X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FSystemZ%2FSystemZInstrInfo.cpp;h=e20834cb074f8b3ce85a96a03b49b247b1c1e7ba;hb=c31891e35000c04346754399a0d1677eb4a9d428;hp=5dd8d98d27d7ea06495e4670326bc86e7a82d7e4;hpb=9b05c709c65ba05645853ca49bc2a1ea8b554f37;p=oota-llvm.git diff --git a/lib/Target/SystemZ/SystemZInstrInfo.cpp b/lib/Target/SystemZ/SystemZInstrInfo.cpp index 5dd8d98d27d..e20834cb074 100644 --- a/lib/Target/SystemZ/SystemZInstrInfo.cpp +++ b/lib/Target/SystemZ/SystemZInstrInfo.cpp @@ -12,12 +12,12 @@ //===----------------------------------------------------------------------===// #include "SystemZInstrInfo.h" -#include "SystemZTargetMachine.h" #include "SystemZInstrBuilder.h" +#include "SystemZTargetMachine.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#define GET_INSTRINFO_CTOR +#define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRMAP_INFO #include "SystemZGenInstrInfo.inc" @@ -28,6 +28,18 @@ static uint64_t allOnes(unsigned int Count) { return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; } +// Reg should be a 32-bit GPR. Return true if it is a high register rather +// than a low register. +static bool isHighReg(unsigned int Reg) { + if (SystemZ::GRH32BitRegClass.contains(Reg)) + return true; + assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); + return false; +} + +// Pin the vtable to this file. +void SystemZInstrInfo::anchor() {} + SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), RI(tm), TM(tm) { @@ -41,15 +53,15 @@ void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, MachineFunction &MF = *MBB->getParent(); // Get two load or store instructions. Use the original instruction for one - // of them (arbitarily the second here) and create a clone for the other. + // of them (arbitrarily the second here) and create a clone for the other. MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); MBB->insert(MI, EarlierMI); // Set up the two 64-bit registers. MachineOperand &HighRegOp = EarlierMI->getOperand(0); MachineOperand &LowRegOp = MI->getOperand(0); - HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high)); - LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low)); + HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); + LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); // The address in the first (high) instruction is already correct. // Adjust the offset in the second (low) instruction. @@ -82,6 +94,97 @@ void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { OffsetMO.setImm(Offset); } +// MI is an RI-style pseudo instruction. Replace it with LowOpcode +// if the first operand is a low GR32 and HighOpcode if the first operand +// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand +// and HighOpcode takes an unsigned 32-bit operand. In those cases, +// MI has the same kind of operand as LowOpcode, so needs to be converted +// if HighOpcode is used. +void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned HighOpcode, + bool ConvertHigh) const { + unsigned Reg = MI->getOperand(0).getReg(); + bool IsHigh = isHighReg(Reg); + MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); + if (IsHigh && ConvertHigh) + MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); +} + +// MI is a three-operand RIE-style pseudo instruction. Replace it with +// LowOpcode3 if the registers are both low GR32s, otherwise use a move +// followed by HighOpcode or LowOpcode, depending on whether the target +// is a high or low GR32. +void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned LowOpcodeK, + unsigned HighOpcode) const { + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned SrcReg = MI->getOperand(1).getReg(); + bool DestIsHigh = isHighReg(DestReg); + bool SrcIsHigh = isHighReg(SrcReg); + if (!DestIsHigh && !SrcIsHigh) + MI->setDesc(get(LowOpcodeK)); + else { + emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), + DestReg, SrcReg, SystemZ::LR, 32, + MI->getOperand(1).isKill()); + MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); + MI->getOperand(1).setReg(DestReg); + } +} + +// MI is an RXY-style pseudo instruction. Replace it with LowOpcode +// if the first operand is a low GR32 and HighOpcode if the first operand +// is a high GR32. +void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned HighOpcode) const { + unsigned Reg = MI->getOperand(0).getReg(); + unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, + MI->getOperand(2).getImm()); + MI->setDesc(get(Opcode)); +} + +// MI is an RR-style pseudo instruction that zero-extends the low Size bits +// of one GRX32 into another. Replace it with LowOpcode if both operands +// are low registers, otherwise use RISB[LH]G. +void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned Size) const { + emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), + MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), + LowOpcode, Size, MI->getOperand(1).isKill()); + MI->eraseFromParent(); +} + +// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR +// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg +// are low registers, otherwise use RISB[LH]G. Size is the number of bits +// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). +// KillSrc is true if this move is the last use of SrcReg. +void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MBBI, + DebugLoc DL, unsigned DestReg, + unsigned SrcReg, unsigned LowLowOpcode, + unsigned Size, bool KillSrc) const { + unsigned Opcode; + bool DestIsHigh = isHighReg(DestReg); + bool SrcIsHigh = isHighReg(SrcReg); + if (DestIsHigh && SrcIsHigh) + Opcode = SystemZ::RISBHH; + else if (DestIsHigh && !SrcIsHigh) + Opcode = SystemZ::RISBHL; + else if (!DestIsHigh && SrcIsHigh) + Opcode = SystemZ::RISBLH; + else { + BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)); + return; + } + unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); + BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) + .addReg(DestReg, RegState::Undef) + .addReg(SrcReg, getKillRegState(KillSrc)) + .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); +} + // If MI is a simple load or store for a frame object, return the register // it loads or stores and set FrameIndex to the index of the frame object. // Return 0 otherwise. @@ -177,8 +280,8 @@ bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, } // If the block has any instructions after a JMP, delete them. - while (llvm::next(I) != MBB.end()) - llvm::next(I)->eraseFromParent(); + while (std::next(I) != MBB.end()) + std::next(I)->eraseFromParent(); Cond.clear(); FBB = 0; @@ -293,6 +396,103 @@ SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, return Count; } +bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, + unsigned &SrcReg, unsigned &SrcReg2, + int &Mask, int &Value) const { + assert(MI->isCompare() && "Caller should have checked for a comparison"); + + if (MI->getNumExplicitOperands() == 2 && + MI->getOperand(0).isReg() && + MI->getOperand(1).isImm()) { + SrcReg = MI->getOperand(0).getReg(); + SrcReg2 = 0; + Value = MI->getOperand(1).getImm(); + Mask = ~0; + return true; + } + + return false; +} + +// If Reg is a virtual register, return its definition, otherwise return null. +static MachineInstr *getDef(unsigned Reg, + const MachineRegisterInfo *MRI) { + if (TargetRegisterInfo::isPhysicalRegister(Reg)) + return 0; + return MRI->getUniqueVRegDef(Reg); +} + +// Return true if MI is a shift of type Opcode by Imm bits. +static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) { + return (MI->getOpcode() == Opcode && + !MI->getOperand(2).getReg() && + MI->getOperand(3).getImm() == Imm); +} + +// If the destination of MI has no uses, delete it as dead. +static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { + if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) + MI->eraseFromParent(); +} + +// Compare compares SrcReg against zero. Check whether SrcReg contains +// the result of an IPM sequence whose input CC survives until Compare, +// and whether Compare is therefore redundant. Delete it and return +// true if so. +static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, + const MachineRegisterInfo *MRI, + const TargetRegisterInfo *TRI) { + MachineInstr *LGFR = 0; + MachineInstr *RLL = getDef(SrcReg, MRI); + if (RLL && RLL->getOpcode() == SystemZ::LGFR) { + LGFR = RLL; + RLL = getDef(LGFR->getOperand(1).getReg(), MRI); + } + if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) + return false; + + MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); + if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) + return false; + + MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); + if (!IPM || IPM->getOpcode() != SystemZ::IPM) + return false; + + // Check that there are no assignments to CC between the IPM and Compare, + if (IPM->getParent() != Compare->getParent()) + return false; + MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; + for (++MBBI; MBBI != MBBE; ++MBBI) { + MachineInstr *MI = MBBI; + if (MI->modifiesRegister(SystemZ::CC, TRI)) + return false; + } + + Compare->eraseFromParent(); + if (LGFR) + eraseIfDead(LGFR, MRI); + eraseIfDead(RLL, MRI); + eraseIfDead(SRL, MRI); + eraseIfDead(IPM, MRI); + + return true; +} + +bool +SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, + unsigned SrcReg, unsigned SrcReg2, + int Mask, int Value, + const MachineRegisterInfo *MRI) const { + assert(!SrcReg2 && "Only optimizing constant comparisons so far"); + bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; + if (Value == 0 && + !IsLogical && + removeIPMBasedCompare(Compare, SrcReg, MRI, TM.getRegisterInfo())) + return true; + return false; +} + // If Opcode is a move that has a conditional variant, return that variant, // otherwise return 0. static unsigned getConditionalMove(unsigned Opcode) { @@ -356,18 +556,21 @@ SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, bool KillSrc) const { // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { - copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high), - RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc); - copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low), - RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc); + copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), + RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); + copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), + RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); + return; + } + + if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { + emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); return; } // Everything else needs only one instruction. unsigned Opcode; - if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg)) - Opcode = SystemZ::LR; - else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) + if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LGR; else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LER; @@ -425,28 +628,28 @@ static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { } namespace { - struct LogicOp { - LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} - LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) - : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} +struct LogicOp { + LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} + LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) + : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} - operator bool() const { return RegSize; } + operator bool() const { return RegSize; } - unsigned RegSize, ImmLSB, ImmSize; - }; -} + unsigned RegSize, ImmLSB, ImmSize; +}; +} // end anonymous namespace static LogicOp interpretAndImmediate(unsigned Opcode) { switch (Opcode) { - case SystemZ::NILL32: return LogicOp(32, 0, 16); - case SystemZ::NILH32: return LogicOp(32, 16, 16); - case SystemZ::NILL: return LogicOp(64, 0, 16); - case SystemZ::NILH: return LogicOp(64, 16, 16); - case SystemZ::NIHL: return LogicOp(64, 32, 16); - case SystemZ::NIHH: return LogicOp(64, 48, 16); - case SystemZ::NILF32: return LogicOp(32, 0, 32); - case SystemZ::NILF: return LogicOp(64, 0, 32); - case SystemZ::NIHF: return LogicOp(64, 32, 32); + case SystemZ::NILMux: return LogicOp(32, 0, 16); + case SystemZ::NIHMux: return LogicOp(32, 16, 16); + case SystemZ::NILL64: return LogicOp(64, 0, 16); + case SystemZ::NILH64: return LogicOp(64, 16, 16); + case SystemZ::NIHL64: return LogicOp(64, 32, 16); + case SystemZ::NIHH64: return LogicOp(64, 48, 16); + case SystemZ::NIFMux: return LogicOp(32, 0, 32); + case SystemZ::NILF64: return LogicOp(64, 0, 32); + case SystemZ::NIHF64: return LogicOp(64, 32, 32); default: return LogicOp(); } } @@ -473,6 +676,7 @@ SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, LiveVariables *LV) const { MachineInstr *MI = MBBI; MachineBasicBlock *MBB = MI->getParent(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned Opcode = MI->getOpcode(); unsigned NumOps = MI->getNumOperands(); @@ -482,10 +686,23 @@ SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, // because it tends to be shorter and because some instructions // have memory forms that can be used during spilling. if (TM.getSubtargetImpl()->hasDistinctOps()) { + MachineOperand &Dest = MI->getOperand(0); + MachineOperand &Src = MI->getOperand(1); + unsigned DestReg = Dest.getReg(); + unsigned SrcReg = Src.getReg(); + // AHIMux is only really a three-operand instruction when both operands + // are low registers. Try to constrain both operands to be low if + // possible. + if (Opcode == SystemZ::AHIMux && + TargetRegisterInfo::isVirtualRegister(DestReg) && + TargetRegisterInfo::isVirtualRegister(SrcReg) && + MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && + MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { + MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); + MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); + } int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); if (ThreeOperandOpcode >= 0) { - MachineOperand &Dest = MI->getOperand(0); - MachineOperand &Src = MI->getOperand(1); MachineInstrBuilder MIB = BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) .addOperand(Dest); @@ -500,34 +717,27 @@ SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, // Try to convert an AND into an RISBG-type instruction. if (LogicOp And = interpretAndImmediate(Opcode)) { - unsigned NewOpcode; - if (And.RegSize == 64) - NewOpcode = SystemZ::RISBG; - else if (TM.getSubtargetImpl()->hasHighWord()) - NewOpcode = SystemZ::RISBLG32; - else - // We can't use RISBG for 32-bit operations because it clobbers the - // high word of the destination too. - NewOpcode = 0; - if (NewOpcode) { - uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; - // AND IMMEDIATE leaves the other bits of the register unchanged. - Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); - unsigned Start, End; - if (isRxSBGMask(Imm, And.RegSize, Start, End)) { - if (NewOpcode == SystemZ::RISBLG32) { - Start &= 31; - End &= 31; - } - MachineOperand &Dest = MI->getOperand(0); - MachineOperand &Src = MI->getOperand(1); - MachineInstrBuilder MIB = - BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) - .addOperand(Dest).addReg(0) - .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) - .addImm(Start).addImm(End + 128).addImm(0); - return finishConvertToThreeAddress(MI, MIB, LV); + uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; + // AND IMMEDIATE leaves the other bits of the register unchanged. + Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); + unsigned Start, End; + if (isRxSBGMask(Imm, And.RegSize, Start, End)) { + unsigned NewOpcode; + if (And.RegSize == 64) + NewOpcode = SystemZ::RISBG; + else { + NewOpcode = SystemZ::RISBMux; + Start &= 31; + End &= 31; } + MachineOperand &Dest = MI->getOperand(0); + MachineOperand &Src = MI->getOperand(1); + MachineInstrBuilder MIB = + BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) + .addOperand(Dest).addReg(0) + .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) + .addImm(Start).addImm(End + 128).addImm(0); + return finishConvertToThreeAddress(MI, MIB, LV); } } return 0; @@ -540,8 +750,21 @@ SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, int FrameIndex) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = MFI->getObjectSize(FrameIndex); + unsigned Opcode = MI->getOpcode(); - // Eary exit for cases we don't care about + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && + isInt<8>(MI->getOperand(2).getImm()) && + !MI->getOperand(3).getReg()) { + // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST + return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI)) + .addFrameIndex(FrameIndex).addImm(0) + .addImm(MI->getOperand(2).getImm()); + } + return 0; + } + + // All other cases require a single operand. if (Ops.size() != 1) return 0; @@ -550,7 +773,16 @@ SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && "Invalid size combination"); - unsigned Opcode = MI->getOpcode(); + if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && + OpNum == 0 && + isInt<8>(MI->getOperand(2).getImm())) { + // A(G)HI %reg, CONST -> A(G)SI %mem, CONST + Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); + return BuildMI(MF, MI->getDebugLoc(), get(Opcode)) + .addFrameIndex(FrameIndex).addImm(0) + .addImm(MI->getOperand(2).getImm()); + } + if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { bool Op0IsGPR = (Opcode == SystemZ::LGDR); bool Op1IsGPR = (Opcode == SystemZ::LDGR); @@ -577,10 +809,14 @@ SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // // Although MVC is in practice a fast choice in these cases, it is still // logically a bytewise copy. This means that we cannot use it if the - // load or store is volatile. It also means that the transformation is - // not valid in cases where the two memories partially overlap; however, - // that is not a problem here, because we know that one of the memories - // is a full frame index. + // load or store is volatile. We also wouldn't be able to use MVC if + // the two memories partially overlap, but that case cannot occur here, + // because we know that one of the memories is a full frame index. + // + // For performance reasons, we also want to avoid using MVC if the addresses + // might be equal. We don't worry about that case here, because spill slot + // coloring happens later, and because we have special code to remove + // MVCs that turn out to be redundant. if (OpNum == 0 && MI->hasOneMemOperand()) { MachineMemOperand *MMO = *MI->memoperands_begin(); if (MMO->getSize() == Size && !MMO->isVolatile()) { @@ -651,6 +887,138 @@ SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { splitMove(MI, SystemZ::STD); return true; + case SystemZ::LBMux: + expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); + return true; + + case SystemZ::LHMux: + expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); + return true; + + case SystemZ::LLCRMux: + expandZExtPseudo(MI, SystemZ::LLCR, 8); + return true; + + case SystemZ::LLHRMux: + expandZExtPseudo(MI, SystemZ::LLHR, 16); + return true; + + case SystemZ::LLCMux: + expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); + return true; + + case SystemZ::LLHMux: + expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); + return true; + + case SystemZ::LMux: + expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); + return true; + + case SystemZ::STCMux: + expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); + return true; + + case SystemZ::STHMux: + expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); + return true; + + case SystemZ::STMux: + expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); + return true; + + case SystemZ::LHIMux: + expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); + return true; + + case SystemZ::IIFMux: + expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); + return true; + + case SystemZ::IILMux: + expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); + return true; + + case SystemZ::IIHMux: + expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); + return true; + + case SystemZ::NIFMux: + expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); + return true; + + case SystemZ::NILMux: + expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); + return true; + + case SystemZ::NIHMux: + expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); + return true; + + case SystemZ::OIFMux: + expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); + return true; + + case SystemZ::OILMux: + expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); + return true; + + case SystemZ::OIHMux: + expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); + return true; + + case SystemZ::XIFMux: + expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); + return true; + + case SystemZ::TMLMux: + expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); + return true; + + case SystemZ::TMHMux: + expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); + return true; + + case SystemZ::AHIMux: + expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); + return true; + + case SystemZ::AHIMuxK: + expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); + return true; + + case SystemZ::AFIMux: + expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); + return true; + + case SystemZ::CFIMux: + expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); + return true; + + case SystemZ::CLFIMux: + expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); + return true; + + case SystemZ::CMux: + expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); + return true; + + case SystemZ::CLMux: + expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); + return true; + + case SystemZ::RISBMux: { + bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); + bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); + if (SrcIsHigh == DestIsHigh) + MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); + else { + MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); + MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); + } + return true; + } + case SystemZ::ADJDYNALLOC: splitAdjDynAlloc(MI); return true; @@ -684,16 +1052,34 @@ SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { MI->getOperand(0).getImm(), MI->getOperand(1).getImm(), &MI->getOperand(2)); + case SystemZ::BRCT: + return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, + SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); + + case SystemZ::BRCTG: + return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, + SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); + case SystemZ::CIJ: case SystemZ::CRJ: return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, MI->getOperand(2).getImm(), &MI->getOperand(3)); + case SystemZ::CLIJ: + case SystemZ::CLRJ: + return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); + case SystemZ::CGIJ: case SystemZ::CGRJ: return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, MI->getOperand(2).getImm(), &MI->getOperand(3)); + case SystemZ::CLGIJ: + case SystemZ::CLGRJ: + return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); + default: llvm_unreachable("Unrecognized branch opcode"); } @@ -704,7 +1090,13 @@ void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &StoreOpcode) const { if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { LoadOpcode = SystemZ::L; - StoreOpcode = SystemZ::ST32; + StoreOpcode = SystemZ::ST; + } else if (RC == &SystemZ::GRH32BitRegClass) { + LoadOpcode = SystemZ::LFH; + StoreOpcode = SystemZ::STFH; + } else if (RC == &SystemZ::GRX32BitRegClass) { + LoadOpcode = SystemZ::LMux; + StoreOpcode = SystemZ::STMux; } else if (RC == &SystemZ::GR64BitRegClass || RC == &SystemZ::ADDR64BitRegClass) { LoadOpcode = SystemZ::LG; @@ -762,6 +1154,9 @@ unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { case SystemZ::LR: return SystemZ::LTR; case SystemZ::LGFR: return SystemZ::LTGFR; case SystemZ::LGR: return SystemZ::LTGR; + case SystemZ::LER: return SystemZ::LTEBR; + case SystemZ::LDR: return SystemZ::LTDBR; + case SystemZ::LXR: return SystemZ::LTXBR; default: return 0; } } @@ -819,6 +1214,14 @@ unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; case SystemZ::CGHI: return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; + case SystemZ::CLR: + return SystemZ::CLRJ; + case SystemZ::CLGR: + return SystemZ::CLGRJ; + case SystemZ::CLFI: + return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0; + case SystemZ::CLGFI: + return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0; default: return 0; }