X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FPowerPC%2FPPCISelDAGToDAG.cpp;h=ae32f9479e6861f2891fb434816660a37ba2f763;hb=222adac30a642b5ea4a916eb3e97d8d95eb32bea;hp=8f8fa70093b8ea6c0770085cb106b4fa40335132;hpb=f5fac3b4a6c41a2ea344a24c5f9ecc51cfca0723;p=oota-llvm.git diff --git a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp index 8f8fa70093b..ae32f9479e6 100644 --- a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp +++ b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp @@ -15,16 +15,20 @@ #include "PowerPC.h" #include "PPC32TargetMachine.h" #include "PPC32ISelLowering.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Constants.h" +#include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" using namespace llvm; namespace { - Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted"); Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); @@ -34,16 +38,26 @@ namespace { /// class PPC32DAGToDAGISel : public SelectionDAGISel { PPC32TargetLowering PPC32Lowering; - + unsigned GlobalBaseReg; public: PPC32DAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {} + virtual bool runOnFunction(Function &Fn) { + // Make sure we re-emit a set of the global base reg if necessary + GlobalBaseReg = 0; + return SelectionDAGISel::runOnFunction(Fn); + } + /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDOperand getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } + + /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC + /// base register. Return the virtual register that holds this value. + SDOperand getGlobalBaseReg(); // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. @@ -53,23 +67,107 @@ namespace { unsigned OCHi, unsigned OCLo, bool IsArithmetic = false, bool Negate = false); - + SDNode *SelectBitfieldInsert(SDNode *N); + + /// SelectCC - Select a comparison of the specified values with the + /// specified condition code, returning the CR# of the expression. + SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); + + /// SelectAddr - Given the specified address, return the two operands for a + /// load/store instruction, and return true if it should be an indexed [r+r] + /// operation. + bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); + + SDOperand BuildSDIVSequence(SDNode *N); + SDOperand BuildUDIVSequence(SDNode *N); + /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. - virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { - DEBUG(BB->dump()); - // Codegen the basic block. - Select(DAG.getRoot()); - DAG.RemoveDeadNodes(); - DAG.viewGraph(); - } - + virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); + virtual const char *getPassName() const { return "PowerPC DAG->DAG Pattern Instruction Selection"; } + +// Include the pieces autogenerated from the target description. +#include "PPC32GenDAGISel.inc" + +private: + SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op); + SDOperand SelectADD_PARTS(SDOperand Op); + SDOperand SelectSUB_PARTS(SDOperand Op); + SDOperand SelectSETCC(SDOperand Op); }; } +/// InstructionSelectBasicBlock - This callback is invoked by +/// SelectionDAGISel when it has created a SelectionDAG for us to codegen. +void PPC32DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { + DEBUG(BB->dump()); + + // The selection process is inherently a bottom-up recursive process (users + // select their uses before themselves). Given infinite stack space, we + // could just start selecting on the root and traverse the whole graph. In + // practice however, this causes us to run out of stack space on large basic + // blocks. To avoid this problem, select the entry node, then all its uses, + // iteratively instead of recursively. + std::vector Worklist; + Worklist.push_back(DAG.getEntryNode()); + + // Note that we can do this in the PPC target (scanning forward across token + // chain edges) because no nodes ever get folded across these edges. On a + // target like X86 which supports load/modify/store operations, this would + // have to be more careful. + while (!Worklist.empty()) { + SDOperand Node = Worklist.back(); + Worklist.pop_back(); + + if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && + Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || + CodeGenMap.count(Node)) continue; + + for (SDNode::use_iterator UI = Node.Val->use_begin(), + E = Node.Val->use_end(); UI != E; ++UI) { + // Scan the values. If this use has a value that is a token chain, add it + // to the worklist. + SDNode *User = *UI; + for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) + if (User->getValueType(i) == MVT::Other) { + Worklist.push_back(SDOperand(User, i)); + break; + } + } + + // Finally, legalize this node. + Select(Node); + } + + // Select target instructions for the DAG. + DAG.setRoot(Select(DAG.getRoot())); + CodeGenMap.clear(); + DAG.RemoveDeadNodes(); + + // Emit machine code to BB. + ScheduleAndEmitDAG(DAG); +} + +/// getGlobalBaseReg - Output the instructions required to put the +/// base address to use for accessing globals into a register. +/// +SDOperand PPC32DAGToDAGISel::getGlobalBaseReg() { + if (!GlobalBaseReg) { + // Insert the set of GlobalBaseReg into the first MBB of the function + MachineBasicBlock &FirstMBB = BB->getParent()->front(); + MachineBasicBlock::iterator MBBI = FirstMBB.begin(); + SSARegMap *RegMap = BB->getParent()->getSSARegMap(); + GlobalBaseReg = RegMap->createVirtualRegister(PPC32::GPRCRegisterClass); + BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); + BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); + } + return CurDAG->getRegister(GlobalBaseReg, MVT::i32); +} + + // isIntImmediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isIntImmediate(SDNode *N, unsigned& Imm) { @@ -99,12 +197,15 @@ static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { // look for the first zero bit after the run of ones ME = CountLeadingZeros_32((Val - 1) ^ Val); return true; - } else if (isShiftedMask_32(Val = ~Val)) { // invert mask - // effectively look for the first zero bit - ME = CountLeadingZeros_32(Val) - 1; - // effectively look for the first one bit after the run of zeros - MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; - return true; + } else { + Val = ~Val; // invert mask + if (isShiftedMask_32(Val)) { + // effectively look for the first zero bit + ME = CountLeadingZeros_32(Val) - 1; + // effectively look for the first one bit after the run of zeros + MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; + return true; + } } // no run present return false; @@ -117,7 +218,8 @@ static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, unsigned Shift = 32; unsigned Indeterminant = ~0; // bit mask marking indeterminant results unsigned Opcode = N->getOpcode(); - if (!isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) + if (N->getNumOperands() != 2 || + !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) return false; if (Opcode == ISD::SHL) { @@ -177,6 +279,114 @@ static bool isIntImmediate(SDOperand N, unsigned& Imm) { return false; } +/// SelectBitfieldInsert - turn an or of two masked values into +/// the rotate left word immediate then mask insert (rlwimi) instruction. +/// Returns true on success, false if the caller still needs to select OR. +/// +/// Patterns matched: +/// 1. or shl, and 5. or and, and +/// 2. or and, shl 6. or shl, shr +/// 3. or shr, and 7. or shr, shl +/// 4. or and, shr +SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) { + bool IsRotate = false; + unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0; + unsigned Value; + + SDOperand Op0 = N->getOperand(0); + SDOperand Op1 = N->getOperand(1); + + unsigned Op0Opc = Op0.getOpcode(); + unsigned Op1Opc = Op1.getOpcode(); + + // Verify that we have the correct opcodes + if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) + return false; + if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) + return false; + + // Generate Mask value for Target + if (isIntImmediate(Op0.getOperand(1), Value)) { + switch(Op0Opc) { + case ISD::SHL: TgtMask <<= Value; break; + case ISD::SRL: TgtMask >>= Value; break; + case ISD::AND: TgtMask &= Value; break; + } + } else { + return 0; + } + + // Generate Mask value for Insert + if (!isIntImmediate(Op1.getOperand(1), Value)) + return 0; + + switch(Op1Opc) { + case ISD::SHL: + SH = Value; + InsMask <<= SH; + if (Op0Opc == ISD::SRL) IsRotate = true; + break; + case ISD::SRL: + SH = Value; + InsMask >>= SH; + SH = 32-SH; + if (Op0Opc == ISD::SHL) IsRotate = true; + break; + case ISD::AND: + InsMask &= Value; + break; + } + + // If both of the inputs are ANDs and one of them has a logical shift by + // constant as its input, make that AND the inserted value so that we can + // combine the shift into the rotate part of the rlwimi instruction + bool IsAndWithShiftOp = false; + if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { + if (Op1.getOperand(0).getOpcode() == ISD::SHL || + Op1.getOperand(0).getOpcode() == ISD::SRL) { + if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { + SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; + IsAndWithShiftOp = true; + } + } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || + Op0.getOperand(0).getOpcode() == ISD::SRL) { + if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { + std::swap(Op0, Op1); + std::swap(TgtMask, InsMask); + SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; + IsAndWithShiftOp = true; + } + } + } + + // Verify that the Target mask and Insert mask together form a full word mask + // and that the Insert mask is a run of set bits (which implies both are runs + // of set bits). Given that, Select the arguments and generate the rlwimi + // instruction. + unsigned MB, ME; + if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { + bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; + bool Op0IsAND = Op0Opc == ISD::AND; + // Check for rotlwi / rotrwi here, a special case of bitfield insert + // where both bitfield halves are sourced from the same value. + if (IsRotate && fullMask && + N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) { + Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, + Select(N->getOperand(0).getOperand(0)), + getI32Imm(SH), getI32Imm(0), getI32Imm(31)); + return Op0.Val; + } + SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0)) + : Select(Op0); + SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) + : Select(Op1.getOperand(0)); + Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, + getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); + return Op0.Val; + } + return 0; +} + // SelectIntImmediateExpr - Choose code for integer operations with an immediate // operand. SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS, @@ -209,23 +419,489 @@ SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS, return Opr0.Val; } +/// SelectAddr - Given the specified address, return the two operands for a +/// load/store instruction, and return true if it should be an indexed [r+r] +/// operation. +bool PPC32DAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1, + SDOperand &Op2) { + unsigned imm = 0; + if (Addr.getOpcode() == ISD::ADD) { + if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) { + Op1 = getI32Imm(Lo16(imm)); + if (FrameIndexSDNode *FI = + dyn_cast(Addr.getOperand(0))) { + ++FrameOff; + Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); + } else { + Op2 = Select(Addr.getOperand(0)); + } + return false; + } else { + Op1 = Select(Addr.getOperand(0)); + Op2 = Select(Addr.getOperand(1)); + return true; // [r+r] + } + } + + // Now check if we're dealing with a global, and whether or not we should emit + // an optimized load or store for statics. + if (GlobalAddressSDNode *GN = dyn_cast(Addr)) { + GlobalValue *GV = GN->getGlobal(); + if (!GV->hasWeakLinkage() && !GV->isExternal()) { + Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32); + if (PICEnabled) + Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), + Op1); + else + Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); + return false; + } + } else if (FrameIndexSDNode *FI = dyn_cast(Addr)) { + Op1 = getI32Imm(0); + Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); + return false; + } else if (ConstantPoolSDNode *CP = dyn_cast(Addr)) { + Op1 = Addr; + if (PICEnabled) + Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1); + else + Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); + return false; + } + Op1 = getI32Imm(0); + Op2 = Select(Addr); + return false; +} + +/// SelectCC - Select a comparison of the specified values with the specified +/// condition code, returning the CR# of the expression. +SDOperand PPC32DAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, + ISD::CondCode CC) { + // Always select the LHS. + LHS = Select(LHS); + + // Use U to determine whether the SETCC immediate range is signed or not. + if (MVT::isInteger(LHS.getValueType())) { + bool U = ISD::isUnsignedIntSetCC(CC); + unsigned Imm; + if (isIntImmediate(RHS, Imm) && + ((U && isUInt16(Imm)) || (!U && isInt16(Imm)))) + return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32, + LHS, getI32Imm(Lo16(Imm))); + return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32, + LHS, Select(RHS)); + } else if (LHS.getValueType() == MVT::f32) { + return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS)); + } else { + return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS)); + } +} + +/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding +/// to Condition. +static unsigned getBCCForSetCC(ISD::CondCode CC) { + switch (CC) { + default: assert(0 && "Unknown condition!"); abort(); + case ISD::SETEQ: return PPC::BEQ; + case ISD::SETNE: return PPC::BNE; + case ISD::SETULT: + case ISD::SETLT: return PPC::BLT; + case ISD::SETULE: + case ISD::SETLE: return PPC::BLE; + case ISD::SETUGT: + case ISD::SETGT: return PPC::BGT; + case ISD::SETUGE: + case ISD::SETGE: return PPC::BGE; + } + return 0; +} + +/// getCRIdxForSetCC - Return the index of the condition register field +/// associated with the SetCC condition, and whether or not the field is +/// treated as inverted. That is, lt = 0; ge = 0 inverted. +static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { + switch (CC) { + default: assert(0 && "Unknown condition!"); abort(); + case ISD::SETULT: + case ISD::SETLT: Inv = false; return 0; + case ISD::SETUGE: + case ISD::SETGE: Inv = true; return 0; + case ISD::SETUGT: + case ISD::SETGT: Inv = false; return 1; + case ISD::SETULE: + case ISD::SETLE: Inv = true; return 1; + case ISD::SETEQ: Inv = false; return 2; + case ISD::SETNE: Inv = true; return 2; + } + return 0; +} + +// Structure used to return the necessary information to codegen an SDIV as +// a multiply. +struct ms { + int m; // magic number + int s; // shift amount +}; + +struct mu { + unsigned int m; // magic number + int a; // add indicator + int s; // shift amount +}; + +/// magic - calculate the magic numbers required to codegen an integer sdiv as +/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, +/// or -1. +static struct ms magic(int d) { + int p; + unsigned int ad, anc, delta, q1, r1, q2, r2, t; + const unsigned int two31 = 0x80000000U; + struct ms mag; + + ad = abs(d); + t = two31 + ((unsigned int)d >> 31); + anc = t - 1 - t%ad; // absolute value of nc + p = 31; // initialize p + q1 = two31/anc; // initialize q1 = 2p/abs(nc) + r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) + q2 = two31/ad; // initialize q2 = 2p/abs(d) + r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) + do { + p = p + 1; + q1 = 2*q1; // update q1 = 2p/abs(nc) + r1 = 2*r1; // update r1 = rem(2p/abs(nc)) + if (r1 >= anc) { // must be unsigned comparison + q1 = q1 + 1; + r1 = r1 - anc; + } + q2 = 2*q2; // update q2 = 2p/abs(d) + r2 = 2*r2; // update r2 = rem(2p/abs(d)) + if (r2 >= ad) { // must be unsigned comparison + q2 = q2 + 1; + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1 < delta || (q1 == delta && r1 == 0)); + + mag.m = q2 + 1; + if (d < 0) mag.m = -mag.m; // resulting magic number + mag.s = p - 32; // resulting shift + return mag; +} + +/// magicu - calculate the magic numbers required to codegen an integer udiv as +/// a sequence of multiply, add and shifts. Requires that the divisor not be 0. +static struct mu magicu(unsigned d) +{ + int p; + unsigned int nc, delta, q1, r1, q2, r2; + struct mu magu; + magu.a = 0; // initialize "add" indicator + nc = - 1 - (-d)%d; + p = 31; // initialize p + q1 = 0x80000000/nc; // initialize q1 = 2p/nc + r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) + q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d + r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) + do { + p = p + 1; + if (r1 >= nc - r1 ) { + q1 = 2*q1 + 1; // update q1 + r1 = 2*r1 - nc; // update r1 + } + else { + q1 = 2*q1; // update q1 + r1 = 2*r1; // update r1 + } + if (r2 + 1 >= d - r2) { + if (q2 >= 0x7FFFFFFF) magu.a = 1; + q2 = 2*q2 + 1; // update q2 + r2 = 2*r2 + 1 - d; // update r2 + } + else { + if (q2 >= 0x80000000) magu.a = 1; + q2 = 2*q2; // update q2 + r2 = 2*r2 + 1; // update r2 + } + delta = d - 1 - r2; + } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); + magu.m = q2 + 1; // resulting magic number + magu.s = p - 32; // resulting shift + return magu; +} + +/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. See: +/// +SDOperand PPC32DAGToDAGISel::BuildSDIVSequence(SDNode *N) { + int d = (int)cast(N->getOperand(1))->getValue(); + ms magics = magic(d); + // Multiply the numerator (operand 0) by the magic value + SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0), + CurDAG->getConstant(magics.m, MVT::i32)); + // If d > 0 and m < 0, add the numerator + if (d > 0 && magics.m < 0) + Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0)); + // If d < 0 and m > 0, subtract the numerator. + if (d < 0 && magics.m > 0) + Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0)); + // Shift right algebraic if shift value is nonzero + if (magics.s > 0) + Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q, + CurDAG->getConstant(magics.s, MVT::i32)); + // Extract the sign bit and add it to the quotient + SDOperand T = + CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32)); + return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T); +} + +/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. See: +/// +SDOperand PPC32DAGToDAGISel::BuildUDIVSequence(SDNode *N) { + unsigned d = (unsigned)cast(N->getOperand(1))->getValue(); + mu magics = magicu(d); + // Multiply the numerator (operand 0) by the magic value + SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0), + CurDAG->getConstant(magics.m, MVT::i32)); + if (magics.a == 0) { + return CurDAG->getNode(ISD::SRL, MVT::i32, Q, + CurDAG->getConstant(magics.s, MVT::i32)); + } else { + SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q); + NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ, + CurDAG->getConstant(1, MVT::i32)); + NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q); + return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ, + CurDAG->getConstant(magics.s-1, MVT::i32)); + } +} + +SDOperand PPC32DAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) { + SDNode *N = Op.Val; + + // FIXME: We are currently ignoring the requested alignment for handling + // greater than the stack alignment. This will need to be revisited at some + // point. Align = N.getOperand(2); + if (!isa(N->getOperand(2)) || + cast(N->getOperand(2))->getValue() != 0) { + std::cerr << "Cannot allocate stack object with greater alignment than" + << " the stack alignment yet!"; + abort(); + } + SDOperand Chain = Select(N->getOperand(0)); + SDOperand Amt = Select(N->getOperand(1)); + + SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32); + + SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); + Chain = R1Val.getValue(1); + + // Subtract the amount (guaranteed to be a multiple of the stack alignment) + // from the stack pointer, giving us the result pointer. + SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val); + + // Copy this result back into R1. + Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result); + + // Copy this result back out of R1 to make sure we're not using the stack + // space without decrementing the stack pointer. + Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); + + // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. + CodeGenMap[Op.getValue(0)] = Result; + CodeGenMap[Op.getValue(1)] = Result.getValue(1); + return SDOperand(Result.Val, Op.ResNo); +} + +SDOperand PPC32DAGToDAGISel::SelectADD_PARTS(SDOperand Op) { + SDNode *N = Op.Val; + SDOperand LHSL = Select(N->getOperand(0)); + SDOperand LHSH = Select(N->getOperand(1)); + + unsigned Imm; + bool ME = false, ZE = false; + if (isIntImmediate(N->getOperand(3), Imm)) { + ME = (signed)Imm == -1; + ZE = Imm == 0; + } + + std::vector Result; + SDOperand CarryFromLo; + if (isIntImmediate(N->getOperand(2), Imm) && + ((signed)Imm >= -32768 || (signed)Imm < 32768)) { + // Codegen the low 32 bits of the add. Interestingly, there is no + // shifted form of add immediate carrying. + CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, + LHSL, getI32Imm(Imm)); + } else { + CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag, + LHSL, Select(N->getOperand(2))); + } + CarryFromLo = CarryFromLo.getValue(1); + + // Codegen the high 32 bits, adding zero, minus one, or the full value + // along with the carry flag produced by addc/addic. + SDOperand ResultHi; + if (ZE) + ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo); + else if (ME) + ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo); + else + ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH, + Select(N->getOperand(3)), CarryFromLo); + Result.push_back(CarryFromLo.getValue(0)); + Result.push_back(ResultHi); + + CodeGenMap[Op.getValue(0)] = Result[0]; + CodeGenMap[Op.getValue(1)] = Result[1]; + return Result[Op.ResNo]; +} +SDOperand PPC32DAGToDAGISel::SelectSUB_PARTS(SDOperand Op) { + SDNode *N = Op.Val; + SDOperand LHSL = Select(N->getOperand(0)); + SDOperand LHSH = Select(N->getOperand(1)); + SDOperand RHSL = Select(N->getOperand(2)); + SDOperand RHSH = Select(N->getOperand(3)); + + std::vector Result; + Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag, + RHSL, LHSL)); + Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH, + Result[0].getValue(1))); + CodeGenMap[Op.getValue(0)] = Result[0]; + CodeGenMap[Op.getValue(1)] = Result[1]; + return Result[Op.ResNo]; +} + +SDOperand PPC32DAGToDAGISel::SelectSETCC(SDOperand Op) { + SDNode *N = Op.Val; + unsigned Imm; + ISD::CondCode CC = cast(N->getOperand(2))->get(); + if (isIntImmediate(N->getOperand(1), Imm)) { + // We can codegen setcc op, imm very efficiently compared to a brcond. + // Check for those cases here. + // setcc op, 0 + if (Imm == 0) { + SDOperand Op = Select(N->getOperand(0)); + switch (CC) { + default: assert(0 && "Unhandled SetCC condition"); abort(); + case ISD::SETEQ: + Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op); + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), + getI32Imm(5), getI32Imm(31)); + break; + case ISD::SETNE: { + SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, + Op, getI32Imm(~0U)); + CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); + break; + } + case ISD::SETLT: + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), + getI32Imm(31), getI32Imm(31)); + break; + case ISD::SETGT: { + SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op); + T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);; + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), + getI32Imm(31), getI32Imm(31)); + break; + } + } + return SDOperand(N, 0); + } else if (Imm == ~0U) { // setcc op, -1 + SDOperand Op = Select(N->getOperand(0)); + switch (CC) { + default: assert(0 && "Unhandled SetCC condition"); abort(); + case ISD::SETEQ: + Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, + Op, getI32Imm(1)); + CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, + CurDAG->getTargetNode(PPC::LI, MVT::i32, + getI32Imm(0)), + Op.getValue(1)); + break; + case ISD::SETNE: { + Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op); + SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, + Op, getI32Imm(~0U)); + CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); + break; + } + case ISD::SETLT: { + SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, + getI32Imm(1)); + SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op); + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), + getI32Imm(31), getI32Imm(31)); + break; + } + case ISD::SETGT: + Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1), + getI32Imm(31), getI32Imm(31)); + CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); + break; + } + return SDOperand(N, 0); + } + } + + bool Inv; + unsigned Idx = getCRIdxForSetCC(CC, Inv); + SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); + SDOperand IntCR; + + // Force the ccreg into CR7. + SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); + + std::vector VTs; + VTs.push_back(MVT::Other); + VTs.push_back(MVT::Flag); // NONSTANDARD CopyToReg node: defines a flag + std::vector Ops; + Ops.push_back(CurDAG->getEntryNode()); + Ops.push_back(CR7Reg); + Ops.push_back(CCReg); + CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1); + + if (TLI.getTargetMachine().getSubtarget().isGigaProcessor()) + IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg); + else + IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg); + + if (!Inv) { + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, + getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31)); + } else { + SDOperand Tmp = + CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, + getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31)); + CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); + } + + return SDOperand(N, 0); +} // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; - if (N->getOpcode() >= ISD::BUILTIN_OP_END) + if (N->getOpcode() >= ISD::BUILTIN_OP_END && + N->getOpcode() < PPCISD::FIRST_NUMBER) return Op; // Already selected. + + // If this has already been converted, use it. + std::map::iterator CGMI = CodeGenMap.find(Op); + if (CGMI != CodeGenMap.end()) return CGMI->second; switch (N->getOpcode()) { - default: - std::cerr << "Cannot yet select: "; - N->dump(); - std::cerr << "\n"; - abort(); - case ISD::EntryToken: // These leaves remain the same. - case ISD::UNDEF: - return Op; + default: break; + case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op); + case ISD::ADD_PARTS: return SelectADD_PARTS(Op); + case ISD::SUB_PARTS: return SelectSUB_PARTS(Op); + case ISD::SETCC: return SelectSETCC(Op); case ISD::TokenFactor: { SDOperand New; if (N->getNumOperands() == 2) { @@ -235,15 +911,12 @@ SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) { } else { std::vector Ops; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) - Ops.push_back(Select(N->getOperand(0))); + Ops.push_back(Select(N->getOperand(i))); New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops); } - if (New.Val != N) { - CurDAG->ReplaceAllUsesWith(N, New.Val); - N = New.Val; - } - break; + if (!N->hasOneUse()) CodeGenMap[Op] = New; + return New; } case ISD::CopyFromReg: { SDOperand Chain = Select(N->getOperand(0)); @@ -256,154 +929,172 @@ SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) { SDOperand Chain = Select(N->getOperand(0)); SDOperand Reg = N->getOperand(1); SDOperand Val = Select(N->getOperand(2)); - if (Chain != N->getOperand(0) || Val != N->getOperand(2)) { - SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other, - Chain, Reg, Val); - CurDAG->ReplaceAllUsesWith(N, New.Val); - N = New.Val; - } - break; - } - case ISD::Constant: { - assert(N->getValueType(0) == MVT::i32); - unsigned v = (unsigned)cast(N)->getValue(); - unsigned Hi = HA16(v); - unsigned Lo = Lo16(v); - if (Hi && Lo) { - SDOperand Top = CurDAG->getTargetNode(PPC::LIS, MVT::i32, - getI32Imm(v >> 16)); - CurDAG->SelectNodeTo(N, MVT::i32, PPC::ORI, Top, getI32Imm(v & 0xFFFF)); - } else if (Lo) { - CurDAG->SelectNodeTo(N, MVT::i32, PPC::LI, getI32Imm(v)); - } else { - CurDAG->SelectNodeTo(N, MVT::i32, PPC::LIS, getI32Imm(v >> 16)); - } - break; + SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other, + Chain, Reg, Val); + if (!N->hasOneUse()) CodeGenMap[Op] = New; + return New; + } + case ISD::UNDEF: + if (N->getValueType(0) == MVT::i32) + CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32); + else if (N->getValueType(0) == MVT::f32) + CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F4, MVT::f32); + else + CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F8, MVT::f64); + return SDOperand(N, 0); + case ISD::FrameIndex: { + int FI = cast(N)->getIndex(); + CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32, + CurDAG->getTargetFrameIndex(FI, MVT::i32), + getI32Imm(0)); + return SDOperand(N, 0); + } + case ISD::ConstantPool: { + Constant *C = cast(N)->get(); + SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32); + if (PICEnabled) + Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI); + else + Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI); + CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI); + return SDOperand(N, 0); + } + case ISD::GlobalAddress: { + GlobalValue *GV = cast(N)->getGlobal(); + SDOperand Tmp; + SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32); + if (PICEnabled) + Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA); + else + Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA); + + if (GV->hasWeakLinkage() || GV->isExternal()) + CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp); + else + CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA); + return SDOperand(N, 0); } - case ISD::SIGN_EXTEND_INREG: - switch(cast(N->getOperand(1))->getVT()) { - default: assert(0 && "Illegal type in SIGN_EXTEND_INREG"); break; - case MVT::i16: - CurDAG->SelectNodeTo(N, MVT::i32, PPC::EXTSH, Select(N->getOperand(0))); - break; - case MVT::i8: - CurDAG->SelectNodeTo(N, MVT::i32, PPC::EXTSB, Select(N->getOperand(0))); - break; - } - break; - case ISD::CTLZ: - assert(N->getValueType(0) == MVT::i32); - CurDAG->SelectNodeTo(N, MVT::i32, PPC::CNTLZW, Select(N->getOperand(0))); - break; - case ISD::ADD: { - MVT::ValueType Ty = N->getValueType(0); - if (Ty == MVT::i32) { - if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1), - PPC::ADDIS, PPC::ADDI, true)) { - CurDAG->ReplaceAllUsesWith(N, I); - N = I; - } else { - CurDAG->SelectNodeTo(N, Ty, PPC::ADD, Select(N->getOperand(0)), - Select(N->getOperand(1))); - } - break; - } + case PPCISD::FSEL: { + SDOperand Comparison = Select(N->getOperand(0)); + // Extend the comparison to 64-bits. + if (Comparison.getValueType() == MVT::f32) + Comparison = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Comparison); + + unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD; + CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Comparison, + Select(N->getOperand(1)), Select(N->getOperand(2))); + return SDOperand(N, 0); + } + case PPCISD::FCFID: + CurDAG->SelectNodeTo(N, PPC::FCFID, N->getValueType(0), + Select(N->getOperand(0))); + return SDOperand(N, 0); + case PPCISD::FCTIDZ: + CurDAG->SelectNodeTo(N, PPC::FCTIDZ, N->getValueType(0), + Select(N->getOperand(0))); + return SDOperand(N, 0); + case PPCISD::FCTIWZ: + CurDAG->SelectNodeTo(N, PPC::FCTIWZ, N->getValueType(0), + Select(N->getOperand(0))); + return SDOperand(N, 0); + case ISD::FADD: { + MVT::ValueType Ty = N->getValueType(0); if (!NoExcessFPPrecision) { // Match FMA ops - if (N->getOperand(0).getOpcode() == ISD::MUL && + if (N->getOperand(0).getOpcode() == ISD::FMUL && N->getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, Select(N->getOperand(0).getOperand(0)), Select(N->getOperand(0).getOperand(1)), Select(N->getOperand(1))); - break; - } else if (N->getOperand(1).getOpcode() == ISD::MUL && + return SDOperand(N, 0); + } else if (N->getOperand(1).getOpcode() == ISD::FMUL && N->getOperand(1).hasOneUse()) { ++FusedFP; // Statistic - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, Select(N->getOperand(1).getOperand(0)), Select(N->getOperand(1).getOperand(1)), Select(N->getOperand(0))); - break; + return SDOperand(N, 0); } } - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty, Select(N->getOperand(0)), Select(N->getOperand(1))); - break; + return SDOperand(N, 0); } - case ISD::SUB: { + case ISD::FSUB: { MVT::ValueType Ty = N->getValueType(0); - if (Ty == MVT::i32) { - unsigned Imm; - if (isIntImmediate(N->getOperand(0), Imm) && isInt16(Imm)) { - CurDAG->SelectNodeTo(N, Ty, PPC::SUBFIC, Select(N->getOperand(1)), - getI32Imm(Lo16(Imm))); - break; - } - if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1), - PPC::ADDIS, PPC::ADDI, true, true)) { - CurDAG->ReplaceAllUsesWith(N, I); - N = I; - } else { - CurDAG->SelectNodeTo(N, Ty, PPC::SUBF, Select(N->getOperand(1)), - Select(N->getOperand(0))); - } - break; - } if (!NoExcessFPPrecision) { // Match FMA ops - if (N->getOperand(0).getOpcode() == ISD::MUL && + if (N->getOperand(0).getOpcode() == ISD::FMUL && N->getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty, Select(N->getOperand(0).getOperand(0)), Select(N->getOperand(0).getOperand(1)), Select(N->getOperand(1))); - break; - } else if (N->getOperand(1).getOpcode() == ISD::MUL && + return SDOperand(N, 0); + } else if (N->getOperand(1).getOpcode() == ISD::FMUL && N->getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty, Select(N->getOperand(1).getOperand(0)), Select(N->getOperand(1).getOperand(1)), Select(N->getOperand(0))); - break; + return SDOperand(N, 0); } } - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty, Select(N->getOperand(0)), Select(N->getOperand(1))); - break; + return SDOperand(N, 0); } - case ISD::MUL: { - unsigned Imm, Opc; - if (isIntImmediate(N->getOperand(1), Imm) && isInt16(Imm)) { - CurDAG->SelectNodeTo(N, N->getValueType(0), PPC::MULLI, - Select(N->getOperand(0)), getI32Imm(Lo16(Imm))); - break; - } - switch (N->getValueType(0)) { - default: assert(0 && "Unhandled multiply type!"); - case MVT::i32: Opc = PPC::MULLW; break; - case MVT::f32: Opc = PPC::FMULS; break; - case MVT::f64: Opc = PPC::FMUL; break; + case ISD::SDIV: { + unsigned Imm; + if (isIntImmediate(N->getOperand(1), Imm)) { + if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { + SDOperand Op = + CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, + Select(N->getOperand(0)), + getI32Imm(Log2_32(Imm))); + CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, + Op.getValue(0), Op.getValue(1)); + return SDOperand(N, 0); + } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { + SDOperand Op = + CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, + Select(N->getOperand(0)), + getI32Imm(Log2_32(-Imm))); + SDOperand PT = + CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0), + Op.getValue(1)); + CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); + return SDOperand(N, 0); + } else if (Imm) { + SDOperand Result = Select(BuildSDIVSequence(N)); + CodeGenMap[Op] = Result; + return Result; + } } - CurDAG->SelectNodeTo(N, N->getValueType(0), Opc, Select(N->getOperand(0)), - Select(N->getOperand(1))); + + // Other cases are autogenerated. break; } - case ISD::MULHS: - assert(N->getValueType(0) == MVT::i32); - CurDAG->SelectNodeTo(N, MVT::i32, PPC::MULHW, Select(N->getOperand(0)), - Select(N->getOperand(1))); - break; - case ISD::MULHU: - assert(N->getValueType(0) == MVT::i32); - CurDAG->SelectNodeTo(N, MVT::i32, PPC::MULHWU, Select(N->getOperand(0)), - Select(N->getOperand(1))); + case ISD::UDIV: { + // If this is a divide by constant, we can emit code using some magic + // constants to implement it as a multiply instead. + unsigned Imm; + if (isIntImmediate(N->getOperand(1), Imm) && Imm) { + SDOperand Result = Select(BuildUDIVSequence(N)); + CodeGenMap[Op] = Result; + return Result; + } + + // Other cases are autogenerated. break; + } case ISD::AND: { unsigned Imm; // If this is an and of a value rotated between 0 and 31 bits and then and'd @@ -419,93 +1110,110 @@ SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) { isRunOfOnes(Imm, MB, ME); SH = 0; } - CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM, Val, getI32Imm(SH), + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); - break; + return SDOperand(N, 0); } - // If this is an and with an immediate that isn't a mask, then codegen it as - // high and low 16 bit immediate ands. + + // Other cases are autogenerated. + break; + } + case ISD::OR: + if (SDNode *I = SelectBitfieldInsert(N)) + return CodeGenMap[Op] = SDOperand(I, 0); + if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1), - PPC::ANDISo, PPC::ANDIo)) { - CurDAG->ReplaceAllUsesWith(N, I); - N = I; - break; - } - // Finally, check for the case where we are being asked to select - // and (not(a), b) or and (a, not(b)) which can be selected as andc. - if (isOprNot(N->getOperand(0).Val)) - CurDAG->SelectNodeTo(N, MVT::i32, PPC::ANDC, Select(N->getOperand(1)), - Select(N->getOperand(0).getOperand(0))); - else if (isOprNot(N->getOperand(1).Val)) - CurDAG->SelectNodeTo(N, MVT::i32, PPC::ANDC, Select(N->getOperand(0)), - Select(N->getOperand(1).getOperand(0))); + PPC::ORIS, PPC::ORI)) + return CodeGenMap[Op] = SDOperand(I, 0); + + // Other cases are autogenerated. + break; + case ISD::SHL: { + unsigned Imm, SH, MB, ME; + if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && + isRotateAndMask(N, Imm, true, SH, MB, ME)) + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, + Select(N->getOperand(0).getOperand(0)), + getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); + else if (isIntImmediate(N->getOperand(1), Imm)) + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)), + getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm)); else - CurDAG->SelectNodeTo(N, MVT::i32, PPC::AND, Select(N->getOperand(0)), + CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)), Select(N->getOperand(1))); - break; + return SDOperand(N, 0); } - case ISD::XOR: - // Check whether or not this node is a logical 'not'. This is represented - // by llvm as a xor with the constant value -1 (all bits set). If this is a - // 'not', then fold 'or' into 'nor', and so forth for the supported ops. - if (isOprNot(N)) { - unsigned Opc; - SDOperand Val = Select(N->getOperand(0)); - switch (Val.getTargetOpcode()) { - default: Opc = 0; break; - case PPC::OR: Opc = PPC::NOR; break; - case PPC::AND: Opc = PPC::NAND; break; - case PPC::XOR: Opc = PPC::EQV; break; - } - if (Opc) - CurDAG->SelectNodeTo(N, MVT::i32, Opc, Val.getOperand(0), - Val.getOperand(1)); - else - CurDAG->SelectNodeTo(N, MVT::i32, PPC::NOR, Val, Val); - break; - } - // If this is a xor with an immediate other than -1, then codegen it as high - // and low 16 bit immediate xors. - if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), - N->getOperand(1), - PPC::XORIS, PPC::XORI)) { - CurDAG->ReplaceAllUsesWith(N, I); - N = I; - break; - } - // Finally, check for the case where we are being asked to select - // xor (not(a), b) which is equivalent to not(xor a, b), which is eqv - if (isOprNot(N->getOperand(0).Val)) - CurDAG->SelectNodeTo(N, MVT::i32, PPC::EQV, + case ISD::SRL: { + unsigned Imm, SH, MB, ME; + if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && + isRotateAndMask(N, Imm, true, SH, MB, ME)) + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0).getOperand(0)), + getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME)); + else if (isIntImmediate(N->getOperand(1), Imm)) + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)), + getI32Imm((32-Imm) & 0x1F), getI32Imm(Imm), + getI32Imm(31)); + else + CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)), Select(N->getOperand(1))); + return SDOperand(N, 0); + } + case ISD::SRA: { + unsigned Imm, SH, MB, ME; + if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && + isRotateAndMask(N, Imm, true, SH, MB, ME)) + CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, + Select(N->getOperand(0).getOperand(0)), + getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); + else if (isIntImmediate(N->getOperand(1), Imm)) + CurDAG->SelectNodeTo(N, PPC::SRAWI, MVT::i32, Select(N->getOperand(0)), + getI32Imm(Imm)); else - CurDAG->SelectNodeTo(N, MVT::i32, PPC::XOR, Select(N->getOperand(0)), + CurDAG->SelectNodeTo(N, PPC::SRAW, MVT::i32, Select(N->getOperand(0)), Select(N->getOperand(1))); - break; + return SDOperand(N, 0); + } + case ISD::FMUL: { + unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FMULS : PPC::FMUL; + CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)), + Select(N->getOperand(1))); + return SDOperand(N, 0); + } + case ISD::FDIV: { + unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FDIVS : PPC::FDIV; + CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)), + Select(N->getOperand(1))); + return SDOperand(N, 0); + } case ISD::FABS: - CurDAG->SelectNodeTo(N, N->getValueType(0), PPC::FABS, - Select(N->getOperand(0))); - break; + if (N->getValueType(0) == MVT::f32) + CurDAG->SelectNodeTo(N, PPC::FABSS, MVT::f32, Select(N->getOperand(0))); + else + CurDAG->SelectNodeTo(N, PPC::FABSD, MVT::f64, Select(N->getOperand(0))); + return SDOperand(N, 0); case ISD::FP_EXTEND: assert(MVT::f64 == N->getValueType(0) && MVT::f32 == N->getOperand(0).getValueType() && "Illegal FP_EXTEND"); - CurDAG->SelectNodeTo(N, MVT::f64, PPC::FMR, Select(N->getOperand(0))); - break; + // We need to emit an FMR to make sure that the result has the right value + // type. + CurDAG->SelectNodeTo(N, PPC::FMRSD, MVT::f64, Select(N->getOperand(0))); + return SDOperand(N, 0); case ISD::FP_ROUND: assert(MVT::f32 == N->getValueType(0) && MVT::f64 == N->getOperand(0).getValueType() && "Illegal FP_ROUND"); - CurDAG->SelectNodeTo(N, MVT::f32, PPC::FRSP, Select(N->getOperand(0))); - break; + CurDAG->SelectNodeTo(N, PPC::FRSP, MVT::f32, Select(N->getOperand(0))); + return SDOperand(N, 0); case ISD::FNEG: { SDOperand Val = Select(N->getOperand(0)); MVT::ValueType Ty = N->getValueType(0); if (Val.Val->hasOneUse()) { unsigned Opc; - switch (Val.getTargetOpcode()) { + switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) { default: Opc = 0; break; - case PPC::FABS: Opc = PPC::FNABS; break; + case PPC::FABSS: Opc = PPC::FNABSS; break; + case PPC::FABSD: Opc = PPC::FNABSD; break; case PPC::FMADD: Opc = PPC::FNMADD; break; case PPC::FMADDS: Opc = PPC::FNMADDS; break; case PPC::FMSUB: Opc = PPC::FNMSUB; break; @@ -515,54 +1223,329 @@ SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) { // inverted opcode and the original instruction's operands. Otherwise, // fall through and generate a fneg instruction. if (Opc) { - if (PPC::FNABS == Opc) - CurDAG->SelectNodeTo(N, Ty, Opc, Val.getOperand(0)); + if (Opc == PPC::FNABSS || Opc == PPC::FNABSD) + CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0)); else - CurDAG->SelectNodeTo(N, Ty, Opc, Val.getOperand(0), + CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0), Val.getOperand(1), Val.getOperand(2)); - break; + return SDOperand(N, 0); } } - CurDAG->SelectNodeTo(N, Ty, PPC::FNEG, Val); - break; + if (Ty == MVT::f32) + CurDAG->SelectNodeTo(N, PPC::FNEGS, MVT::f32, Val); + else + CurDAG->SelectNodeTo(N, PPC::FNEGD, MVT::f64, Val); + return SDOperand(N, 0); } case ISD::FSQRT: { MVT::ValueType Ty = N->getValueType(0); - CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, + CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, Ty, Select(N->getOperand(0))); - break; + return SDOperand(N, 0); + } + + case ISD::LOAD: + case ISD::EXTLOAD: + case ISD::ZEXTLOAD: + case ISD::SEXTLOAD: { + SDOperand Op1, Op2; + bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2); + + MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ? + N->getValueType(0) : cast(N->getOperand(3))->getVT(); + unsigned Opc; + switch (TypeBeingLoaded) { + default: N->dump(); assert(0 && "Cannot load this type!"); + case MVT::i1: + case MVT::i8: Opc = isIdx ? PPC::LBZX : PPC::LBZ; break; + case MVT::i16: + if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load? + Opc = isIdx ? PPC::LHAX : PPC::LHA; + } else { + Opc = isIdx ? PPC::LHZX : PPC::LHZ; + } + break; + case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break; + case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break; + case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break; + } + + // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending + // copy'. + if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) { + CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, + Op1, Op2, Select(N->getOperand(0))); + return SDOperand(N, Op.ResNo); + } else { + std::vector Ops; + Ops.push_back(Op1); + Ops.push_back(Op2); + Ops.push_back(Select(N->getOperand(0))); + SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops); + SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res); + CodeGenMap[Op.getValue(0)] = Ext; + CodeGenMap[Op.getValue(1)] = Res.getValue(1); + if (Op.ResNo) + return Res.getValue(1); + else + return Ext; + } + } + + case ISD::TRUNCSTORE: + case ISD::STORE: { + SDOperand AddrOp1, AddrOp2; + bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2); + + unsigned Opc; + if (N->getOpcode() == ISD::STORE) { + switch (N->getOperand(1).getValueType()) { + default: assert(0 && "unknown Type in store"); + case MVT::i32: Opc = isIdx ? PPC::STWX : PPC::STW; break; + case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break; + case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break; + } + } else { //ISD::TRUNCSTORE + switch(cast(N->getOperand(4))->getVT()) { + default: assert(0 && "unknown Type in store"); + case MVT::i8: Opc = isIdx ? PPC::STBX : PPC::STB; break; + case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break; + } + } + + CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)), + AddrOp1, AddrOp2, Select(N->getOperand(0))); + return SDOperand(N, 0); + } + + case ISD::SELECT_CC: { + ISD::CondCode CC = cast(N->getOperand(4))->get(); + + // handle the setcc cases here. select_cc lhs, 0, 1, 0, cc + if (ConstantSDNode *N1C = dyn_cast(N->getOperand(1))) + if (ConstantSDNode *N2C = dyn_cast(N->getOperand(2))) + if (ConstantSDNode *N3C = dyn_cast(N->getOperand(3))) + if (N1C->isNullValue() && N3C->isNullValue() && + N2C->getValue() == 1ULL && CC == ISD::SETNE) { + SDOperand LHS = Select(N->getOperand(0)); + SDOperand Tmp = + CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, + LHS, getI32Imm(~0U)); + CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS, + Tmp.getValue(1)); + return SDOperand(N, 0); + } + + SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); + unsigned BROpc = getBCCForSetCC(CC); + + bool isFP = MVT::isFloatingPoint(N->getValueType(0)); + unsigned SelectCCOp; + if (MVT::isInteger(N->getValueType(0))) + SelectCCOp = PPC::SELECT_CC_Int; + else if (N->getValueType(0) == MVT::f32) + SelectCCOp = PPC::SELECT_CC_F4; + else + SelectCCOp = PPC::SELECT_CC_F8; + CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, + Select(N->getOperand(2)), Select(N->getOperand(3)), + getI32Imm(BROpc)); + return SDOperand(N, 0); + } + + case ISD::CALLSEQ_START: + case ISD::CALLSEQ_END: { + unsigned Amt = cast(N->getOperand(1))->getValue(); + unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? + PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; + CurDAG->SelectNodeTo(N, Opc, MVT::Other, + getI32Imm(Amt), Select(N->getOperand(0))); + return SDOperand(N, 0); + } + case ISD::CALL: + case ISD::TAILCALL: { + SDOperand Chain = Select(N->getOperand(0)); + + unsigned CallOpcode; + std::vector CallOperands; + + if (GlobalAddressSDNode *GASD = + dyn_cast(N->getOperand(1))) { + CallOpcode = PPC::CALLpcrel; + CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(), + MVT::i32)); + } else if (ExternalSymbolSDNode *ESSDN = + dyn_cast(N->getOperand(1))) { + CallOpcode = PPC::CALLpcrel; + CallOperands.push_back(N->getOperand(1)); + } else { + // Copy the callee address into the CTR register. + SDOperand Callee = Select(N->getOperand(1)); + Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain); + + // Copy the callee address into R12 on darwin. + SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32); + Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee); + + CallOperands.push_back(getI32Imm(20)); // Information to encode indcall + CallOperands.push_back(getI32Imm(0)); // Information to encode indcall + CallOperands.push_back(R12); + CallOpcode = PPC::CALLindirect; + } + + unsigned GPR_idx = 0, FPR_idx = 0; + static const unsigned GPR[] = { + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + static const unsigned FPR[] = { + PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, + PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 + }; + + SDOperand InFlag; // Null incoming flag value. + + for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) { + unsigned DestReg = 0; + MVT::ValueType RegTy = N->getOperand(i).getValueType(); + if (RegTy == MVT::i32) { + assert(GPR_idx < 8 && "Too many int args"); + DestReg = GPR[GPR_idx++]; + } else { + assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) && + "Unpromoted integer arg?"); + assert(FPR_idx < 13 && "Too many fp args"); + DestReg = FPR[FPR_idx++]; + } + + if (N->getOperand(i).getOpcode() != ISD::UNDEF) { + SDOperand Val = Select(N->getOperand(i)); + Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag); + InFlag = Chain.getValue(1); + CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy)); + } + } + + // Finally, once everything is in registers to pass to the call, emit the + // call itself. + if (InFlag.Val) + CallOperands.push_back(InFlag); // Strong dep on register copies. + else + CallOperands.push_back(Chain); // Weak dep on whatever occurs before + Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, + CallOperands); + + std::vector CallResults; + + // If the call has results, copy the values out of the ret val registers. + switch (N->getValueType(0)) { + default: assert(0 && "Unexpected ret value!"); + case MVT::Other: break; + case MVT::i32: + if (N->getValueType(1) == MVT::i32) { + Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, + Chain.getValue(1)).getValue(1); + CallResults.push_back(Chain.getValue(0)); + Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, + Chain.getValue(2)).getValue(1); + CallResults.push_back(Chain.getValue(0)); + } else { + Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, + Chain.getValue(1)).getValue(1); + CallResults.push_back(Chain.getValue(0)); + } + break; + case MVT::f32: + case MVT::f64: + Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0), + Chain.getValue(1)).getValue(1); + CallResults.push_back(Chain.getValue(0)); + break; + } + + CallResults.push_back(Chain); + for (unsigned i = 0, e = CallResults.size(); i != e; ++i) + CodeGenMap[Op.getValue(i)] = CallResults[i]; + return CallResults[Op.ResNo]; } case ISD::RET: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. - if (N->getNumOperands() > 1) { + if (N->getNumOperands() == 2) { SDOperand Val = Select(N->getOperand(1)); - switch (N->getOperand(1).getValueType()) { - default: assert(0 && "Unknown return type!"); - case MVT::f64: - case MVT::f32: - Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val); - break; - case MVT::i32: + if (N->getOperand(1).getValueType() == MVT::i32) { Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val); - break; - } - - if (N->getNumOperands() > 2) { - assert(N->getOperand(1).getValueType() == MVT::i32 && - N->getOperand(2).getValueType() == MVT::i32 && - N->getNumOperands() == 2 && "Unknown two-register ret value!"); - Val = Select(N->getOperand(2)); - Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Val); + } else { + assert(MVT::isFloatingPoint(N->getOperand(1).getValueType())); + Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val); } + } else if (N->getNumOperands() > 1) { + assert(N->getOperand(1).getValueType() == MVT::i32 && + N->getOperand(2).getValueType() == MVT::i32 && + N->getNumOperands() == 3 && "Unknown two-register ret value!"); + Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1))); + Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2))); } // Finally, select this to a blr (return) instruction. - CurDAG->SelectNodeTo(N, MVT::Other, PPC::BLR, Chain); - break; + CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain); + return SDOperand(N, 0); } + case ISD::BR: + CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1), + Select(N->getOperand(0))); + return SDOperand(N, 0); + case ISD::BR_CC: + case ISD::BRTWOWAY_CC: { + SDOperand Chain = Select(N->getOperand(0)); + MachineBasicBlock *Dest = + cast(N->getOperand(4))->getBasicBlock(); + ISD::CondCode CC = cast(N->getOperand(1))->get(); + SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); + + // If this is a two way branch, then grab the fallthrough basic block + // argument and build a PowerPC branch pseudo-op, suitable for long branch + // conversion if necessary by the branch selection pass. Otherwise, emit a + // standard conditional branch. + if (N->getOpcode() == ISD::BRTWOWAY_CC) { + SDOperand CondTrueBlock = N->getOperand(4); + SDOperand CondFalseBlock = N->getOperand(5); + + // If the false case is the current basic block, then this is a self loop. + // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an + // extra dispatch group to the loop. Instead, invert the condition and + // emit "Loop: ... br!cond Loop; br Out + if (cast(CondFalseBlock)->getBasicBlock() == BB) { + std::swap(CondTrueBlock, CondFalseBlock); + CC = getSetCCInverse(CC, + MVT::isInteger(N->getOperand(2).getValueType())); + } + + unsigned Opc = getBCCForSetCC(CC); + SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other, + CondCode, getI32Imm(Opc), + CondTrueBlock, CondFalseBlock, + Chain); + CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB); + } else { + // Iterate to the next basic block + ilist::iterator It = BB; + ++It; + + // If the fallthrough path is off the end of the function, which would be + // undefined behavior, set it to be the same as the current block because + // we have nothing better to set it to, and leaving it alone will cause + // the PowerPC Branch Selection pass to crash. + if (It == BB->getParent()->end()) It = Dest; + CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode, + getI32Imm(getBCCForSetCC(CC)), N->getOperand(4), + CurDAG->getBasicBlock(It), Chain); + } + return SDOperand(N, 0); } - return SDOperand(N, 0); + } + + return SelectCode(Op); }