSignedValue()) + return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); + + if (isFullSet() || isSignWrappedSet()) { return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), - APInt::getLowBitsSet(DstTySize, SrcTySize-1)); + APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); } - APInt L = Lower; L.sext(DstTySize); - APInt U = Upper; U.sext(DstTySize); - return ConstantRange(L, U); + return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); } /// truncate - Return a new range in the specified integer type, which must be @@ -366,26 +463,272 @@ ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { /// correspond to the possible range of values as if the source range had been /// truncated to the specified type. ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { + assert(getBitWidth() > DstTySize && "Not a value truncation"); + if (isEmptySet()) + return ConstantRange(DstTySize, /*isFullSet=*/false); + if (isFullSet()) + return ConstantRange(DstTySize, /*isFullSet=*/true); + + APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth()); + APInt MaxBitValue(getBitWidth(), 0); + MaxBitValue.setBit(DstTySize); + + APInt LowerDiv(Lower), UpperDiv(Upper); + ConstantRange Union(DstTySize, /*isFullSet=*/false); + + // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] + // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and + // then we do the union with [MaxValue, Upper) + if (isWrappedSet()) { + // if Upper is greater than Max Value, it covers the whole truncated range. + if (Upper.uge(MaxValue)) + return ConstantRange(DstTySize, /*isFullSet=*/true); + + Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); + UpperDiv = APInt::getMaxValue(getBitWidth()); + + // Union covers the MaxValue case, so return if the remaining range is just + // MaxValue. + if (LowerDiv == UpperDiv) + return Union; + } + + // Chop off the most significant bits that are past the destination bitwidth. + if (LowerDiv.uge(MaxValue)) { + APInt Div(getBitWidth(), 0); + APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv); + UpperDiv = UpperDiv - MaxBitValue * Div; + } + + if (UpperDiv.ule(MaxValue)) + return ConstantRange(LowerDiv.trunc(DstTySize), + UpperDiv.trunc(DstTySize)).unionWith(Union); + + // The truncated value wrapps around. Check if we can do better than fullset. + APInt UpperModulo = UpperDiv - MaxBitValue; + if (UpperModulo.ult(LowerDiv)) + return ConstantRange(LowerDiv.trunc(DstTySize), + UpperModulo.trunc(DstTySize)).unionWith(Union); + + return ConstantRange(DstTySize, /*isFullSet=*/true); +} + +/// zextOrTrunc - make this range have the bit width given by \p DstTySize. The +/// value is zero extended, truncated, or left alone to make it that width. +ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { unsigned SrcTySize = getBitWidth(); - assert(SrcTySize > DstTySize && "Not a value truncation"); - APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize)); - if (isFullSet() || getSetSize().ugt(Size)) - return ConstantRange(DstTySize); + if (SrcTySize > DstTySize) + return truncate(DstTySize); + if (SrcTySize < DstTySize) + return zeroExtend(DstTySize); + return *this; +} - APInt L = Lower; L.trunc(DstTySize); - APInt U = Upper; U.trunc(DstTySize); - return ConstantRange(L, U); +/// sextOrTrunc - make this range have the bit width given by \p DstTySize. The +/// value is sign extended, truncated, or left alone to make it that width. +ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { + unsigned SrcTySize = getBitWidth(); + if (SrcTySize > DstTySize) + return truncate(DstTySize); + if (SrcTySize < DstTySize) + return signExtend(DstTySize); + return *this; +} + +ConstantRange +ConstantRange::add(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + if (isFullSet() || Other.isFullSet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); + APInt NewLower = getLower() + Other.getLower(); + APInt NewUpper = getUpper() + Other.getUpper() - 1; + if (NewLower == NewUpper) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + ConstantRange X = ConstantRange(NewLower, NewUpper); + if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) + // We've wrapped, therefore, full set. + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + return X; +} + +ConstantRange +ConstantRange::sub(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + if (isFullSet() || Other.isFullSet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); + APInt NewLower = getLower() - Other.getUpper() + 1; + APInt NewUpper = getUpper() - Other.getLower(); + if (NewLower == NewUpper) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + ConstantRange X = ConstantRange(NewLower, NewUpper); + if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) + // We've wrapped, therefore, full set. + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + return X; +} + +ConstantRange +ConstantRange::multiply(const ConstantRange &Other) const { + // TODO: If either operand is a single element and the multiply is known to + // be non-wrapping, round the result min and max value to the appropriate + // multiple of that element. If wrapping is possible, at least adjust the + // range according to the greatest power-of-two factor of the single element. + + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + + APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); + APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); + APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); + APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); + + ConstantRange Result_zext = ConstantRange(this_min * Other_min, + this_max * Other_max + 1); + return Result_zext.truncate(getBitWidth()); +} + +ConstantRange +ConstantRange::smax(const ConstantRange &Other) const { + // X smax Y is: range(smax(X_smin, Y_smin), + // smax(X_smax, Y_smax)) + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); + APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; + if (NewU == NewL) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + return ConstantRange(NewL, NewU); +} + +ConstantRange +ConstantRange::umax(const ConstantRange &Other) const { + // X umax Y is: range(umax(X_umin, Y_umin), + // umax(X_umax, Y_umax)) + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); + APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; + if (NewU == NewL) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + return ConstantRange(NewL, NewU); +} + +ConstantRange +ConstantRange::udiv(const ConstantRange &RHS) const { + if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + if (RHS.isFullSet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); + + APInt RHS_umin = RHS.getUnsignedMin(); + if (RHS_umin == 0) { + // We want the lowest value in RHS excluding zero. Usually that would be 1 + // except for a range in the form of [X, 1) in which case it would be X. + if (RHS.getUpper() == 1) + RHS_umin = RHS.getLower(); + else + RHS_umin = APInt(getBitWidth(), 1); + } + + APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; + + // If the LHS is Full and the RHS is a wrapped interval containing 1 then + // this could occur. + if (Lower == Upper) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + return ConstantRange(Lower, Upper); +} + +ConstantRange +ConstantRange::binaryAnd(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + + // TODO: replace this with something less conservative + + APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); + if (umin.isAllOnesValue()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1); +} + +ConstantRange +ConstantRange::binaryOr(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + + // TODO: replace this with something less conservative + + APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); + if (umax.isMinValue()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + return ConstantRange(umax, APInt::getNullValue(getBitWidth())); +} + +ConstantRange +ConstantRange::shl(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + + APInt min = getUnsignedMin().shl(Other.getUnsignedMin()); + APInt max = getUnsignedMax().shl(Other.getUnsignedMax()); + + // there's no overflow! + APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros()); + if (Zeros.ugt(Other.getUnsignedMax())) + return ConstantRange(min, max + 1); + + // FIXME: implement the other tricky cases + return ConstantRange(getBitWidth(), /*isFullSet=*/true); +} + +ConstantRange +ConstantRange::lshr(const ConstantRange &Other) const { + if (isEmptySet() || Other.isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + + APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()); + APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); + if (min == max + 1) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + + return ConstantRange(min, max + 1); +} + +ConstantRange ConstantRange::inverse() const { + if (isFullSet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/false); + if (isEmptySet()) + return ConstantRange(getBitWidth(), /*isFullSet=*/true); + return ConstantRange(Upper, Lower); } /// print - Print out the bounds to a stream... /// -void ConstantRange::print(std::ostream &OS) const { - OS << "[" << Lower.toStringSigned(10) << "," - << Upper.toStringSigned(10) << " )"; +void ConstantRange::print(raw_ostream &OS) const { + if (isFullSet()) + OS << "full-set"; + else if (isEmptySet()) + OS << "empty-set"; + else + OS << "[" << Lower << "," << Upper << ")"; } /// dump - Allow printing from a debugger easily... /// void ConstantRange::dump() const { - print(cerr); + print(dbgs()); }