X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FARM%2FARMRegisterInfo.td;h=b290e7f6679cc85c2edf552fb8c00b424fa457ea;hb=12af22e8cc217827cf4f118b0f5e4ebbda9925ae;hp=962158580cf296c2a446c15868b427857d51ffba;hpb=ca66226e7e8368719f5b9937ed6523c7117a9d63;p=oota-llvm.git diff --git a/lib/Target/ARM/ARMRegisterInfo.td b/lib/Target/ARM/ARMRegisterInfo.td index 962158580cf..b290e7f6679 100644 --- a/lib/Target/ARM/ARMRegisterInfo.td +++ b/lib/Target/ARM/ARMRegisterInfo.td @@ -1,4 +1,4 @@ -//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===// +//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // @@ -12,41 +12,48 @@ //===----------------------------------------------------------------------===// // Registers are identified with 4-bit ID numbers. -class ARMReg num, string n, list subregs = []> : Register { - field bits<4> Num; +class ARMReg Enc, string n, list subregs = []> : Register { + let HWEncoding = Enc; let Namespace = "ARM"; let SubRegs = subregs; + // All bits of ARM registers with sub-registers are covered by sub-registers. + let CoveredBySubRegs = 1; } -class ARMFReg num, string n> : Register { - field bits<6> Num; +class ARMFReg Enc, string n> : Register { + let HWEncoding = Enc; let Namespace = "ARM"; } // Subregister indices. let Namespace = "ARM" in { +def qqsub_0 : SubRegIndex<256>; +def qqsub_1 : SubRegIndex<256, 256>; + // Note: Code depends on these having consecutive numbers. -def ssub_0 : SubRegIndex; -def ssub_1 : SubRegIndex; -def ssub_2 : SubRegIndex; // In a Q reg. -def ssub_3 : SubRegIndex; - -def dsub_0 : SubRegIndex; -def dsub_1 : SubRegIndex; -def dsub_2 : SubRegIndex; -def dsub_3 : SubRegIndex; -def dsub_4 : SubRegIndex; -def dsub_5 : SubRegIndex; -def dsub_6 : SubRegIndex; -def dsub_7 : SubRegIndex; - -def qsub_0 : SubRegIndex; -def qsub_1 : SubRegIndex; -def qsub_2 : SubRegIndex; -def qsub_3 : SubRegIndex; - -def qqsub_0 : SubRegIndex; -def qqsub_1 : SubRegIndex; +def qsub_0 : SubRegIndex<128>; +def qsub_1 : SubRegIndex<128, 128>; +def qsub_2 : ComposedSubRegIndex; +def qsub_3 : ComposedSubRegIndex; + +def dsub_0 : SubRegIndex<64>; +def dsub_1 : SubRegIndex<64, 64>; +def dsub_2 : ComposedSubRegIndex; +def dsub_3 : ComposedSubRegIndex; +def dsub_4 : ComposedSubRegIndex; +def dsub_5 : ComposedSubRegIndex; +def dsub_6 : ComposedSubRegIndex; +def dsub_7 : ComposedSubRegIndex; + +def ssub_0 : SubRegIndex<32>; +def ssub_1 : SubRegIndex<32, 32>; +def ssub_2 : ComposedSubRegIndex; +def ssub_3 : ComposedSubRegIndex; + +def gsub_0 : SubRegIndex<32>; +def gsub_1 : SubRegIndex<32, 32>; +// Let TableGen synthesize the remaining 12 ssub_* indices. +// We don't need to name them. } // Integer registers @@ -109,13 +116,13 @@ def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; } // VFP3 defines 16 additional double registers -def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; +def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; -def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; +def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; @@ -127,9 +134,7 @@ def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; // Advanced SIMD (NEON) defines 16 quad-word aliases -let SubRegIndices = [dsub_0, dsub_1], - CompositeIndices = [(ssub_2 dsub_1, ssub_0), - (ssub_3 dsub_1, ssub_1)] in { +let SubRegIndices = [dsub_0, dsub_1] in { def Q0 : ARMReg< 0, "q0", [D0, D1]>; def Q1 : ARMReg< 1, "q1", [D2, D3]>; def Q2 : ARMReg< 2, "q2", [D4, D5]>; @@ -150,44 +155,29 @@ def Q14 : ARMReg<14, "q14", [D28, D29]>; def Q15 : ARMReg<15, "q15", [D30, D31]>; } -// Pseudo 256-bit registers to represent pairs of Q registers. These should -// never be present in the emitted code. -// These are used for NEON load / store instructions, e.g., vld4, vst3. -// NOTE: It's possible to define more QQ registers since technically the -// starting D register number doesn't have to be multiple of 4, e.g., -// D1, D2, D3, D4 would be a legal quad, but that would make the subregister -// stuff very messy. -let SubRegIndices = [qsub_0, qsub_1], - CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in { -def QQ0 : ARMReg<0, "qq0", [Q0, Q1]>; -def QQ1 : ARMReg<1, "qq1", [Q2, Q3]>; -def QQ2 : ARMReg<2, "qq2", [Q4, Q5]>; -def QQ3 : ARMReg<3, "qq3", [Q6, Q7]>; -def QQ4 : ARMReg<4, "qq4", [Q8, Q9]>; -def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>; -def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>; -def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>; -} - -// Pseudo 512-bit registers to represent four consecutive Q registers. -let SubRegIndices = [qqsub_0, qqsub_1], - CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1), - (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1), - (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in { -def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>; -def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>; -def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>; -def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>; -} - // Current Program Status Register. -def CPSR : ARMReg<0, "cpsr">; -def FPSCR : ARMReg<1, "fpscr">; -def ITSTATE : ARMReg<2, "itstate">; +// We model fpscr with two registers: FPSCR models the control bits and will be +// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV +// models the APSR when it's accessed by some special instructions. In such cases +// it has the same encoding as PC. +def CPSR : ARMReg<0, "cpsr">; +def APSR : ARMReg<1, "apsr">; +def APSR_NZCV : ARMReg<15, "apsr_nzcv">; +def SPSR : ARMReg<2, "spsr">; +def FPSCR : ARMReg<3, "fpscr">; +def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { + let Aliases = [FPSCR]; +} +def ITSTATE : ARMReg<4, "itstate">; // Special Registers - only available in privileged mode. -def FPSID : ARMReg<0, "fpsid">; -def FPEXC : ARMReg<8, "fpexc">; +def FPSID : ARMReg<0, "fpsid">; +def MVFR2 : ARMReg<5, "mvfr2">; +def MVFR1 : ARMReg<6, "mvfr1">; +def MVFR0 : ARMReg<7, "mvfr0">; +def FPEXC : ARMReg<8, "fpexc">; +def FPINST : ARMReg<9, "fpinst">; +def FPINST2 : ARMReg<10, "fpinst2">; // Register classes. // @@ -200,344 +190,230 @@ def FPEXC : ARMReg<8, "fpexc">; // r11 == Frame Pointer (arm-style backtraces) // r10 == Stack Limit // -def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, - R7, R8, R9, R10, R11, R12, - SP, LR, PC]> { - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; +def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), + SP, LR, PC)> { + // Allocate LR as the first CSR since it is always saved anyway. + // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't + // know how to spill them. If we make our prologue/epilogue code smarter at + // some point, we can go back to using the above allocation orders for the + // Thumb1 instructions that know how to use hi regs. + let AltOrders = [(add LR, GPR), (trunc GPR, 8)]; + let AltOrderSelect = [{ + return 1 + MF.getTarget().getSubtarget().isThumb1Only(); }]; - let MethodBodies = [{ - static const unsigned ARM_GPR_AO[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R12,ARM::LR, - ARM::R4, ARM::R5, ARM::R6, ARM::R7, - ARM::R8, ARM::R9, ARM::R10, ARM::R11 }; - - // For Thumb1 mode, we don't want to allocate hi regs at all, as we - // don't know how to spill them. If we make our prologue/epilogue code - // smarter at some point, we can go back to using the above allocation - // orders for the Thumb1 instructions that know how to use hi regs. - static const unsigned THUMB_GPR_AO[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R4, ARM::R5, ARM::R6, ARM::R7 }; - - GPRClass::iterator - GPRClass::allocation_order_begin(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.isThumb1Only()) - return THUMB_GPR_AO; - return ARM_GPR_AO; - } - - GPRClass::iterator - GPRClass::allocation_order_end(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.isThumb1Only()) - return THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned)); - return ARM_GPR_AO + (sizeof(ARM_GPR_AO)/sizeof(unsigned)); - } +} + +// GPRs without the PC. Some ARM instructions do not allow the PC in +// certain operand slots, particularly as the destination. Primarily +// useful for disassembly. +def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { + let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; + let AltOrderSelect = [{ + return 1 + MF.getTarget().getSubtarget().isThumb1Only(); }]; } +// GPRs without the PC but with APSR. Some instructions allow accessing the +// APSR, while actually encoding PC in the register field. This is useful +// for assembly and disassembly only. +def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { + let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; + let AltOrderSelect = [{ + return 1 + MF.getTarget().getSubtarget().isThumb1Only(); + }]; +} + +// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the +// implied SP argument list. +// FIXME: It would be better to not use this at all and refactor the +// instructions to not have SP an an explicit argument. That makes +// frame index resolution a bit trickier, though. +def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>; + // restricted GPR register class. Many Thumb2 instructions allow the full // register range for operands, but have undefined behaviours when PC // or SP (R13 or R15) are used. The ARM ISA refers to these operands // via the BadReg() pseudo-code description. -def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, - R7, R8, R9, R10, R11, R12, LR]> { - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - static const unsigned ARM_rGPR_AO[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R12,ARM::LR, - ARM::R4, ARM::R5, ARM::R6, ARM::R7, - ARM::R8, ARM::R9, ARM::R10, - ARM::R11 }; - - // For Thumb1 mode, we don't want to allocate hi regs at all, as we - // don't know how to spill them. If we make our prologue/epilogue code - // smarter at some point, we can go back to using the above allocation - // orders for the Thumb1 instructions that know how to use hi regs. - static const unsigned THUMB_rGPR_AO[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R4, ARM::R5, ARM::R6, ARM::R7 }; - - rGPRClass::iterator - rGPRClass::allocation_order_begin(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.isThumb1Only()) - return THUMB_rGPR_AO; - return ARM_rGPR_AO; - } - - rGPRClass::iterator - rGPRClass::allocation_order_end(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - - if (Subtarget.isThumb1Only()) - return THUMB_rGPR_AO + (sizeof(THUMB_rGPR_AO)/sizeof(unsigned)); - return ARM_rGPR_AO + (sizeof(ARM_rGPR_AO)/sizeof(unsigned)); - } +def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { + let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)]; + let AltOrderSelect = [{ + return 1 + MF.getTarget().getSubtarget().isThumb1Only(); }]; } // Thumb registers are R0-R7 normally. Some instructions can still use // the general GPR register class above (MOV, e.g.) -def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {} +def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>; + +// The high registers in thumb mode, R8-R15. +def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>; // For tail calls, we can't use callee-saved registers, as they are restored // to the saved value before the tail call, which would clobber a call address. // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of // this class and the preceding one(!) This is what we want. -def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> { - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - // R9 is available. - static const unsigned ARM_GPR_R9_TC[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R9, ARM::R12 }; - // R9 is not available. - static const unsigned ARM_GPR_NOR9_TC[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3, - ARM::R12 }; - - // For Thumb1 mode, we don't want to allocate hi regs at all, as we - // don't know how to spill them. If we make our prologue/epilogue code - // smarter at some point, we can go back to using the above allocation - // orders for the Thumb1 instructions that know how to use hi regs. - static const unsigned THUMB_GPR_AO_TC[] = { - ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; - - tcGPRClass::iterator - tcGPRClass::allocation_order_begin(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.isThumb1Only()) - return THUMB_GPR_AO_TC; - return Subtarget.isTargetDarwin() ? ARM_GPR_R9_TC : ARM_GPR_NOR9_TC; - } - - tcGPRClass::iterator - tcGPRClass::allocation_order_end(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - - if (Subtarget.isThumb1Only()) - return THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned)); - - return Subtarget.isTargetDarwin() ? - ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned)) : - ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned)); - } +def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { + let AltOrders = [(and tcGPR, tGPR)]; + let AltOrderSelect = [{ + return MF.getTarget().getSubtarget().isThumb1Only(); }]; } +// Condition code registers. +def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { + let CopyCost = -1; // Don't allow copying of status registers. + let isAllocatable = 0; +} // Scalar single precision floating point register class.. -def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8, - S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, - S23, S24, S25, S26, S27, S28, S29, S30, S31]>; +// FIXME: Allocation order changed to s0, s2, s4, ... as a quick hack to +// avoid partial-write dependencies on D registers (S registers are +// renamed as portions of D registers). +def SPR : RegisterClass<"ARM", [f32], 32, (add (decimate + (sequence "S%u", 0, 31), 2), + (sequence "S%u", 0, 31))>; // Subset of SPR which can be used as a source of NEON scalars for 16-bit // operations -def SPR_8 : RegisterClass<"ARM", [f32], 32, - [S0, S1, S2, S3, S4, S5, S6, S7, - S8, S9, S10, S11, S12, S13, S14, S15]>; +def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)>; // Scalar double precision floating point / generic 64-bit vector register // class. // ARM requires only word alignment for double. It's more performant if it // is double-word alignment though. def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, - [D0, D1, D2, D3, D4, D5, D6, D7, - D8, D9, D10, D11, D12, D13, D14, D15, - D16, D17, D18, D19, D20, D21, D22, D23, - D24, D25, D26, D27, D28, D29, D30, D31]> { - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - // VFP2 / VFPv3-D16 - static const unsigned ARM_DPR_VFP2[] = { - ARM::D0, ARM::D1, ARM::D2, ARM::D3, - ARM::D4, ARM::D5, ARM::D6, ARM::D7, - ARM::D8, ARM::D9, ARM::D10, ARM::D11, - ARM::D12, ARM::D13, ARM::D14, ARM::D15 }; - // VFP3: D8-D15 are callee saved and should be allocated last. - // Save other low registers for use as DPR_VFP2 and DPR_8 classes. - static const unsigned ARM_DPR_VFP3[] = { - ARM::D16, ARM::D17, ARM::D18, ARM::D19, - ARM::D20, ARM::D21, ARM::D22, ARM::D23, - ARM::D24, ARM::D25, ARM::D26, ARM::D27, - ARM::D28, ARM::D29, ARM::D30, ARM::D31, - ARM::D0, ARM::D1, ARM::D2, ARM::D3, - ARM::D4, ARM::D5, ARM::D6, ARM::D7, - ARM::D8, ARM::D9, ARM::D10, ARM::D11, - ARM::D12, ARM::D13, ARM::D14, ARM::D15 }; - - DPRClass::iterator - DPRClass::allocation_order_begin(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.hasVFP3() && !Subtarget.hasD16()) - return ARM_DPR_VFP3; - return ARM_DPR_VFP2; - } - - DPRClass::iterator - DPRClass::allocation_order_end(const MachineFunction &MF) const { - const TargetMachine &TM = MF.getTarget(); - const ARMSubtarget &Subtarget = TM.getSubtarget(); - if (Subtarget.hasVFP3() && !Subtarget.hasD16()) - return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned)); - else - return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned)); - } - }]; + (sequence "D%u", 0, 31)> { + // Allocate non-VFP2 registers D16-D31 first. + let AltOrders = [(rotl DPR, 16)]; + let AltOrderSelect = [{ return 1; }]; } // Subset of DPR that are accessible with VFP2 (and so that also have // 32-bit SPR subregs). def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, - [D0, D1, D2, D3, D4, D5, D6, D7, - D8, D9, D10, D11, D12, D13, D14, D15]> { - let SubRegClasses = [(SPR ssub_0, ssub_1)]; -} + (trunc DPR, 16)>; // Subset of DPR which can be used as a source of NEON scalars for 16-bit // operations def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, - [D0, D1, D2, D3, D4, D5, D6, D7]> { - let SubRegClasses = [(SPR_8 ssub_0, ssub_1)]; -} + (trunc DPR, 8)>; // Generic 128-bit vector register class. def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, - [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, - Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15]> { - let SubRegClasses = [(DPR dsub_0, dsub_1)]; - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - // Q4-Q7 are callee saved and should be allocated last. - // Save other low registers for use as QPR_VFP2 and QPR_8 classes. - static const unsigned ARM_QPR[] = { - ARM::Q8, ARM::Q9, ARM::Q10, ARM::Q11, - ARM::Q12, ARM::Q13, ARM::Q14, ARM::Q15, - ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, - ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7 }; - - QPRClass::iterator - QPRClass::allocation_order_begin(const MachineFunction &MF) const { - return ARM_QPR; - } - - QPRClass::iterator - QPRClass::allocation_order_end(const MachineFunction &MF) const { - return ARM_QPR + (sizeof(ARM_QPR)/sizeof(unsigned)); - } - }]; + (sequence "Q%u", 0, 15)> { + // Allocate non-VFP2 aliases Q8-Q15 first. + let AltOrders = [(rotl QPR, 8)]; + let AltOrderSelect = [{ return 1; }]; } // Subset of QPR that have 32-bit SPR subregs. def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - 128, - [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]> { - let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), - (DPR_VFP2 dsub_0, dsub_1)]; -} + 128, (trunc QPR, 8)>; // Subset of QPR that have DPR_8 and SPR_8 subregs. def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - 128, - [Q0, Q1, Q2, Q3]> { - let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3), - (DPR_8 dsub_0, dsub_1)]; + 128, (trunc QPR, 4)>; + +// Pseudo-registers representing odd-even pairs of D registers. The even-odd +// pairs are already represented by the Q registers. +// These are needed by NEON instructions requiring two consecutive D registers. +// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. +def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], + [(decimate (shl DPR, 1), 2), + (decimate (shl DPR, 2), 2)]>; + +// Register class representing a pair of consecutive D registers. +// Use the Q registers for the even-odd pairs. +def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + 128, (interleave QPR, TuplesOE2D)> { + // Allocate starting at non-VFP2 registers D16-D31 first. + // Prefer even-odd pairs as they are easier to copy. + let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))]; + let AltOrderSelect = [{ return 1; }]; +} + +// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. +// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. +def Tuples2R : RegisterTuples<[gsub_0, gsub_1], + [(add R0, R2, R4, R6, R8, R10, R12), + (add R1, R3, R5, R7, R9, R11, SP)]>; + +// Register class representing a pair of even-odd GPRs. +def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> { + let Size = 64; // 2 x 32 bits, we have no predefined type of that size. +} + +// Pseudo-registers representing 3 consecutive D registers. +def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], + [(shl DPR, 0), + (shl DPR, 1), + (shl DPR, 2)]>; + +// 3 consecutive D registers. +def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { + let Size = 192; // 3 x 64 bits, we have no predefined type of that size. } +// Pseudo 256-bit registers to represent pairs of Q registers. These should +// never be present in the emitted code. +// These are used for NEON load / store instructions, e.g., vld4, vst3. +def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; + // Pseudo 256-bit vector register class to model pairs of Q registers // (4 consecutive D registers). -def QQPR : RegisterClass<"ARM", [v4i64], - 256, - [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> { - let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3), - (QPR qsub_0, qsub_1)]; - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - // QQ2-QQ3 are callee saved and should be allocated last. - // Save other low registers for use as QPR_VFP2 and QPR_8 classes. - static const unsigned ARM_QQPR[] = { - ARM::QQ4, ARM::QQ5, ARM::QQ6, ARM::QQ7, - ARM::QQ0, ARM::QQ1, ARM::QQ2, ARM::QQ3 }; - - QQPRClass::iterator - QQPRClass::allocation_order_begin(const MachineFunction &MF) const { - return ARM_QQPR; - } - - QQPRClass::iterator - QQPRClass::allocation_order_end(const MachineFunction &MF) const { - return ARM_QQPR + (sizeof(ARM_QQPR)/sizeof(unsigned)); - } - }]; +def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { + // Allocate non-VFP2 aliases first. + let AltOrders = [(rotl QQPR, 8)]; + let AltOrderSelect = [{ return 1; }]; } -// Subset of QQPR that have 32-bit SPR subregs. -def QQPR_VFP2 : RegisterClass<"ARM", [v4i64], - 256, - [QQ0, QQ1, QQ2, QQ3]> { - let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), - (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3), - (QPR_VFP2 qsub_0, qsub_1)]; +// Tuples of 4 D regs that isn't also a pair of Q regs. +def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], + [(decimate (shl DPR, 1), 2), + (decimate (shl DPR, 2), 2), + (decimate (shl DPR, 3), 2), + (decimate (shl DPR, 4), 2)]>; -} +// 4 consecutive D registers. +def DQuad : RegisterClass<"ARM", [v4i64], 256, + (interleave Tuples2Q, TuplesOE4D)>; + +// Pseudo 512-bit registers to represent four consecutive Q registers. +def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], + [(shl QQPR, 0), (shl QQPR, 2)]>; // Pseudo 512-bit vector register class to model 4 consecutive Q registers // (8 consecutive D registers). -def QQQQPR : RegisterClass<"ARM", [v8i64], - 256, - [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> { - let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3, - dsub_4, dsub_5, dsub_6, dsub_7), - (QPR qsub_0, qsub_1, qsub_2, qsub_3)]; - let MethodProtos = [{ - iterator allocation_order_begin(const MachineFunction &MF) const; - iterator allocation_order_end(const MachineFunction &MF) const; - }]; - let MethodBodies = [{ - // QQQQ1 is callee saved and should be allocated last. - // Save QQQQ0 for use as QPR_VFP2 and QPR_8 classes. - static const unsigned ARM_QQQQPR[] = { - ARM::QQQQ2, ARM::QQQQ3, ARM::QQQQ0, ARM::QQQQ1 }; - - QQQQPRClass::iterator - QQQQPRClass::allocation_order_begin(const MachineFunction &MF) const { - return ARM_QQQQPR; - } - - QQQQPRClass::iterator - QQQQPRClass::allocation_order_end(const MachineFunction &MF) const { - return ARM_QQQQPR + (sizeof(ARM_QQQQPR)/sizeof(unsigned)); - } - }]; +def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { + // Allocate non-VFP2 aliases first. + let AltOrders = [(rotl QQQQPR, 8)]; + let AltOrderSelect = [{ return 1; }]; } -// Condition code registers. -def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>; + +// Pseudo-registers representing 2-spaced consecutive D registers. +def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], + [(shl DPR, 0), + (shl DPR, 2)]>; + +// Spaced pairs of D registers. +def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; + +def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], + [(shl DPR, 0), + (shl DPR, 2), + (shl DPR, 4)]>; + +// Spaced triples of D registers. +def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { + let Size = 192; // 3 x 64 bits, we have no predefined type of that size. +} + +def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], + [(shl DPR, 0), + (shl DPR, 2), + (shl DPR, 4), + (shl DPR, 6)]>; + +// Spaced quads of D registers. +def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;