X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=1990bc7b929ca8b5ff02363cdbc43fa7440cadaa;hb=8f161c3a95d844746be41332c763fb308aae3c9c;hp=215a4f6d388968cd5c8a70cf94651279a9f9a825;hpb=0a9371de6d4ea2daec64a8be7be4b3bda869f6ab;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index 215a4f6d388..1990bc7b929 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -17,24 +17,24 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Mutex.h" #include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. -namespace { - // Register the default SparcV9 implementation... - RegisterPass X("targetdata", "Target Data Layout", false, - true); -} + +// Register the default SparcV9 implementation... +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) char TargetData::ID = 0; //===----------------------------------------------------------------------===// @@ -46,22 +46,20 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructSize = 0; NumElements = ST->getNumElements(); - // Loop over each of the elements, placing them in memory... + // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { const Type *Ty = ST->getElementType(i); - unsigned TyAlign = ST->isPacked() ? - 1 : TD.getABITypeAlignment(Ty); - uint64_t TySize = ST->isPacked() ? - TD.getTypeStoreSize(Ty) : TD.getABITypeSize(Ty); + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); - // Add padding if necessary to align the data element properly... - StructSize = (StructSize + TyAlign - 1)/TyAlign * TyAlign; + // Add padding if necessary to align the data element properly. + if ((StructSize & (TyAlign-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); - // Keep track of maximum alignment constraint + // Keep track of maximum alignment constraint. StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets[i] = StructSize; - StructSize += TySize; // Consume space for this data item + StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item } // Empty structures have alignment of 1 byte. @@ -69,8 +67,8 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. - if (StructSize % StructAlignment != 0) - StructSize = (StructSize/StructAlignment + 1) * StructAlignment; + if ((StructSize & (StructAlignment-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); } @@ -85,7 +83,7 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); - + // Multiple fields can have the same offset if any of them are zero sized. // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop // at the i32 element, because it is the last element at that offset. This is @@ -99,8 +97,8 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { //===----------------------------------------------------------------------===// TargetAlignElem -TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; @@ -118,14 +116,6 @@ TargetAlignElem::operator==(const TargetAlignElem &rhs) const { && TypeBitWidth == rhs.TypeBitWidth); } -std::ostream & -TargetAlignElem::dump(std::ostream &os) const { - return os << AlignType - << TypeBitWidth - << ":" << (int) (ABIAlign * 8) - << ":" << (int) (PrefAlign * 8); -} - const TargetAlignElem TargetData::InvalidAlignmentElem = TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); @@ -133,68 +123,49 @@ const TargetAlignElem TargetData::InvalidAlignmentElem = // TargetData Class Implementation //===----------------------------------------------------------------------===// -/*! - A TargetDescription string consists of a sequence of hyphen-delimited - specifiers for target endianness, pointer size and alignments, and various - primitive type sizes and alignments. A typical string looks something like: -

- "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" -

- (note: this string is not fully specified and is only an example.) - \p - Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, - below) dictates how a type will be aligned within an aggregate and when used - as an argument. Preferred alignment (pref_align, below) determines a type's - alignment when emitted as a global. - \p - Specifier string details: -

- [E|e]: Endianness. "E" specifies a big-endian target data model, "e" - specifies a little-endian target data model. -

- p:@verbatim::@endverbatim: Pointer size, - ABI and preferred alignment. -

- @verbatim::@endverbatim: Numeric type - alignment. Type is - one of i|f|v|a, corresponding to integer, floating point, vector (aka - packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. - \p - The default string, fully specified is: -

- "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" - "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" - "-v64:64:64-v128:128:128" -

- Note that in the case of aggregates, 0 is the default ABI and preferred - alignment. This is a special case, where the aggregate's computed worst-case - alignment will be used. - */ -void TargetData::init(const std::string &TargetDescription) { - std::string temp = TargetDescription; +/// getInt - Get an integer ignoring errors. +static unsigned getInt(StringRef R) { + unsigned Result = 0; + R.getAsInteger(10, Result); + return Result; +} + +void TargetData::init(StringRef Desc) { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); + LayoutMap = 0; LittleEndian = false; PointerMemSize = 8; - PointerABIAlign = 8; + PointerABIAlign = 8; PointerPrefAlign = PointerABIAlign; // Default alignments - setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool - setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte - setAlignment(INTEGER_ALIGN, 2, 2, 16); // short - setAlignment(INTEGER_ALIGN, 4, 4, 32); // int - setAlignment(INTEGER_ALIGN, 4, 8, 64); // long + setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 + setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8 + setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16 + setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32 + setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float setAlignment(FLOAT_ALIGN, 8, 8, 64); // double - setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 + setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ... setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... - setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct + + while (!Desc.empty()) { + std::pair Split = Desc.split('-'); + StringRef Token = Split.first; + Desc = Split.second; - while (!temp.empty()) { - std::string token = getToken(temp, "-"); - std::string arg0 = getToken(token, ":"); - const char *p = arg0.c_str(); - switch(*p) { + if (Token.empty()) + continue; + + Split = Token.split(':'); + StringRef Specifier = Split.first; + Token = Split.second; + + assert(!Specifier.empty() && "Can't be empty here"); + + switch (Specifier[0]) { case 'E': LittleEndian = false; break; @@ -202,9 +173,12 @@ void TargetData::init(const std::string &TargetDescription) { LittleEndian = true; break; case 'p': - PointerMemSize = atoi(getToken(token,":").c_str()) / 8; - PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; - PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; + Split = Token.split(':'); + PointerMemSize = getInt(Split.first) / 8; + Split = Split.second.split(':'); + PointerABIAlign = getInt(Split.first) / 8; + Split = Split.second.split(':'); + PointerPrefAlign = getInt(Split.first) / 8; if (PointerPrefAlign == 0) PointerPrefAlign = PointerABIAlign; break; @@ -213,36 +187,60 @@ void TargetData::init(const std::string &TargetDescription) { case 'f': case 'a': case 's': { - AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning - switch(*p) { - case 'i': align_type = INTEGER_ALIGN; break; - case 'v': align_type = VECTOR_ALIGN; break; - case 'f': align_type = FLOAT_ALIGN; break; - case 'a': align_type = AGGREGATE_ALIGN; break; - case 's': align_type = STACK_ALIGN; break; + AlignTypeEnum AlignType; + switch (Specifier[0]) { + default: + case 'i': AlignType = INTEGER_ALIGN; break; + case 'v': AlignType = VECTOR_ALIGN; break; + case 'f': AlignType = FLOAT_ALIGN; break; + case 'a': AlignType = AGGREGATE_ALIGN; break; + case 's': AlignType = STACK_ALIGN; break; } - uint32_t size = (uint32_t) atoi(++p); - unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; - unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; - if (pref_align == 0) - pref_align = abi_align; - setAlignment(align_type, abi_align, pref_align, size); + unsigned Size = getInt(Specifier.substr(1)); + Split = Token.split(':'); + unsigned ABIAlign = getInt(Split.first) / 8; + + Split = Split.second.split(':'); + unsigned PrefAlign = getInt(Split.first) / 8; + if (PrefAlign == 0) + PrefAlign = ABIAlign; + setAlignment(AlignType, ABIAlign, PrefAlign, Size); break; } + case 'n': // Native integer types. + Specifier = Specifier.substr(1); + do { + if (unsigned Width = getInt(Specifier)) + LegalIntWidths.push_back(Width); + Split = Token.split(':'); + Specifier = Split.first; + Token = Split.second; + } while (!Specifier.empty() || !Token.empty()); + break; + default: break; } } } -TargetData::TargetData(const Module *M) - : ImmutablePass((intptr_t)&ID) { +/// Default ctor. +/// +/// @note This has to exist, because this is a pass, but it should never be +/// used. +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " + "Tool did not specify a TargetData to use?"); +} + +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { init(M->getDataLayout()); } void -TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && @@ -253,14 +251,14 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, return; } } - + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, pref_align, bit_width)); } -/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. -unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth, bool ABIInfo, const Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. @@ -270,28 +268,18 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, if (Alignments[i].AlignType == AlignType && Alignments[i].TypeBitWidth == BitWidth) return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; - + // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { - // If this is a specification for a smaller vector type, we will fall back - // to it. This happens because <128 x double> can be implemented in terms - // of 64 <2 x double>. - if (Alignments[i].TypeBitWidth < BitWidth) { - // Verify that we pick the biggest of the fallbacks. - if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) - BestMatchIdx = i; - } - } else if (AlignType == INTEGER_ALIGN && - Alignments[i].AlignType == INTEGER_ALIGN) { + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { // The "best match" for integers is the smallest size that is larger than // the BitWidth requested. - if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) BestMatchIdx = i; // However, if there isn't one that's larger, then we must use the // largest one we have (see below) - if (LargestInt == -1 || + if (LargestInt == -1 || Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) LargestInt = i; } @@ -305,80 +293,120 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, BestMatchIdx = LargestInt; } else { assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); - - // If we didn't find a vector size that is smaller or equal to this type, - // then we will end up scalarizing this to its element type. Just return - // the alignment of the element. - return getAlignment(cast(Ty)->getElementType(), ABIInfo); - } + + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = llvm::NextPowerOf2(Align); + return Align; + } } - + // Since we got a "best match" index, just return it. return ABIInfo ? Alignments[BestMatchIdx].ABIAlign : Alignments[BestMatchIdx].PrefAlign; } -/// LayoutInfo - The lazy cache of structure layout information maintained by -/// TargetData. Note that the struct types must have been free'd before -/// llvm_shutdown is called (and thus this is deallocated) because all the -/// targets with cached elements should have been destroyed. -/// -typedef std::pair LayoutKey; +namespace { -struct DenseMapLayoutKeyInfo { - static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } - static inline LayoutKey getTombstoneKey() { - return LayoutKey((TargetData*)(intptr_t)-1, 0); - } - static unsigned getHashValue(const LayoutKey &Val) { - return DenseMapInfo::getHashValue(Val.first) ^ - DenseMapInfo::getHashValue(Val.second); +class StructLayoutMap : public AbstractTypeUser { + typedef DenseMap LayoutInfoTy; + LayoutInfoTy LayoutInfo; + + void RemoveEntry(LayoutInfoTy::iterator I, bool WasAbstract) { + I->second->~StructLayout(); + free(I->second); + if (WasAbstract) + I->first->removeAbstractTypeUser(this); + LayoutInfo.erase(I); } - static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { - return LHS == RHS; + + + /// refineAbstractType - The callback method invoked when an abstract type is + /// resolved to another type. An object must override this method to update + /// its internal state to reference NewType instead of OldType. + /// + virtual void refineAbstractType(const DerivedType *OldTy, + const Type *) { + LayoutInfoTy::iterator I = LayoutInfo.find(cast(OldTy)); + assert(I != LayoutInfo.end() && "Using type but not in map?"); + RemoveEntry(I, true); } - static bool isPod() { return true; } -}; + /// typeBecameConcrete - The other case which AbstractTypeUsers must be aware + /// of is when a type makes the transition from being abstract (where it has + /// clients on its AbstractTypeUsers list) to concrete (where it does not). + /// This method notifies ATU's when this occurs for a type. + /// + virtual void typeBecameConcrete(const DerivedType *AbsTy) { + LayoutInfoTy::iterator I = LayoutInfo.find(cast(AbsTy)); + assert(I != LayoutInfo.end() && "Using type but not in map?"); + RemoveEntry(I, true); + } -typedef DenseMap LayoutInfoTy; -static ManagedStatic LayoutInfo; +public: + virtual ~StructLayoutMap() { + // Remove any layouts. + for (LayoutInfoTy::iterator + I = LayoutInfo.begin(), E = LayoutInfo.end(); I != E; ++I) { + const Type *Key = I->first; + StructLayout *Value = I->second; + if (Key->isAbstract()) + Key->removeAbstractTypeUser(this); -TargetData::~TargetData() { - if (LayoutInfo.isConstructed()) { - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *LayoutInfo; - for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); - I != E; ) { - if (I->first.first == this) { - I->second->~StructLayout(); - free(I->second); - TheMap.erase(I++); - } else { - ++I; - } + Value->~StructLayout(); + free(Value); } } + + void InvalidateEntry(const StructType *Ty) { + LayoutInfoTy::iterator I = LayoutInfo.find(Ty); + if (I == LayoutInfo.end()) return; + RemoveEntry(I, Ty->isAbstract()); + } + + StructLayout *&operator[](const StructType *STy) { + return LayoutInfo[STy]; + } + + // for debugging... + virtual void dump() const {} +}; + +} // end anonymous namespace + +TargetData::~TargetData() { + delete static_cast(LayoutMap); } const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { - LayoutInfoTy &TheMap = *LayoutInfo; - - StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; + if (!LayoutMap) + LayoutMap = new StructLayoutMap(); + + StructLayoutMap *STM = static_cast(LayoutMap); + StructLayout *&SL = (*STM)[Ty]; if (SL) return SL; - // Otherwise, create the struct layout. Because it is variable length, we + // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. int NumElts = Ty->getNumElements(); StructLayout *L = - (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); - + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); + // Set SL before calling StructLayout's ctor. The ctor could cause other // entries to be added to TheMap, invalidating our reference. SL = L; - + new (L) StructLayout(Ty, *this); + + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(STM); + return L; } @@ -387,32 +415,31 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { /// removed, this method must be called whenever a StructType is removed to /// avoid a dangling pointer in this cache. void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { - if (!LayoutInfo.isConstructed()) return; // No cache. - - LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); - if (I != LayoutInfo->end()) { - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); - } -} + if (!LayoutMap) return; // No cache. + static_cast(LayoutMap)->InvalidateEntry(Ty); +} std::string TargetData::getStringRepresentation() const { - std::string repr; - repr.append(LittleEndian ? "e" : "E"); - repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). - append(":").append(itostr((int64_t) (PointerABIAlign * 8))). - append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); - for (align_const_iterator I = Alignments.begin(); - I != Alignments.end(); - ++I) { - repr.append("-").append(1, (char) I->AlignType). - append(utostr((int64_t) I->TypeBitWidth)). - append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). - append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); + std::string Result; + raw_string_ostream OS(Result); + + OS << (LittleEndian ? "e" : "E") + << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 + << ':' << PointerPrefAlign*8; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + const TargetAlignElem &AI = Alignments[i]; + OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' + << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; } - return repr; + + if (!LegalIntWidths.empty()) { + OS << "-n" << (unsigned)LegalIntWidths[0]; + + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) + OS << ':' << (unsigned)LegalIntWidths[i]; + } + return OS.str(); } @@ -424,13 +451,11 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { return getPointerSizeInBits(); case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); - return getABITypeSizeInBits(ATy->getElementType())*ATy->getNumElements(); + return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); } - case Type::StructTyID: { + case Type::StructTyID: // Get the layout annotation... which is lazily created on demand. - const StructLayout *Layout = getStructLayout(cast(Ty)); - return Layout->getSizeInBits(); - } + return getStructLayout(cast(Ty))->getSizeInBits(); case Type::IntegerTyID: return cast(Ty)->getBitWidth(); case Type::VoidTyID: @@ -438,6 +463,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { case Type::FloatTyID: return 32; case Type::DoubleTyID: + case Type::X86_MMXTyID: return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: @@ -446,12 +472,10 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { // only 80 bits contain information. case Type::X86_FP80TyID: return 80; - case Type::VectorTyID: { - const VectorType *PTy = cast(Ty); - return PTy->getBitWidth(); - } + case Type::VectorTyID: + return cast(Ty)->getBitWidth(); default: - assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); + llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type"); break; } return 0; @@ -465,12 +489,12 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref == false) for the requested type \a Ty. */ -unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { +unsigned TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { int AlignType = -1; assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { - /* Early escape for the non-numeric types */ + // Early escape for the non-numeric types. case Type::LabelTyID: case Type::PointerTyID: return (abi_or_pref @@ -478,16 +502,16 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { : getPointerPrefAlignment()); case Type::ArrayTyID: return getAlignment(cast(Ty)->getElementType(), abi_or_pref); - + case Type::StructTyID: { // Packed structure types always have an ABI alignment of one. if (cast(Ty)->isPacked() && abi_or_pref) return 1; - + // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); - return std::max(Align, (unsigned)Layout->getAlignment()); + return std::max(Align, Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -502,11 +526,12 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; + case Type::X86_MMXTyID: case Type::VectorTyID: AlignType = VECTOR_ALIGN; break; default: - assert(0 && "Bad type for getAlignment!!!"); + llvm_unreachable("Bad type for getAlignment!!!"); break; } @@ -514,11 +539,18 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { abi_or_pref, Ty); } -unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { +unsigned TargetData::getABITypeAlignment(const Type *Ty) const { return getAlignment(Ty, true); } -unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(const Type *Ty) const { for (unsigned i = 0, e = Alignments.size(); i != e; ++i) if (Alignments[i].AlignType == STACK_ALIGN) return Alignments[i].ABIAlign; @@ -526,34 +558,35 @@ unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { return getABITypeAlignment(Ty); } -unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { +unsigned TargetData::getPrefTypeAlignment(const Type *Ty) const { return getAlignment(Ty, false); } -unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = (unsigned) getPrefTypeAlignment(Ty); +unsigned TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. -const Type *TargetData::getIntPtrType() const { - return IntegerType::get(getPointerSizeInBits()); +const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { + return IntegerType::get(C, getPointerSizeInBits()); } uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, unsigned NumIndices) const { const Type *Ty = ptrTy; - assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { if (const StructType *STy = dyn_cast(*TI)) { - assert(Indices[CurIDX]->getType() == Type::Int32Ty && + assert(Indices[CurIDX]->getType() == + Type::getInt32Ty(ptrTy->getContext()) && "Illegal struct idx"); unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); @@ -570,8 +603,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. - int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getABITypeSize(Ty); + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); } } @@ -584,10 +617,14 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); unsigned Alignment = getPrefTypeAlignment(ElemType); - if (GV->getAlignment() > Alignment) - Alignment = GV->getAlignment(); + unsigned GVAlignment = GV->getAlignment(); + if (GVAlignment >= Alignment) { + Alignment = GVAlignment; + } else if (GVAlignment != 0) { + Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); + } - if (GV->hasInitializer()) { + if (GV->hasInitializer() && GVAlignment == 0) { if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment.